Implementing Data-Driven Testing Using Datapools
Mike Kelly

First published on the Rational Developer Network
http://www.rational.net

You've decided to implement data-driven testing because it's faster, more robust, easier to maintain, and/or
cheaper than your current testing method. Now the only thing you're wondering is, how are you going to
implement it? You've come to the right place. In this article I'll show you how to implement what | believe to
be a very good data-driven model for test automation, using the Rational datapools and their associated
methods. I'll address some of the key concepts that need to be understood and some of the pitfalls to watch
out for, as well.

This article assumes that you're already familiar with the theory and definition of data-driven testing. Just to
make sure we're on the same page, though, here's a simple definition: In the case of automated test
scripting, data-driven testing is setting up a script to test an application, having that script make calls to a
dataset (a datapool, database, or some other source), and using the data found there within the script. If
you need more background information, I'd suggest you take a look at "Improving the Maintainability of
Automated Test Suites" by Cem Kaner.

What's a Datapool?

A datapool is simply a two-dimensional dataset, where rows represent records and columns represent fields
that supply values for the variables in a test script during playback. This is the built-in method Rational
provides to enable testers to generate data-driven tests. Values contained in datapools are commonly used
to process controls but can also be used to affect the flow of script execution, allow for dynamic test
verification, and other purposes.

Datapools can contain any kind of information you want. In past projects, I've put the following into
datapools:

= data to be entered into controls
= data used to navigate through applications
= data to build test scripts "on the fly"
= paths to verification data, verification points, and images
= parameters for functions
= names of scripts to execute
= names of other datapools
= comments on the datapool itself
The list of what can go into a datapool is truly endless. But keep in mind that putting things into datapools is

time consuming and at some point will reach the point of diminishing returns. It's best to start small, and
then as you gain experience expand your datapool functionality as the project demands.

What Kinds of Applications Can Be Tested with Datapools?

Good candidates for testing with datapools are as follows:

= Applications that have complex navigational paths. You can enter all of the variations into one
datapool and then maintain just one script to test all paths through the application.

= Applications with varying results based on input. Again, one script can be used to populate the
data; both the data entered and the verification data can be stored in one datapool (or set of
datapools).

= Large applications with numerous iterations. The benefit of datapools will best be seen in these
applications, no matter what their domain. As the look, feel, and navigation of the application
change, your test data probably will not. Pooling the data and drawing on it in your scripts will help
you make sure you're maintaining as few scripts as possible.

Basic Commands for Manipulating Datapools

It's important that you know the basics of the commands used to manipulate datapools. The SQABasic
language contains five basic commands for datapool manipulation, as shown in Table 1. I'll be referring to
these commands and their functions throughout the rest of this article. More information and syntax for the
commands can be found in the SQABasic language reference included with the Rational software.

Command Function
SQADatapoolClose Close the specified datapool.
SQADatapoolFetch Move the cursor for the datapool to the next row.
SQADatapoolOpen Open the specified datapool.
SOADatapoolRewind | Reset the cursor for the specified datapool.

SQADatapoolValue Retrieve the value of the specified datapool column.

Table 1: The SQABasic commands for manipulating datapools

Using a Simple Datapool

All right, here we go. Let's make a simple datapool in TestManager to test a very simple application. After
looking at the easiest case, we can then talk about applying the same concept to more complex systems.
You can download the datapool if you'd like to take a look at it.

Create the Datapool

To create the datapool, do the following.
1. Open TestManager.
2. From the menu, choose Tools > Manage > Datapools > New.

3. In the New Datapool window, enter a name and a description for the datapool.

Mew Datapool

M

Datapool used a3 firgt example,

Figure 1: Make sure you enter a description of the datapool

4. Click OK. The following pop-up should appear:

Test™anager

(7

Figure 2: Click Yes to define fields in your new datapool

5. Click Yes. On the Data Type Specification screen, click the "Insert before" button six times and
then enter the values shown below in the Name column of the six rows you've created:

#BData Type Specification - SimpleDatapool

Integess - Signed Sequential
Integess - Signed Sequential
Integers - Signed Sequential
Integers - Signed Sequential
Sequential
Sequential

Figure 3: Inserting fields in your new datapool

Regarding the entry in the first row, experience has taught me that in some complex datapool structures the
values contained in the first and last columns of the datapool can be lost as a result of the framework of
SpADatapool calls necessary to set up the structure. This may not happen in any implementations you set
up, and it definitely won't happen in a datapool this simple. Nevertheless, | always reserve the first and last
field, for two reasons. First, because debugging the various frameworks that had this problem was very
costly in my experience, | figure that making this a standard practice is a good way to reduce potential
headaches down the road. Second, these fields can be used to hold comments on the data contained in the
row. This can be very helpful in large datasets.

