Your Name: Points received: ____ out of 120 The following questions query information & interpretations from logit model output, post-estimation commands, and tests of significance. Please answer in complete sentences, to the best of your ability. #### Model overview: Using data from the U.S. General Social Survey, I am examining predictors of confidence in business. The GSS asked respondents to report on their level of confidence in major corporations. Response options were as follows: (1) Great Deal; (2) Some; (3) Hardly Any. I opt to dichotomize this measure, separating respondents into those who have a great deal of confidence in corporations, and those who do not. I also select three variables I believe will distinguish between those with a great deal of confidence in corporations & those without; all four are summarized below: . codebook conbusB male faminc age satjob, compact | Variable | Obs Un | ique | Mean | Min | Max | Label | |--|--|---------------|----------------------|---------------|----------------|---| | conbusB
male
faminc
age
satjob | 5412
5412
5412
5412
5412
5189 | 2
25
69 | .4929786
41.40812 | 0
.5
18 | 1
110
89 | Great confidence in business? Is R male? (1=yes) Family income in thousands Respondent's age Satisfied with job or housework? | | | | | | | | | . sum conbusB male faminc age | Variable | | 0bs | Mean | Std. Dev. | Min | Max | |----------|--|----------------|----------|-----------|-----|-----| | conbusB | | 5 , 412 | .1108647 | .3139936 | 0 | 1 | | male | | 5,412 | .4929786 | .4999969 | 0 | 1 | | faminc | | 5,412 | 41.40812 | 25.47944 | .5 | 110 | | age | | 5,412 | 40.03548 | 12.345 | 18 | 89 | ### I run a logit model predicting great confidence in business: . logit conbusB i.male faminc age, nolog | Logistic regres | | Number
LR chi2
Prob >
Pseudo | 2(3)
chi2 | =
=
=
= | 5,412
47.53
0.0000
0.0126 | | | |---|--|--|---------------------------------|----------------------------------|------------------------------------|--------------|--| | conbusB | Coef. | Std. Err. | | ' ' | - | Conf. | Interval] | | male
1_Yes
faminc
age
_cons | .2762145
0114012
.0084153
-2.119459 | .0877608
.0018924
.0034076
.1574115 | 3.15
-6.02
2.47
-13.46 | 0.002
0.000
0.014
0.000 | .1042
0153
.0017
-2.42 | 1102
7365 | .4482224
0076922
.0150942
-1.810938 | #### I also use listcoef to compute the factor change coefficients: . listcoef logit (N=5412): Factor change in odds Odds of: 1Great vs ONotSoGreat | | b | z | P> z | e^b | e^bStdX | SDofX | |--|---|-------------------------------------|----------------------------------|-------------------------|-------------------------|---------------------------| | male
1_Yes
faminc
age
constant | 0.2762
 0.0114
 0.0084
 -2.1195 | 3.147
-6.025
2.470
-13.464 | 0.002
0.000
0.014
0.000 | 1.318
0.989
1.008 | 1.148
0.748
1.109 | 0.500
25.479
12.345 | - 1. ___ of 10: Interpret the appropriate standardized and unstandardized factor change coefficient(s) for age. Use the z-statistic from the logit output to test if age significantly impacts conbusB; include this information in your interpretation. - 2. ____ of 10: Interpret the appropriate standardized and unstandardized factor change coefficient(s) for male. Use the z-statistic from the logit output to test if male significantly impacts conbusB. Include this information in your write-up. - 3. ____ of 10: Imagine I had estimated a probit model for this same model rather than a logit model. - a) Which unstandardized coefficients would have been larger: logit or probit? How much larger would they have been & why? - b) What would the ratio between the z-statistics for logit:probit likely have been? Why? I also test the significance of male on confidence in business using a Wald test: - 4. ___ of 5: - a) Write up a sentence with your conclusion about the significance of male on conbusB. - b) How is the specific value of the Wald test related to the z-test in question 2? I also decide to test that all coefficients in my model are simultaneously equal to 0, using a likelihood-ratio test. ``` . qui logit conbusB i.male faminc age . est sto full . qui logit conbusB . est sto