Rapidly Progressive Interstitial Pneumonia Associated with Clinically Amyopathic Dermatomyositis Successfully Treated with Polymyxin B-immobilized Fiber Column Hemoperfusion

Tomoyuki Kakugawa¹, Hiroshi Mukae², Masataka Saito³, Koji Ishii³, Hiroshi Ishimoto², Noriho Sakamoto³, Takahiro Takazono¹, Yuichi Fukuda¹, Nobuharu Ooe¹ and Shigeru Kohno²

Abstract

Amyopathic dermatomyositis (ADM) is a clinical subtype of dermatomyositis, characterized by the absence of motor weakness and the presence of normal muscle enzyme levels. ADM is sometimes accompanied by interstitial pneumonia that shows a rapid progressive course associated with a poor prognosis. We describe a 70-year-old man who presented rapidly progressive interstitial pneumonia associated with clinically ADM (C-ADM); he was successfully treated with polymyxin B-immobilized fiber column (PMX) hemoperfusion.

Key words: clinically amyopathic dermatomyositis, interstitial pneumonia, polymyxin B-immobilized fiber column hemoperfusion treatment, acute respiratory distress syndrome

(Inter Med 47: 785-790, 2008)
(DOI: 10.2169/internalmedicine.47.0639)

Introduction

Interstitial pneumonia is frequently identified in patients with polymyositis and dermatomyositis (1). Amyopathic dermatomyositis (ADM) is a clinical subtype of dermatomyositis characterized by the absence of a motor weakness and the presence of normal muscle enzyme levels (2, 3). Other studies, primarily from Asia, have demonstrated that some patients with ADM develop rapidly progressive interstitial pneumonia that remains unresponsive to intensive therapy, such as high-dose corticosteroids plus immunosuppressive agents, leading to fatal respiratory failure (4-8). No proven treatment has yet been reported previously. Here, we describe a patient with rapidly progressive interstitial pneumonia accompanied by clinically ADM (C-ADM) (3, 9), who was treated successfully with polymyxin B-immobilized fiber column (PMX) hemoperfusion.

Case Report

A 70-year-old Japanese man with no medical history was referred to the emergency department in our hospital in May 2006 because of rapidly progressive dyspnea. He was unemployed and a non-smoker. Physical examination on admission showed scaly erythema on the dorsum of the hands (Gottron sign) and periorbital edema with a purplish appearance (heliotropic rash), but no muscle weakness. Auscultation of the chest identified audible fine crackles on the lower aspects of both lungs. Results of laboratory findings on admission revealed a white blood cell count of 9,940/\text{mm}^3 with 88% neutrophils. C-reactive protein was elevated [24.6 mg/dl (standard value; 0-0.4 mg/dl)]. The serum creatine kinase concentration was normal. Serum lactate dehydrogenase (LDH) level was elevated [653 IU/l (119-229 IU/l)]. Although anti-nuclear antibody was strongly positive...
were 1 g/day intravenously for three days) followed by oral prednisolone (50 mg/day), the clinical condition and chest radiographic findings deteriorated rapidly and mechanical ventilation was necessary. Treatment with cyclosporin A and sivelestat sodium hydrate was added and high-dose methylprednisolone therapy (1 g/day intravenously for three days) was repeated. The dose of cyclosporine A was adjusted to maintain a blood trough level of 100 to 150 ng/ml. Direct hemoperfusion with PMX (Torymyxin 20R, Toray Medical Co., Tokyo, Japan) was administered once daily for successive two days at a flow rate of 100 ml/min for 3 hours each. Both the arterial oxygen tension (PaO$_2$)/inspiratory oxygen fraction (FiO$_2$) (P/F) ratio, alveolar-arterial difference of oxygen (AaDO$_2$) became dramatically improved during PMX hemoperfusion (Fig. 3). White blood cell count and C-reactive protein decreased to 6,810/mm3 and 0.9 mg/dl respectively at day 4 after PMX hemoperfusion. Acute hypoxemic respiratory failure also improved and the patient was weaned from mechanical ventilation at day 8 after PMX hemoperfusion. Because chest radiography showed improvement, prednisolone was gradually tapered off. His clinical condition and the skin lesion also improved. Complication with malignant tumor was not found on the examinations performed before his improvement. Chest radiography and HRCT showed remarkable improvement after 5 months of the treatment (Fig. 5), and the patient survived for over 6 months after PMX treatment.

Discussion

Polymyositis/dermatomyositis is frequently accompanied by interstitial pneumonia which is known as a significant prognostic factor in this disease (10). C-ADM, which shows...
lack of motor weakness, presence of normal muscle enzyme levels and negative tests for anti-Jo-1 antibody, is associated with rapidly fatal progressive interstitial pneumonia, especially among Japanese patients (3, 9, 11, 12). Such patients are often resistant to intensive therapy, such as high-dose corticosteroids plus immunosuppressive agents, resulting in fatal respiratory failure (4-8). There is no proven treatment and mortality rates are high (50% or more), with most deaths occurring between the first and the second months of illness onset (13).