I'm not going to go into detail on the other fields in the dataset or the Generate Data button. If you're
unfamiliar with these features, when you have more time you can click the Help button on the screen and
read the online help.

6. Click Save, then Close. You should be returned to the Datapool Properties screen.

Datapool Properties

Dratapool used as first example.

Figure 4: When you save the changes to your new datapool, you'll be
returned to the initial screen.

To go back to the Data Type Specification screen you were just at, you would click the Define Datapool
Fields button. The values you just entered are the column names for the datapool. It's by those column
names that you'll reference your data from within a script.

7. Click the Edit Datapool Data button. On the Edit Datapool screen, enter the values shown below in
the first and second rows.

E Eclit ':!.||.|||||||r '.|[||||||'| l.:l.!.|:|:|||

|
__|™DoNot Enter Data™ |Add *=Do Not Enter Data™*

¢ |="Do Not Enter Data™ ***Do Mot Enter D ata™"

Figure 5: Enter the values as shown above.

8. Click Save, then Close. You should again be returned to the Datapool Properties screen.

9. Click OK, and you'll see that our datapool has been added.

| Manage Datapools X

|__ |

SimpleD atapoal

Figure 6: Verify that your datapool has been added

10. Click Close.

Create a Script to Use the Datapool
Now that we have our datapool, we can create a simple script to illustrate its use. We'll base the script on
the Windows application Calculator so that you can follow along and create your own script. You can
download the various versions of this script as we go along, if you'd like.
To create a script using our datapool, do the following:

1. Open Robot.

2. From the menu, choose File > New > Script.

3. Inthe New Script window, enter a name and a description for the script.

New Script 2] = |
Marne: ISimpIeScript
Descriptior: Script to demonstrate how to uze simple datapoal, =]
I
Tepe: o GUl Ol
Ok, I Cancel | Help |

Figure 7: As usual, remember to add a description of your new script

4. Click OK. A window titled SimpleScript should appear. From this window, enter a
StartApplication command for the Windows Calculator.

5. Record as you click each button on the calculator as well as the results edit box.
6. Sort the buttons according to whether they're number buttons or operation buttons.

You should now have a script that looks similar to the one shown below. You can download this script; you'll
have to compile it before it'll work.

ig Venfssshion Ports

Sub Hain
Dim Result As Inteqer

‘Initially Recorded: 7/24/2802 6:53:42 AH
‘Script Hame: SimpleScript
StartApplication "C:\WIHHTAsystem32\calc.exe"

Window SetContext, “"Caption=Calculators, "

'Humber Pushbuttons
PushButton Click, “ObjectIndex=8" °
PushButton Click, "ObjectIndex=7"
PushButtom Click, “Objectindex=11"
PushButtom Click, “Objectlindex=15"
PushButton Click, “0bjectlindex=6"
PushButton Click, "ObjectIndex=10"
PushButton Click, "ObjectIndex=14"
PushButton Click, “ObjectlIndex=5"
PushButton Click, “Objectindex=9*
PushButton Click, “0ObjectIndex=13"

L=l - B - -]

‘Operation Pushbuttons

PushButton Click, "Objectindex=2@"
PushButtonm Glick, “Objectindex=19"
PushButton Click, "ObjectIndex=18"
PushButton Click, “ObjectIndex=17"
PushButton Click, "ObjectIndex=21"
PushButton Click, “Objectindex=22" ~Backspace
PushButton Click, “Objectindex=23" “CE
PushButton Click, “Objectlindex=24" °C

R

'Result
Label Click, "Text=0."

End Sub

Figure 8: Make sure your script looks like this one

Now we need something to test. For the sake of good testing, let's get some requirements. How about
these:

= Verify the functionality of the Add button.
= Verify the functionality of the Subtract button.
Now that we have our challenging requirements, we can get down to work. Ideally we have everything we

need to verify all of the requirements. Our datapool contains all of our test data, and we have one script,
which can be used to test all (in this case both) requirements.