empty . lrtest empty full Likelihood-ratio test (Assumption: empty nested in full) ``` ``` LR chi2(3) = 47.53 Prob > chi2 = 0.0000 ``` - 5. ___ of 10: - a) Using formal notation, write out the null & alternative hypotheses tested by this LR test. - b) Write a sentence indicating your conclusion based on the LR test. Using the predict command, I now estimate my in-sample predicted probabilities & plot them with a dotplot, shown below: ``` . predict pr (option pr assumed; Pr(conbusB)) . dotplot pr, ylabel(0(.2)1) ``` 6. ___of 10: What substantive insights do you gain from this dotplot? What portions of the S-shaped curve are represented in our data? What challenges might this model hold? ## Next, I examine my discrete change coefficients using mchange: . mchange, atmeans logit: Changes in $Pr(y) \mid Number of obs = 5412$ Expression: Pr(conbusB), predict(pr) | | Change | p-value | |---------------|--------|---------| | | -+ | | | male | | | | 1 Yes vs 0 No | 0.027 | 0.002 | | faminc | | | | +1 cntr | -0.001 | 0.000 | | +SD cntr | -0.028 | 0.000 | | Marginal | -0.001 | 0.000 | | age | | | | +1 cntr | 0.001 | 0.013 | | +SD cntr | 0.010 | 0.013 | | Marginal | 0.001 | 0.013 | Predictions at base value | | | 0NotSoG~t | lGreat | |------------|-----|-----------|--------| | | -+- | | | | Pr(y base) | | 0.893 | 0.107 | Base values of regressors | | 1. | | | |----|------|--------|-----| | 1 | male | faminc | age | | at | .493 | 41.4 | 40 | 1: Estimates with margins option atmeans. - 7. ___ of 10: Choose an appropriate discrete change coefficient for male from the mchange output and interpret it. Include information on significance. - 8. ___ of 10: Choose an appropriate discrete change coefficient for age from the mchange output and interpret it. Include information on significance. Finally, I graph my predicted probabilities over age, for both males & females. - 9. ____ of 10: Write a paragraph telling the **story** of your results. This should read as though it were part of a journal article. Incorporate the magnitude of the effects. Also make sure to indicate the levels of any other variables in your model. - 10. ____ of 5: After seeing the results plotted, are there other modeling techniques you might consider using for your model? - 11. ____ of 10: Looking back on this assignment & course lectures, which method(s) of interpretation did you find most useful (factor change, discrete change, plotting, some combination)? Why? Which do you find least useful? Finally: in an attempt to explain more variation in my dependent variable, I estimate a series of models with the same dependent variable. Four such models are presented below: . esttab m^* , mti aic bic | | (1) | (2) | (3) | (4) | |---------|------------|------------|------------|------------| | | m1
 | m2 | m3 | m4 | | conbusB | | | | | | 1.male | 0.287** | 0.256** | 0.257** | 0.299*** | | | (3.26) | (2.87) | (2.82) | (3.38) | | faminc | -0.0131*** | -0.0113*** | -0.0111*** | -0.0126*** | | | (-6.68) | (-5.93) | (-5.58) | (-6.00) | | age | 0.0909*** | 0.00984** | 0.00885* | 0.0877*** | | | (4.12) | (2.83) | (2.42) | (3.94) | | agesq | -0.000928***
(-3.75) | | | -0.000884***
(-3.54) | |-----------------|--------------------------|--------------------------|--------------------------|--------------------------| | 2.relig | | -0.204
(-1.79) | -0.195
(-1.67) | | | 3.relig | | 0.613*
(2.17) | 0.672*
(2.36) | | | 4.relig | | 0.385**
(2.98) | 0.436*** (3.33) | | | 5.relig | | 0.360
(1.86) | 0.357
(1.74) | | | 1.didvote | | | -0.0127
(-0.13) | | | 1.white | | | | -0.522***
(-5.02) | | 1.ms_mar | | | | 0.0895
(0.93) | | _cons | -3.741***
(-8.14) | -2.214***
(-13.27) | -2.184***
(-12.42) | -3.345***
(-7.15) | | N
AIC
BIC | 5412
3717.0
3750.0 | 5412
3681.0
3733.7 | 5412
3521.2
3580.1 | 5412
3696.6
3742.8 | # 12. __ of 10: - a) Based on the BIC statistic, which model is preferred and how strong is the evidence? - b) Does AIC give you the same conclusion? If not, why might this be? - 13. ____ of 10: My overall evaluation of your work. Uhcda15-a01-BRM&TF.docx t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001</pre>