1010101010101010101010101010101
P10101010101010101010101010101
10101010101010101010101010101
B1010101010101010101010101
[i8101010101010101 01010101
8101010101010101010101
B101010101010101010101
01010101010101010101

ERIEI 010101010101
8101010101010101
10101010101010101
RGO A48 160101010101
1010101010101010101

010101010101
) 0101

10101

Companies invest a lot of time and money into tools for functional test automation and performance
testing.

«| think this tends to lead to the belief that the best way to utilize these tools is to hire “experts” in
these tools to get the best return on investment.

My observation is that this leads to teams of people who are “very good” at functional test
automation or are “very good” at performance testing (or more accurately load testing), but it does
not lead to teams that are very good at both.

The problem with this model can be that in specializing, we sometimes lose the ability to choose the
most effective tool or technique to solve the problem. Worse, many times we never really learn about
other tools or techniques.

*Many of us suffer from an anchoring bias[i]. That is, we “anchor” our thinking relative to the limited
information we have available or to our experience. This bias would direct performance test groups
(or even expert performance testers) to think of problems in terms relative to their performance test
experience and tools. It would also bias functional testers to choose techniques and tools they
specific to their domain (or at least those that are actively marketed as such).

*There are certainly many valid scenarios for specialization and for specialist groups. What is
important is that we understand what we sacrifice in organizing our teams that way. Many types of
testing can and should overlap, and many tools have effective uses outside of the space for which
they were designed and marketed.

% & ! &
7 &

Performance test tools sometimes work better for functional testing then traditional
functional test tools. They are better designed for high volume automation (as they
do not use the GUI) and they can sometimes offer easier access to an application’s
functionality. These tools often have more robust programming languages then
functional test tools, have easier access to the system under test by not using the
GUI, and have the ability to run multiple tests in parallel by simulating many users at
once. In addition, | have found that performance-modeling techniques can also
greatly assist in the development of functional tests.

™

We leveraged a performance test tool to allow us to execute a 300-500 test case parallel test in a
fraction of the time it would have taken using our functional test tool. By switching to a performance
test tool, we gained the following:

*We had a more robust programming language, which granted easier access to the test data by
allowing us to write advanced conversion and data-parsing methods.

*We were no longer tied to the GUI, cutting execution time to around 45 seconds per transaction
instead of 10 minute per transaction using the GUI.

*We could leverage our virtual-user licenses instead of functional licenses. This allowed us to
execute tests in batches of 100, while not using all of our testing hardware resources (so we could
continue working).

*We would lower our maintenance costs because there was less impact of application changes
(specifically GUI changes).

We started by recording a simple performance test script and parameterizing the data that was
entered into the application. This was not as trivial as we imagined it would be. When reading the
HTTP within the script, we had a difficult time figuring out which data was going where. We
eventually got it worked out, and documented as much as we could along the way in case we had to
run through the process again (which we did). We then wrote a function that converted our test data
to a data format that was friendlier to the tool we were using.

When we got the initial prototype working, not only were we more easily able to enter the
transactions, but we even uncovered a load limitation in the web application. Coincidentally, we
would not have found this limit until much later in the project, as actual performance testing was not
scheduled to occur until the next iteration. All said and done, we were able to automate the highest-
risk aspect of our parallel testing (verification of calculations that were performed on the transaction
data). The less risky aspects of the parallel testing (such as GUI rules) were then executed manually.

