Your Name: Points received: ____ out of 120

The following questions query information & interpretations from logit model output, post-estimation commands, and tests of significance. Please answer in complete sentences, to the best of your ability.

Model overview:

Using data from the U.S. General Social Survey, I am examining predictors of confidence in business. The GSS asked respondents to report on their level of confidence in major corporations. Response options were as follows: (1) Great Deal; (2) Some; (3) Hardly Any. I opt to dichotomize this measure, separating respondents into those who have a great deal of confidence in corporations, and those who do not. I also select three variables I believe will distinguish between those with a great deal of confidence in corporations & those without; all four are summarized below:

. codebook conbusB male faminc age satjob, compact

Variable	Obs Un	ique	Mean	Min	Max	Label
conbusB male faminc age satjob	5412 5412 5412 5412 5412 5189	2 25 69	.4929786 41.40812	0 .5 18	1 110 89	Great confidence in business? Is R male? (1=yes) Family income in thousands Respondent's age Satisfied with job or housework?

. sum conbusB male faminc age

Variable		0bs	Mean	Std. Dev.	Min	Max
conbusB		5 , 412	.1108647	.3139936	0	1
male		5,412	.4929786	.4999969	0	1
faminc		5,412	41.40812	25.47944	.5	110
age		5,412	40.03548	12.345	18	89

I run a logit model predicting great confidence in business:

. logit conbusB i.male faminc age, nolog

Logistic regres		Number LR chi2 Prob > Pseudo	2(3) chi2	= = = =	5,412 47.53 0.0000 0.0126		
conbusB	Coef.	Std. Err.		' '	-	Conf.	Interval]
male 1_Yes faminc age _cons	.2762145 0114012 .0084153 -2.119459	.0877608 .0018924 .0034076 .1574115	3.15 -6.02 2.47 -13.46	0.002 0.000 0.014 0.000	.1042 0153 .0017 -2.42	1102 7365	.4482224 0076922 .0150942 -1.810938

I also use listcoef to compute the factor change coefficients:

. listcoef

logit (N=5412): Factor change in odds

Odds of: 1Great vs ONotSoGreat

	b	z	P> z	e^b	e^bStdX	SDofX
male 1_Yes faminc age constant	0.2762 0.0114 0.0084 -2.1195	3.147 -6.025 2.470 -13.464	0.002 0.000 0.014 0.000	1.318 0.989 1.008	1.148 0.748 1.109	0.500 25.479 12.345

- 1. ___ of 10: Interpret the appropriate standardized and unstandardized factor change coefficient(s) for age. Use the z-statistic from the logit output to test if age significantly impacts conbusB; include this information in your interpretation.
- 2. ____ of 10: Interpret the appropriate standardized and unstandardized factor change coefficient(s) for male. Use the z-statistic from the logit output to test if male significantly impacts conbusB. Include this information in your write-up.
- 3. ____ of 10: Imagine I had estimated a probit model for this same model rather than a logit model.
 - a) Which unstandardized coefficients would have been larger: logit or probit? How much larger would they have been & why?
 - b) What would the ratio between the z-statistics for logit:probit likely have been? Why?

I also test the significance of male on confidence in business using a Wald test:

- 4. ___ of 5:
 - a) Write up a sentence with your conclusion about the significance of male on conbusB.
 - b) How is the specific value of the Wald test related to the z-test in question 2?

I also decide to test that all coefficients in my model are simultaneously equal to 0, using a likelihood-ratio test.

```
. qui logit conbusB i.male faminc age
. est sto full
. qui logit conbusB
. est sto empty
. lrtest empty full
Likelihood-ratio test
(Assumption: empty nested in full)
```

```
LR chi2(3) = 47.53

Prob > chi2 = 0.0000
```

- 5. ___ of 10:
 - a) Using formal notation, write out the null & alternative hypotheses tested by this LR test.
 - b) Write a sentence indicating your conclusion based on the LR test.

Using the predict command, I now estimate my in-sample predicted probabilities & plot them with a dotplot, shown below:

```
. predict pr
(option pr assumed; Pr(conbusB))
. dotplot pr, ylabel(0(.2)1)
```


6. ___of 10: What substantive insights do you gain from this dotplot? What portions of the S-shaped curve are represented in our data? What challenges might this model hold?

Next, I examine my discrete change coefficients using mchange:

. mchange, atmeans

logit: Changes in $Pr(y) \mid Number of obs = 5412$

Expression: Pr(conbusB), predict(pr)

	Change	p-value
	-+	
male		
1 Yes vs 0 No	0.027	0.002
faminc		
+1 cntr	-0.001	0.000
+SD cntr	-0.028	0.000
Marginal	-0.001	0.000
age		
+1 cntr	0.001	0.013
+SD cntr	0.010	0.013
Marginal	0.001	0.013

Predictions at base value

		0NotSoG~t	lGreat
	-+-		
Pr(y base)		0.893	0.107

Base values of regressors

	1.		
1	male	faminc	age
at	.493	41.4	40

1: Estimates with margins option atmeans.

- 7. ___ of 10: Choose an appropriate discrete change coefficient for male from the mchange output and interpret it. Include information on significance.
- 8. ___ of 10: Choose an appropriate discrete change coefficient for age from the mchange output and interpret it. Include information on significance.

Finally, I graph my predicted probabilities over age, for both males & females.

- 9. ____ of 10: Write a paragraph telling the **story** of your results. This should read as though it were part of a journal article. Incorporate the magnitude of the effects. Also make sure to indicate the levels of any other variables in your model.
- 10. ____ of 5: After seeing the results plotted, are there other modeling techniques you might consider using for your model?
- 11. ____ of 10: Looking back on this assignment & course lectures, which method(s) of interpretation did you find most useful (factor change, discrete change, plotting, some combination)? Why? Which do you find least useful?

Finally: in an attempt to explain more variation in my dependent variable, I estimate a series of models with the same dependent variable. Four such models are presented below:

. esttab m^* , mti aic bic

	(1)	(2)	(3)	(4)
	m1 	m2	m3	m4
conbusB				
1.male	0.287**	0.256**	0.257**	0.299***
	(3.26)	(2.87)	(2.82)	(3.38)
faminc	-0.0131***	-0.0113***	-0.0111***	-0.0126***
	(-6.68)	(-5.93)	(-5.58)	(-6.00)
age	0.0909***	0.00984**	0.00885*	0.0877***
	(4.12)	(2.83)	(2.42)	(3.94)

agesq	-0.000928*** (-3.75)			-0.000884*** (-3.54)
2.relig		-0.204 (-1.79)	-0.195 (-1.67)	
3.relig		0.613* (2.17)	0.672* (2.36)	
4.relig		0.385** (2.98)	0.436*** (3.33)	
5.relig		0.360 (1.86)	0.357 (1.74)	
1.didvote			-0.0127 (-0.13)	
1.white				-0.522*** (-5.02)
1.ms_mar				0.0895 (0.93)
_cons	-3.741*** (-8.14)	-2.214*** (-13.27)	-2.184*** (-12.42)	-3.345*** (-7.15)
N AIC BIC	5412 3717.0 3750.0	5412 3681.0 3733.7	5412 3521.2 3580.1	5412 3696.6 3742.8

12. __ of 10:

- a) Based on the BIC statistic, which model is preferred and how strong is the evidence?
- b) Does AIC give you the same conclusion? If not, why might this be?
- 13. ____ of 10: My overall evaluation of your work.

Uhcda15-a01-BRM&TF.docx

t statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001</pre>