
Agenda

• Intros

• Name, Company, interest in cloud computing /
security, how did you find out about this
MeetUp

• Netflix Chaos Monkey

• Forming a CSA Chapter

• Next Meeting

Intro to Netflix Chaos
Monkey

• Tool that deliberately terminates instances in Auto
Scaling Groups

• Developed by Netflix and released as open source
on 30 July

• Terminated 65,000 instances in production and
test for Netflix, most of the time they never
noticed

• Source: http://techblog.netflix.com/2012/07/chaos-
monkey-released-into-wild.html

What is Chaos Monkey

• Failure happens

• Software is complex

• Examples

• Do load balancers route correctly when
instances go offline

• Can you reliably rebuild your instances

• Patch deployment issues

Why use Chaos Monkey

Setting Up Chaos
Monkey

• Uses Amazon Auto Scaling Groups

• Java based command line execution

• Optional Use of Asgard

• Amazon SimpleDB for storing events

"Auto Scaling is a web service designed to
launch or terminate EC2 instances
automatically based on user-defined policies,
schedules, and health checks."

Source: http://docs.amazonwebservices.com/AutoScaling/
latest/DeveloperGuide/WhatIsAutoScaling.html

What is Auto Scaling

• Add and remove capacity based on use

• Mange instances across several Availability
Zones via command line ore web service
API

• Replace unhealthy instances based on
predefined alarms and thresholds

• Schedule scaling on specific dates based on
anticipated needs

Autoscaling Features

AWS Auto Scaling

Source: http://docs.amazonwebservices.com/AutoScaling/
latest/DeveloperGuide/AS_Concepts.html

Asgard

• Cloud deployment and management tool tool developed and
released as open source by Netflix

Setting Up Chaos
Monkey

• Download Auto Scaling Tools

• Create Auto Scaling Image

• Create Auto Scaling Group

• Start Auto Scaling Group

• Set Up SimpleDB Table

• Build the Monkeys with Gradle

Download Auto Scaling
Tools

$ wget http://ec2-
downloads.s3.amazonaws.com/
AutoScaling-2011-01-01.zip

$ unzip AutoScaling-2011-01-01.zip

$ cd AutoScaling-1.0.61.0/

$ export
AWS_AUTO_SCALING_HOME=`pwd

Setup Environment

$ export
AWS_AUTO_SCALING_URL=http://
autoscaling.us-west-2.amazonaws.com

$ export
ACCOUNT_KEY=your_account_key

$ export SECRET_KEY=your_secret_key

Create Launch Config

$ $AWS_AUTO_SCALING_HOME/bin/as-
create-launch-config lc1 --instance-type
t1.micro -I $ACCOUNT_KEY -S
$SECRET_KEY --image-id ami-fcf27fcc

OK-Created launch config

Create Auto Scaling
Group

$ $AWS_AUTO_SCALING_HOME/bin/as-
create-auto-scaling-group monkey-target -I
$ACCOUNT_KEY -S $SECRET_KEY --
launch-configuration lc1 --availability-zones
us-west-2a --min-size 1 --max-size 10

Start Auto Scale Group

$ $AWS_AUTO_SCALING_HOME/bin/as-
describe-auto-scaling-groups -I
$ACCOUNT_KEY -S $SECRET_KEY

AUTO-SCALING-GROUP monkey-target
lc1 us-west-2a 1 1 1

INSTANCE i-8b55fbb8 us-west-2a InService
Healthy lc1

Set Up SimpleDB

• See website

Build Simian Army

• Check out code from github

• Build with Gradle

Unleash the Monkey

set simianarmy.chaos.leashed=false

Configuration

• Opt in or Opt out model

• Tunable probability

• Probability of 1 will terminate 1 instance per
ASG per day if set to day

Probability
“The probability is the run probability. If Chaos is running
hourly between 9am and 3pm with an overall configured
probability of "1.0" then the probability provided to this
routine would be 1.0/6 (6 hours in 9am-3pm). So the
typical probability here would be .1666. For Chaos to
select an instance it will pick a random number between
0and 1. If that random number is less than the .1666 it will
proceed to select an instance and return it,otherwise it
will return null. Over 6 runs it is likely that the random
number be less than .1666, but it is not certain.”

Source Code

Configuration

• Can set timeframe that it runs

• Netflix runs during normal working hours

Simian Army
Discussed by Netflix but not released as open source

yet

Latency Monkey

• Adds delays to RESTFUL client server
communications

Conformity Monkey

• Terminates instances that don’t follow “best
practices”

Doctor Monkey

• Does health checks for things like high
CPU, removed from service

Janitor Monkey

• Looks for unused resources and removes
them

Security Monkey

• Terminates instances with vulnerabilities or
security violations

• Also checks for outdated DRM and SSL
certs

10-18 Monkey

• Looks for problems with instances in
different langauges or using different
character sets

Chaos Gorilla

• Simulates an outage in an entire region

Where to learn more

• References are available here:

http://brightmoonsecurity.com/blog/

• Contact me with any questions:

chris@brightmoonsecurity.com

@BrightMoonSec