SampleProject - Rationa - [Sample High-'
Fle Edit View Record Debug Insert Tools Window Help

Jter@2EEE iR = L FACEY Y

test_company_com 34 = http_request ["PLWS-Pa™3.881"] “Lest company.con=443",

(HTTP_CONN_DIREGT | HTTP_CONN_SECURE_128),

“POST /processaccountApplicant.do HTTP/1.1uin®

“Accept: imagesgif, image/x-xbitmap, image/jpeg, image/pjpeg, applicat"

*ion/und.ns-excel, application/und.ms-pouerpoint, application/msuord, ap

“plication/x-shockwave-flash, */*\ri\n"

“Referer: " + SgenURI_B827 + "\rin"

“Accept-Language: en-us\rin®

“Content-Type: application/x-wwu-form-urlencoded\rin®

“Accept-Encoding: gzip, deflatewrin™

“User-Agent: Mozilla/4.6 (conmpatible; MSIE 6.8; Windows NT 5.8)\rin"

“Host: test-company.comirin®

“Content-Length: 1869\r\n™

“Connection: Keep-Alivewrin'

*Cache-Control: no-cache\rin™

“'Cookie: JSESSIONID=088121P9ZHM-dWhoTulrnu8b9r2 tudtrl2anirin®

i lati

*validationSet="
http_url_encode(SgenRes_825[8]) + “&commonAttributes.nextAction="
http_url_encode{datapool_value(DP1, “commonAttributes.nextAction 1))+ “&comnonAttrib
http_url_encode(SgenRes_826[0]) + “&commonAtiributes.isqQuote=
nttp_url_encode(SgenRes_B27[B]) + " tributes.pagebat 2
http_url_encode(datapool value(DP1, “commonfttributes.pageDataChang_1"))+ “&FirstHame
http_url_encode{datapool_value(PP1, "firstHame”))+ "&middleInitial
http_url_encode(datapool_value(DP1, “middlelnitial™))+ “&lastHame
http_url_encode(datapool_value(DP1, “lastHame”))}+ “Bsuffix="
http_url_encode(datapool_value(DP1, “suffix"))+ “&dateOfBirthii="

<1l . i .

T"‘| llll\mildﬁ(}msde,’

00033 010 ladmin

Open Robot and Show Sample
Sample Project — Sample High Volume

& '3 # /9%

Many GUI test tools do not offer the ability to test alternative interfaces (like a web service or an
embedded system).

Rather than building or buying a new tool for this type of testing, many times your performance test
tools can work well in these situations.

On a recent project where we tested a web service, we developed an in-house tool to allow for
functional testing using XML test cases. As we developed and used the tool we encountered many
problems relating to multiple users using the tool at the same time, configuration management of the
test cases, and poor results correlation (you know all the problems you typically get with home-grown
tools). The problems eventually got so bad that we had to abandon the tool halfway through our
testing and we had to start to look for alternatives.

& '3 # /9%

One alternative that we found worked well (for anyone on the team who had
experience in the tool) was to use our performance test tool to do the testing. Not
only did this tool allow us to interface directly with the service without using a
homegrown interface, it allowed us to store the test cases and results in a much
more manageable way. We also got some reuse by using the same scripts for
performance testing since all the test cases were simple XML submits.

In addition, because of the way the tool was licensed, it allowed anyone to install
the tool and execute a one-user test without using any licenses earmarked for other
teams. The tool was free as long as we didn’t actually execute the tests under load.
Don't let the word “free” be misleading, the organization still incurred the costs of
general licensing and the general costs of ownership for the tool. We were simply
able to take advantage of the resources we already had onsite.

& '3 # /9%

In his article on the user community modeling language (UCML)][i], Scott Barber shows a method to
visually depict complex workloads and performance scenarios. When applied to performance testing
UCML can serve to represent the workload distributions and operational profiles (among other
things). | have used UCML diagrams (and diagrams like UCML before | knew about UCML) to help in

planning my performance testing and to help elicit performance requirements.

10

.

UCML for performance testing with any tool

Model also good for model based testing in Rational Robot and Rational Functional
Tester

11

#" % & ' %
1 & * | # |
* * 3 = | *
e # '$
0! * * & # ! #
& I & # * #
Frr 3 &3
$
" o * 1> $- * &
.9 T# $) 3 ? I $
@%$ 0# 9 # $6 , $

Models like this allow us to create reasonably realistic performance test scenarios by allowing us to
build rich models of how someone might use our application. It shows states, transitions, usage
patterns, and dependencies. | have found the power behind a modeling approach like this to be that it
IS intuitive to developers, users, managers, and testers alike. That means faster communication,
clearer requirements, and better tests. However, models like this allow us to do more then simply
develop performance tests. They are also excellent tools for developing model-based automated
tests and complex scenario tests.

