Short communication

DNA methylation of DLG4 and GJA-1 of human hippocampus and prefrontal cortex in major depression is unchanged in comparison to healthy individuals

Oliver Kaut a,1, Amit Sharma a,1, Ina Schmitt a, René Hurlemann b, Ullrich Wüllner a,c,*

a Department of Neurology, University Clinic Bonn, Bonn, Germany
b Division of Medical Psychology, University of Bonn Medical Center, 53105 Bonn, Germany
c German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany

A R T I C L E   I N F O

Article history:
Received 15 February 2017
Accepted 21 May 2017
Available online xxxx

Keywords:
Depression
DNA methylation
DLG4 (PSD-95)
Connexin43 (GJA-1)

A B S T R A C T

Epigenetic alterations provide a potential mechanism to account for the numerous gene-environment interactions that have been reported in association with neuropsychiatric phenotypes. In context to major depression disorder (MDD), where postmortem and neuroimaging studies provide insights into dysfunctional brain regions, involvement of genetic heterogeneity also revealed the complexity of this disorder. Despite intensive research during the past several decades and information from genome wide studies, pathophysiology of depressive disorders remained elusive. To evaluate the impact of epigenetic pressure on this disease, we took advantage of DNA isolated from different sections of human brain (prefrontal cortex and hippocampus) from clinically well defined depressed patients and healthy individuals and performed pyrosequencing for DNA methylation analysis. Herein, we focused on two genes DLG4 (PSD-95) and GJA-1 (Connexin43) known to be associated with neuropsychiatric behavior. Comparing MDD with controls we found no differences of DNA methylation. Our results clearly demonstrate that DNA methylation levels on these particular genes are not associated with depression related phenotype.

1. Introduction

Epigenetic regulations have been implicated in several human diseases, including neuropsychiatric disorders [1–3]. Studies from animal models have shown that early life stress can leave persistent epigenetic marks in the genome, which alter gene expression and can later on influence neural and behavioural function through adulthood [4–6]. Furthermore, administration of epigenetic inhibitors has also been shown to produce an antidepressant effect in an animal model system [7]. Involvement of epigenetics in human depression, which is a psychological condition that presents with wide-ranging symptoms along with neuronal structural changes in brain has been widely discussed [8–12]. In this particular study, we selected two independent genes (DLG4 and GJA-1) which are known to be associated with neuropsychiatric behaviors. We determined their epigenetic status by pyrosequencing method by using tissues samples isolated from different sections of brain regions (PFC: Prefrontal cortex, HIP: Hippocampus) from individuals with MDD vs. healthy controls.

2. Results and Discussion

First, we selected DLG4 (discs large homolog 4) gene, which encodes a protein named PSD-95 (postsynaptic density protein 95) also known as SAP-90 (synapse-associated protein 90) and has been previously implicated in studies related to depression [13–15]. Interestingly, levels of NMDA receptors and PSD-95, were found to be reduced in the postmortem samples of prefrontal cortex Brodmann’s area 10 (BA10) in depressed patients as compared to psychiatrically healthy controls [16]. However, increased immunoreactivity levels of NR2A and PSD-95 were reported in amygdala samples of depressed individuals [17]. Therefore, for this particular gene on chromosome 17, we selected six CpG sites embedded between CpG island 41 and neighboring ACADVL gene. To evaluate DNA methylation, we designed pyrosequencing analysis for two independent genomic locations within DLG4 locus: CpG 1–3 (Chromosome17: 7215813–7215862 bp) and CpG 4–6 (Chromosome17: 7216811–7216860 bp) respectively (Fig. 1A). In the absence of a well-defined promotor region, our analysis on
selected CpG sites clearly demonstrates that although methylation levels for CpG 1–3 are higher (10–15% methylation range) than CpG 4–6 (5–10% methylation range), no observable differences exist among patients and healthy controls (Fig. 1B).

Furthermore, we extended our analysis on a second gene named GJA-1 (Gap junction alpha-1 protein) which encodes protein known as Connexin43 (Cx43) and has been previously shown as down regulated in expression specifically in major depressive disorder [18–21]. Reduced levels of Cx43 and Cx30 mRNA in the dorsal lateral prefrontal cortex (DLPFC) of subjects diagnosed with psychiatric disorder and committed suicide are described previously [22]. Similarly, low levels of Cx43 mRNA were detected in the locus coeruleus (LC) in depression subjects [23]. At this chromosome 6 locus, we determined methylation status at seven CpG sites of GJA-1 locus has been shown for prefrontal cortex and hippocampus regions of the brain.

selected CpG sites clearly demonstrates that although methylation levels for CpG 1–3 are higher (10–15% methylation range) than CpG 4–6 (5–10% methylation range), no observable differences exist among patients and healthy controls (Fig. 1B).