Add the Datapool to the Simple Script

To add our datapool to the simple script, do the following:
1. Open SimpleScript.

2. Include the header file sOAUTTL. sBH. This allows you to manipulate the datapool.

*$Include "SQAUTIL.SBH"

Sub Hain

3. Addacall to sorpatapoolOpen at the start of the script. This will create a cursor for the datapool,
allowing you to access the data. Always add error checking to allow for easier debugging.

‘Open the datapool
DatapoolHandle = SQADatapoolOpen({“SimpleDatapool’)
If DatapoelHandle < B Then
SfALogMessage saqFail, '"Couwld not open datapool.',
"The datapool 'SimpleDatapool” could not be opened.”
End If

4. Addacallto soapatapoolFetch after your soaDatapoolopen. This will load the first row of the
datapool into the cursor. The argument to this function is the datapool handle that was returned
from the soaDatapoolOpen.

'Load a rouw
Result = SQaDatapoolFetch{DatapoolHandle)
I¥ Result <> sgaDpSuccess Then
3QALoghessage sagWarning, “Could not fetch row from datapool.™, _
"The datapool 'SimpleDatapool’ contained no more rows to Feteh.™

End If

5. Add acall to soabatapoolClose at the end of the script. This will close the cursor after you're
done processing the datapool.

Result = SQADatapoolClose(DatapoolHandle)
If Result <> sgaSuccess Then
S0ALogHessage saqFail, '""Could not close datapool.', _
"The datapool 'SimpleDatapool’ could not be closed.™

End If

6. Add acall to soapatapoolvalue right before the number buttons to see which number to click.
Pass the column name "Value One." This is one of the names we put in SimpleDatapool.

"Humber Pushbuttons
Result = IQADatapoolValuedpatapoolHandle, “Ualue One'’, DatapoolReturnlalue)
I Result {> sgaSuceess Then
S0ALogHessage sagFail, "Could not read value From datapool.™, _
"Could not read value from column Value One.'
End If

PushButton Click, “Objectindex=3" A
PushButton Click, "Objectindex=7" 1
PushButton Click, "DbjectIndex=11" *2
PushButton Click, "Objectindex=15" °3
PushButton Click, "Objectindexr-=6* .
FushButton Click, "Dbjectindex=1@" %
PushButten Clieck, "Dbjectindex=14" 6
FushButton Click, "Objectindex=5" T
PushButton Glick, "Dbjectindex=9" i
PushButton Click, "ObjectIndex=13" 90

7. Add acall to sorpatapoolvalue right before the operation buttons to see which operation to
click. Pass the column name "Operation." This is one of the names we put in SimpleDatapool.

‘ﬂpFratiun Pushbuttons
Result = SQADatapoolUalue{DatapoolHandle, “Operation™, DatapoolReturnValue)
If Result <> sqaSuccess Then
ShalogHessage sagFail, “Could not read value from datapool.™,
"Could not read value From column Dperation.™
Enid TF
PushButtom Click, "ObjectIndex=20" ‘»
PushButton Click, "ODbjectimdex=19" -
PushButton Click, “0bjectimdex=18" ‘=
FushButton Click, "ObjectIndex-17" '/
PushButton Click, “0bjectIndex=22"" ‘Rackspace
PushButton Click, “0bjectimndex=23" ‘LE
FushButton Click, "ObjectIndex=24" 'C

8. Copy the number buttons and paste them after the operation buttons (they should now be in your
script twice). Add a call to soabatapoolvalue right before the number buttons to see which
number to click. Pass the column name "Value Two." This is one of the names we put in
SimpleDatapool.

"Humber Pushbuttans
Result = SQADatapoollaluedBatapaolHandle, “Ualue Two™, DatapoolReturnialue}
If Result <> sgaSuccess Then
S0fLogHessage sagFail, "Could not read walue fron datapool.™, _
“Could not read value from column Ualuwe Two.™

End If
FushButton Click, "ObjectIndex=g" ‘e
FushButton Glick, "ObjectIndexwy™ 1

PushButton Click, "ObjectIndex=11" '2
FushButton Click, "ObjectIndex=15" ‘3
PushButton Click, "ObjectIndex=6" 'y
PushButton Glick, “Objectindex=10" ‘5
PushButton Click, "ObjectIndex=14" ‘6
FushButton Glick, "ObjectIndex=5" 7
PushButton Click, "0bjectIndex=9" g
FPushButton Click, “ObjectIndex=13" "9

9. Move the call to the "=" button after the second set of number buttons.

'Click =
PushButton Click, "0bjectIndex=21"

10. Add a call to soapatapoolvalue right before the Label c1ick command for the result. Pass the
column name "Result." This is one of the names we put in SimpleDatapool.