By having a model of the application you can create a model-based framework to randomly test the
states and transitions in your application. Model-based testing is a form of automated testing that
generates tests from a description of an application’s behavior. In model-based testing]ii], you can
apply various navigation algorithms to your model so your tests exercise the application in new
interesting ways each time you run your tests.

12

- 1 & H #Hl
#" $ %
(! #
$
H* | *
$
- | 3 '3 * !
3 * * -
I 3 [| | *
3 #* *$
" YA ! I* > $
= 3 1 &) !
/&333% | & *# 1S &P $

In addition to model-based testing and performance testing, an application model is also helpful in
scenario testing]iii]. A scenario test tells a persuasive story about a user of the system. The test
should be complex and reflect real use of the system. Many times when we develop scenario tests,
we have to develop models like this anyway, even if they are not formal and well understood. Using a
tool like UCML gives you a tool for performance testing, functional test automation, and manual

testing.

% 1& # [&

Functional test tools and functional regression test frameworks often span the
critical aspects of the system under test and are capable of providing simple
performance information with relatively little modification. Some functional test tools
provide simple performance data out of the box while other - with targeted
modifications like the recording of the system clock - can provide meaningful,
accurate, and clear performance information much faster then most performance-
test tools. Given the investment many organizations make in these tools and
frameworks, any small change that can yield returns should be explored.

14

In another recent article on gathering performance data[i], | related an experience | had using everyday functional tests to
gather basic performance data. The project team was developing a web-enabled application written in Java and the testing
team was using IBM® Rational® Robot for automated functional testing and Mercury Interactive® for performance testing.
During the first release of the application, we encountered many of the growing pains and uncertainty that most projects go
through. Management was very concerned about performance; for various political reasons, application performance gained
a lot of visibility early in the project. We needed a way to provide rapid feedback on environmental performance.

Because traditional performance tests typically require detailed setup and a good portion of time to execute, we decided to
take a different approach. We were already developing a data-driven framework for regression testing in Rational Robot. We
had a significant number of smoke tests, executed several times a day, and traditional functional tests, executed on a regular
basis. We decided to include a simple timer mechanism into our automation framework to gather page-load times. We then
took that information and wrote it out to a spreadsheet, detailing the page that was loading and the environment in which the
script was executing. The next day we ran a macro on the data to process it and format it.

This simple solution solved all of our problems (well, all of those problems, anyway):

We gained a spreadsheet—management® favorite type of document—that we could send to management, with detailed time
information for every page and every call to every external web service in the application.

Because this information was gathered every time we ran a smoke test or any other type of automated test, we always had
-to-date information to help us debug the differences in all of the deployment environments—a task that would have been
almost impossible without this rapid feedback.

This data also served to audit our existing performance test scripts (which turned out to be working just fine). It is worth
noting that this type of audit would work for most single or low-volume performance test results, but might not be appropriate
for larger tests.

All said and done, gathering this performance data allowed us to fix problems, better utilizing our automation framework, and
gave us a gold star with project management. | have rarely seen so little work pay off so richly. Implementation was tr|V|a|
four hours for one person, in my case, but it will depend greatly on how your scripts are structured. The benefits are
substantial in both practical ways (fix problems) and political ways (wow management). While this is not a complete
performance test, it is a first step that ensures that major performance problems are detected early, leaving the performance
testing team to focus on load, stability, and concurrency.

15

Look at Robot and Watir examples...