Furthermore, we extended our analysis on a second gene named GJA-1 (Gap junction alpha-1 protein) which encodes protein known as Connexin43 (Cx43) and has been previously shown as down regulated in expression specifically in major depressive disorder [18–21]. Reduced levels of Cx43 and Cx30 mRNA in the dorsal lateral prefrontal cortex (DLPFC) of subjects diagnosed with psychiatric disorder and committed suicide are described previously [22]. Similarly, low levels of Cx43 mRNA were detected in the locus coeruleus (LC) in depression subjects [23]. At this chromosome 6 locus, we determined methylation status at seven CpG sites of GJA-1 locus as previously described by Jinn et al., 2010 [24]. Here again, our pyrosequencing analysis did not detect any significant difference among patients and healthy individuals. The DNA methylation levels were found to be very low (1–3%) for these selective sites (Fig. 1C).

Moreover, it has been argued that women have stronger tendency towards depression than men [25], but in our analysis no difference was observed among male and female subgroups, indicating that gender has no impact on DNA methylation levels for these particular genes in depression phenotype. In conclusion, DLG4 and GJA-1 did not showed any alteration of DNA methylation in brain tissues isolated from depression patients.
3. Subjects and methods

Genomic DNA from brain tissues of six individuals diagnosed with MDD (4 females, 2 males) were used, aged 76.3 ± 19.5 years (PFC) and 76.8 ± 19.6 years (HIP), and the mean postmortem intervals were 5.6 ± 1.0 h (PFC) and 6.2 ± 1.6 h (HIP). Control tissue specimens had a mean tissue pH of 6.8 ± 0.3 and mean postmortem interval of 6.1 ± 0.7 h and were obtained from six healthy donors (4 females, 2 males) aged 78.8 ± 14.2 years. DNA was isolated using standard protocols. Detail description of patient samples has been given in Kaut et al., 2015 [26]. Bisulfite conversion for methylation analysis was performed using the EZ DNA Methylation-Gold Kit (Zymo Research, Hiss Diagnostics, Freiburg, Germany) according to the manufacturer’s instructions. Bisulfite-treated DNA samples were used for PCR with the PSD-95 and GJA-1 gene specific primers using HotStartTaq (Qiagen). Detail of primer sequences are follow-

DGL4 (CpG1-3) forward: 5’-TGTATGGAATATATGTATTGTTT-3’; DGL4 (CpG1-3) reverse biotinylated: 5’-ACCTAAACTCTCCTTTAAAAACTCTCCT-3’; DGL4 (CpG1-3) pyrosequencing: 5’-AATAAAATTTTTTTATTGTTG-3’; DGL4 (CpG4-6) forward: 5’-AGTTTITTGTTGATTTGTTGATTTGAAAGAG-3’; DGL4 (CpG4-6) reverse biotinylated: 5’-ACCCCTATATAATCTCCCTTTATATAC-3’; DGL4 (CpG4-6) pyrosequencing: 5’-TTAGGTGTTTTTTTTAAATTGTTTT-3’. and primers for GJA-1 are forward: 5’-GTTTGAAGTATTTGTATTAGTGAATG-3’; GJA-1 reverse biotinylated: 5’-CCTAACACRACACTTATTGTTGAC-3’; GJA-1 pyrosequencing: 5’-TTGTGAAAGTAAATTAAATGTT-3’. respectively. Pyrosequencing was carried out on a PyroMark Q24 instrument (Qiagen) according to the manufacturer’s instruction and methylation analysis was performed by taking mean of all analyzed CpG sites. In all statistical calculation the significance was set at p < 0.05. All subjects gave written consent and the study was approved by the local ethical committee (51/100).

Ethical approval

The Ethics Committee of the Medical Faculty of the University of Bonn approved the study (No. 51/00, 6th July 2000).

Conflicts of interests

The authors declare no conflict of interests.

Acknowledgments

We thank all the patients who participated in this study. We also thank Sabine Proske-Schmitz for technical support. The study was supported by the German Federal Ministry of Education and Research (BMBF/ANR) through the EpiPD (Epigenomics of Parkinson’s disease) project, under the auspices of the bilateral Epigenomics of Common and Age-related Diseases Programme (grant # 01KU1403B; UW).

References


Please cite this article in press as: Kaut O et al. DNA methylation of DGL4 and GJA-1 of human hippocampus and prefrontal cortex in major depression is unchanged in comparison to healthy individuals. J Clin Neurosci (2017), http://dx.doi.org/10.1016/j.jocn.2017.05.030