‘Result
Result = EZQAaDatapoolValue{PatapoolHandle, “Result™, DatapoolReturnUalue)
If Result <* sgalSuccess Then
fQaLogHessage saqFail, “Could not vead walwe From datapool.™, _
“Could not read value from column Result.™
End If

Label Click, "Text=0."

11. Add case statements for the numbers and the operations. Below is an example of the operations.

Select Case UCase(DatapoolReturnUalue)
Case "ADD"
PushButton Click, “ObjectIindex=28" °+
Case “SUBTRACT'
PushButton Click, “ObjectIndex=19" °-
Case "DIUVIDE™
PushButton Click, “ObjectIndex=17" */
Case “MULTIPLY*™
PushButton Click, “ObjectIndex=18" ‘=
Case Else
S0ALogHessage sagFail, “Invalid Ualue™, _
“Ualue in column ‘Operation’ in SimpleDatapool is invalid.™
End 3elect

12. The verification gets a little tricky. It can be done any number of ways, but for the purpose of our
example, we'll let a click on the label with the desired result act as our verification. To do that we
need to change the "Text" value of the label in our code by making it dynamic.

‘Uerify result
Label Click, "Text=" & DatapoolReturnValue & ""."

13. If we were to execute the script at this point, it would process the first row of the datapool. Now we
need to make the script truly dynamic and set it up to process multiple rows. We'll do this by
looping until the datapool is empty. We'll also need to add a command to clear the calculator
between tests. We add a iihile loop and use the soaDatapoolFetch command as the control for
it.

‘Loop through the datapool
While SOADatapoolFetch{DatapoolHandle) = sgaDp3uccess

Window SetContext, “Caption=Calculator"™, ****

‘Clear Value
FushButton Click, "ObjectIndex=23" °CE

«--. CGODE
---. CODE
«e== CODE

‘Uerify result
Label Click, "Text=" & DatapoolReturnValue & *."

Wend "Go felch next row

At this point, if we were to run our script it would loop through the datapool and check every test case. You
can download this script; you'll have to compile it before it'll work. Play around with variations and see what
passes and fails. Also keep in mind that the script we made is an example. If you were to really create
scripts like this one you would want to modularize some of the code (the number buttons, for example) as
well as use wrapped functions instead of using the direct SQABasic commands.

Advanced Datapool Concepts

Now that you've successfully created and used a simple datapool, let's look at some more advanced
implementations of datapools. As you start to use datapools for testing larger applications with larger
datasets, there are a couple of key concepts you'll need to grasp.

First, there are three files for each datapool ? one file for each dimension (row, column) and one for meta-
information.

= The data (row information) for the datapool is stored in a file with a . csv extension. You should
already be familiar with this type of file as it's simply a comma-delimited list that can be edited with
TestManager, Excel, or some other spreadsheet editor. | mention Excel because it can be a useful
way of distributing blank spreadsheets to be populated with data by users who don't have
TestManager. I've found in the past that this is very useful, because on large datasets data entry
can sometimes be a bottleneck.

= The column names for the datapool are stored in a file with a . spc extension. The .spc file is
formatted specifically for use with TestManager, and editing it outside of TestManager can easily
corrupt the file.

= The meta-information for the datapool is stored in XML format with a . rtxm1 extension. The
.rtxml file is formatted specifically for use with TestManager, and editing it outside of
TestManager can easily corrupt the file.

All of the datapool files are stored in the TestDatastore under the following path:
C:\\TestDatastore\DefaultTestScriptDatastore\TMS_Datapools

You'll need to know where your datapools are on the physical disk if you want to edit them outside of
TestManager.

Datapools can be nested to form datapool hierarchies. You'll want to customize the hierarchy structure to fit
the structure of the application you're testing, not the test cases that will be executed. This means that you
can start developing the datapool hierarchy at the same time the developers develop the application and

the test engineers develop the test cases. Early data can later be put into the datapools contained in the
hierarchy, and the bulk of your finished test cases can be executed with little or no scripting.