16

3 #o1 l
I * 1 &
* &!*
oo 1& I* !
| &%
= | * * % #
| * ! |
L # 3 =$
*
3 1
| * !
B
* 1 B 3 # I'$

Some tools are designed for both functional testing and basic performance testing.
SOAPscope (a tool for testing web services) is one example of such a tool. It
combines diagnostic tools both with capture based and with custom coding features
that allow you to quickly develop and execute XML tests for your service.

One of the more interesting features SOAPscope offers is that it stores the
transaction time for each XML test case it executes in a database for you to access
later. This tool implements our spreadsheet example above as a basic feature. To
generate the same report all | would have to do is query the SOAPscope database.
In addition, the tool has a built in trending tool that will show your applications
performance over multiple submissions.

SOAPscope is one example of a tool that focuses on both aspects of performance
and functionality. In my opinion, tools like this tend to add more value over time in
that they provide more information about the application per unit of work. With the
testing tools | used before SOAPscope (mostly Mercury and Rational) | would have
to do some sort of workaround or custom development to get what this provides.
There are other tools that provide these types of features, when you have the
choice and they are an appropriate fit, select these types of tools over the "more
traditional” less powerful options.

17

18

!& # *1& *x *
3 #] !
C# ' # # #l ! # 3

*# *D 3 !

$
) ! & &

| [$

L # o+

!

! Ixo# *
7 ! # ! 3

! L ! I * # &

! # > "# = #* 1
rF 3 # ! $

If your functional test tool permits multi-threading, quite often you can use your
functional test scripts to run low to medium load — low complexity performance
tests. Again, if you include a simple timer mechanism to gather page-load times or
transaction times (depending on what you are testing) you can capture performance
data in a low-tech way. If you then execute the scripts in multiple threads on
multiple machines, you can quickly generate load and record all of that information
(at a level of detail you specify) in one location for reporting. In the past, | have used
Watir tests (implemented in the Ruby language) for low user performance testing. |
have also talked with people who have done similar testing with Rational Functional
Tester (which uses Java as the scripting language). Since these languages offer
multi-threading, it is relatively easy to get a performance test up and running. Of
course, this method does not support complex scenarios with synchronization
points and complex usage scenarios, but it is cheap and quick if you do not need a
powerful performance test tool. These tests provide relatively good results that can
be used to audit other performance tests and can be used in conjunction with your
traditional performance tests if you would like to execute performance tests and
functional tests side-by-side.

19

!1& #
3 #!
>4
4 |

!

*1&

* *

20

&

21

Many types of testing can and should overlap, and many tools have effective uses
outside of the space for which they were designed and marketed.

By blending tools and techniques, we can often create tests that are more powerful.

*A more powerful test is a test that provides more information about the application
or a test that provides the same information faster.

*Blending your functional and performance tests is not about replacing traditional
performance tests (those often necessary complex scenarios with synchronization
points and complex usage scenarios). Instead, it is about a lower cost and faster
way to gather performance information.

*Blending your functional and performance tests is about doing your functional test
automation smarter, not about duplicating the testing that you are already doing. It
is about finding alternatives to your traditional techniques to allow you to get more
testing done faster.

22

)
* | | i
3 #* !
* |&$
E 1*1& # B!
! # * 3! *
| &$
I*1& ! P> #l ! &
! # l & 3
1 &3 ! # # 1*1&
3 ! # ! $

All of the above examples are examples where a tool or technique was used to
provide extra information about the software under test, not to replace some other
method of testing. The basic principle is one of extending your reach into the
application every time you sit down to do your testing. Blending performance and
function testing is not about attempting to replace two types of testing with one, but
about finding ways to learn about the application faster. Knowing this simple
information allows for more informed decision making and planning and allows you
to better use your limited resources. For even more powerful testing, start to mix in
a little runtime analysis. Convert your existing automated tests into high-volume
automated tests. Use both your functional and performance test tools to help with
exploratory testing. Adapt your tools and practices to allow for combinations of your
existing skill sets. If your skill set does not include performance testing or functional
test automation, try using simple steps like the ones listed above to get you started.

23

F#

24