Recent reports have suggested that PMX might improve oxygenation in patients with acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) (14-17). Seo et al recently reported that 4 of 6 patients with acute exacerbation...
of idiopathic pulmonary fibrosis were weaned from mechanical ventilation and survived for over 30 days after initial PMX treatment (18). Noma et al also recently reported that PMX treatment was effective in two patients with acute exacerbation of interstitial pneumonia (19). Although the present patient was resistant to steroid therapy, progressed rapidly and required mechanical ventilation, PMX was very effective and the patient survived for over 6 months after admission. The present case together with those of others suggest that direct hemoperfusion with PMX could be effective against rapidly progressive interstitial pneumonia which is resistant to conventional therapy such as high-dose corticosteroids plus immunosuppressive agents.

As PMX potentially absorbs plasma endotoxin, this therapy is mainly used to treat septic shock as it results in decreased plasma endotoxin levels and improved hemodynamic stability (20). Aoki et al have suggested that reducing the endotoxin concentration might reduce pulmonary vasoconstriction and intrapulmonary shunting (17). However, PMX is effective against both gram-negative and gram-

Figure 4. Clinical course after extubation. PSL: prednisolone, CyA: cyclosporine A, SP-A: surfactant protein-A, SP-D: surfactant protein-D.

Figure 5. The chest images of the patient after 5 months of PMX therapy. Chest radiography (A) and HRCT (B and C) show remarkable improvement.
positive sepsis (17). The AaDO2 and P/F ratio improved in our patient after PMX treatment even though the endotoxin level was undetectable. Accordingly, PMX might be effective because of properties other than endotoxin removal. Nakamura et al have reported that blood levels of metalloproteinase (MMP)-9 and tissue inhibitor of MMP (TIMP)-1 are significantly reduced after PMX treatment and closely correlate with an improvement in the P/F ratio (15). In an animal model of sepsis, PMX improves oxygenation through the suppression of nitric oxide production (21). Kushi et al recently reported that the improvement in the P/F ratio induced by PMX treatment is related to decreased blood neutrophil elastase and IL-8 levels (16). Naka et al also reported that PMX significantly inhibits neutrophil-reactive oxygen species, which play an important role in the pathogenesis of ARDS in patients with sepsis and septic shock (22). Inflammatory cells including activated monocytes and neutrophils producing such mediators might be absorbed by PMX treatment (23, 24). Further investigation is necessary to determine the precise mechanisms through which PMX improves oxygenation in rapidly progressive interstitial pneumonia.

High-dose corticosteroid therapy might be effective in the present case. However, the clinical condition and chest radiographic findings deteriorated rapidly just after the corticosteroid was tapered off to prednisolone (50 mg/day). Accordingly, it was thought to be difficult to treat this case by administrating corticosteroid alone. After the PMX therapy, corticosteroid was successfully tapered off. The administration of oral cyclosporine A might be also effective. Cyclosporine A is an immunosuppressive agent that acts by inhibiting calcineurin, and it reversibly suppresses cytokine production mainly from helper T cells (25). Recent studies of rapidly progressive interstitial pneumonia in C-ADM have highlighted the effectiveness of cyclosporine A combined with corticosteroids (13). However, cyclosporine A usually requires at least 1 to 2 weeks to induce therapeutic effects (13). The present case suggests that PMX treatment in combination with corticosteroid and cyclosporine A was very effective to rapidly progressive interstitial pneumonia.

The dramatic improvement of AaDO2 and P/F ratio might be partly due to the well-known efficiency of mechanical ventilation in patient with respiratory failure status, as intubation and PMX were administrated to the patient almost simultaneously. However, the dramatic improvement of acute hypoxemic respiratory failure in our patient was thought to be due mainly to the PMX treatment, because the patient’s general condition and chest radiography also showed remarkable improvement just after the PMX treatment.

We applied PMX hemoperfusion once daily for successive two days for 3 hours each, but some controversy surrounds the choice of appropriate cycles and frequencies. One or two administrations for 4 hours each have improved the survival of patients with sepsis (26). A recent paper has suggested that more frequent applications will be effective against severe sepsis (27). Seo et al reported that 1-5 administrations for 2-6 hours each improved acute exacerbation of idiopathic pulmonary fibrosis (18). Noma et al reported that a protocol of 3 administrations for 2-24 hours each was effective in two patients with acute exacerbation of interstitial pneumonia (19). However, there have been only limited reports on the length and frequency of the PMX administration in treatment. Further investigation will be necessary to determine and confirm the appropriate cycles and frequencies of PMX treatment in rapidly progressive interstitial pneumonia.

References

15. Nakamura T, Kawagoe Y, Matsuda T, et al. Effect of polymyxin B-immobilized fiber on blood metalloproteinase-9 and tissue in-

