Carbon Storage and Emissions from Coastal Ecosystems

Stephen Crooks Ph.D.
ESA PWA

Managing Coastal Ecosystems for Climate Mitigation

Climate Change and Response Expo
COP 17, Durban, Dec 7th 2011
Ecosystems in focus for climate change mitigation

- Forest
- Peatland
- Mangroves
- Tidal Marshes
- Seagrass
Long-term carbon sequestration and storage

Carbon from plants gather in soil and builds up over thousands of years.
Peat Accumulation: Belize Example

McKee & Vervaeke, 2009
Distribution of carbon in coastal ecosystems

- **Tidal Salt Marsh**: $5.1 \pm 1.4 \text{ tCO}_2 \text{e/ha/yr}$
- **Seagrasses**: $8.0 \pm 0.9 \text{ tCO}_2 \text{e/ha/yr}$
- **Estuarine Mangroves**: $8.3 \pm 1.4 \text{ tCO}_2 \text{e/ha/yr}$
- **Oceanic Mangroves**: $0.2 \pm 0.1 \text{ tCO}_2 \text{e/ha/yr}$
- **All Tropical Forests**: $5.1 \pm 1.4 \text{ tCO}_2 \text{e/ha/yr}$

Data summarized in Crooks *et al.*, 2011; Murray *et al.*, 2011
Global Carbon Burial by Ecosystem (Mt C / yr)

Total Area (km²): Coastal 640, Forests 43,700, Peatlands, 3,850
Rates of Wetland Loss

<table>
<thead>
<tr>
<th>Ecosystem</th>
<th>Global Extent (km²)</th>
<th>Annual Rate Of Loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidal Marsh</td>
<td>400,000</td>
<td>1 - 2</td>
</tr>
<tr>
<td>Mangrove</td>
<td>160,000</td>
<td>1 - 2</td>
</tr>
<tr>
<td>Seagrass</td>
<td>300-600,000</td>
<td>1 - 2</td>
</tr>
</tbody>
</table>
Long-term release of carbon from organic soils
Emissions from One Drained Wetland

Area under agriculture: 180,000 ha
Rate of subsidence (in): 1 inch

5 to 7.5 million tCO$_2$/yr released from Delta

1 GtCO$_2$ release in c.100 years
4000 years of carbon emitted

Equiv. carbon held in 25% of California’s forests
CO₂ Emissions from Drained Wetlands (million tons)
How Big is Blue Carbon?

Globally:
~10-20% as big as REDD

<table>
<thead>
<tr>
<th>CO₂ Emissions (Mt/year)</th>
<th>REDD</th>
<th>Peat</th>
<th>Blue Carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>~4,000</td>
<td></td>
<td>~2,000</td>
<td>~300-900</td>
</tr>
</tbody>
</table>

Nationally:
Potentially more in coastal tropical countries

Coastal wetlands are very rich in Blue Carbon
International Blue Carbon Scientific Working Group

Near term

• Support of IPCC
 • Wetlands GHG national accounting

• Global Coastal Carbon Data Archive
 • Development of emissions factors

• Guidance documents
 - Field data collection
 - National assessment

• Inform developing policy

Long term

• Scientific guidance
• Global network development
• Demonstration and publication
Conclusions

- Coastal are an important component of the global carbon cycle
 - Sequester carbon
 - Hold dense carbon stocks in soil pool
 - Emit carbon when disturbed.

- Emissions or significant
 - Wetlands emit large quantities of CO$_2$ directly to the atmosphere when drained. (insufficiently studied – priority focus for future research)
 - Emissions from drained wetlands highest in first few year
 - Organic rich soils may release centuries to millennia of carbon within a few decades.

- Climate change mitigation
 - Conservation most effective activity for preventing release of carbon
 - Restore coastal ecosystems to reestablish long term sequestration
 - Embed coastal ecosystem CC mitigation within adaptation planning
Thank you!

For more information, contact:

Steve Crooks, PhD.
Director of Climate Change Services, ESA PWA
SCrooks@esassoc.com
+1 415-262-2358.