Let's take a look at a potential datapool hierarchy we could develop for the Calculator application.
Create a Datapool Hierarchy

To create a datapool hierarchy, do the following:

1. Look at the application you'll be testing. For the example, we'll look at the Windows Calculator
program.

2. Decide what the primary datapool (the root) will be and what it will contain.
For the Calculator application, the primary datapool should contain columns for the menu commands and a

pointer column for the child datapool (either the Standard or the Scientific view). With that information, our
root datapool (named Calculator Root Datapool) would look like this:

=RData Type Specification - Caloulator Root Datapool

—
| .

Figure 9: The calculator datapool

*“Dia Mot Enter Data™ [Calculator Standard Diatapood | *“Tio Mot Enbes Data™

Figure 10: Begin mapping the root datapoool to the child datapools

3. After the root datapool has been established, map out the child datapools it points to.

For the Calculator application, there are two child datapools: Calculator Standard Datapool and Calculator
Scientific Datapool. They'll look like this:

a Type Specification - Calculator Standard Datapool

Figure 11: The standard calculator datapool

Figure 12: The scientific calculator datapool

Notice that the Calculator Standard Datapool is a copy of our SimpleDatapool that we created earlier. For
the Calculator Scientific Datapool, all we added were columns for Mode and Function.

4. Go to those datapools and the sections of the application that they represent and repeat the
process. When you've completely mapped out the application, you're done.

For the purpose of our Calculator example, we're done. We now have a very simple two-level datapool
hierarchy.

When implementing these datapools in your scripts, you simply read the name of the nested datapool from
the root (using sorDatapoolvalue) and then pass that value to a soaDatapoolOpen that uses a different
datapool handle, as shown below.

‘Open the root datapool
RootDataponlHandle = SQADatapoolOpend“Caleulator Root Datapool™)
IF ReotDatapoolHandle < @ Then
SOALogHessage saqfail, “GCould not open datapool.”, _
"The dataposl 'Caleulator Root Datapool’ could net be opened.”
End 1F

"Loop through the datapool
While S@ADatapoolFetch{RootDatapeolHandle) - sgalpSuccess

‘Perform menu operations
' s CODE. ..
'...CODE...
' wa.CODE...

‘Read the child datapool
Result = SQAPatapoolVUaluelRoostbatapooliandle, _
"Child Datapool™, ReotDatapoolReturnbalue)
IF Result <» sqaSuccess Then
sQAlogHessage sagFail, "Could not read value From datapool.”, _
"Could pobt read value From colusn Child Dil&pﬂﬂl_"
End IF

"Open the child datapool
ChildPatapoolHandle - SQAbatapoolOpen{RootDatapoolReturnlalue)
If ChildbatapoolHandle € @ Then
S0flogHessage sagFail, “Could not open datapool.", _
“The datapool " & RootDatapoolReturnValue & " could not be opened.™
End If

You can download this sample script; you'll have to compile it before it'll work.

Once you have this structure in place, you can create as many datapools as you need. For instance, if you
had five test plans that called for testing the Scientific view, and each test plan had ten test cases, you
would simply make five Calculator Scientific Datapool datapools, each with ten rows.

Pooling Your Resources

Implementing data-driven testing using datapools can be as simple or as complex as you need it to be. As
you play around with datapools, datapool hierarchies, and different test frameworks, take some time to
document how easy or hard it is to design and maintain specific implementations. Even if you find an
implementation that works well for you, continue to make small changes to it with each new project you
apply it to. Your automation framework should grow to become as robust as the applications you use it to
test. As with all software development, you should always be trying to build a more robust and lower-
maintenance system.

You're sure to save maintenance time when you implement a data-driven technique, but there are lots of
different implementation methods to choose from. This article has described only one. | encourage you to
look for more ideas on data-driven testing on the Rational Developer Network(*"). And if you have
questions, feel free to email me.

References

Cem Kaner, "Improving the Maintainability of Automated Test Suites" (paper presented at Quality Week
97).

About the Authors

Mike Kelly is currently a programmer analyst for the Northeastern Center, Inc. He's had experience
managing a software automation testing team and has been working with the Rational tools since 1999. His
primary areas of interest are software development lifecycles, project management, and exploring new
methods of software development. Mike can be reached by e-mail.

