The skeletal anatomy of the douc langurs (Genus *Pygathrix*)

Craig D. Byron, Cassandra Hensel, Jarred Morrison and Hoang Nguyen

Mercer University, Department of Biology, 1501 Mercer University Drive, Macon, GA 31207. Corresponding author: Craig Byron

cd@mercer.edu>

Key words: Douc langur, odd-nosed colobine, Pygathrix, skeletal data

Summary

The odd-nosed genus *Pygathrix* of Southeast Asia has been understudied in the history of primate functional morphology because they are endemic to less documented geographical regions, fragile in captivity, and rare in museum collections. This study presents a description of morphological variables in male and female *Pygathrix* langurs throughout the axial and appendicular skeleton that are known to convey information about an individual's size and potential locomotor mode. The sample includes *P. cinerea*, *P. nemaeus*, and *P. nigripes* from the Field Museum of Natural History, Chicago, the Museum of Comparative Zoology, Cambridge, Muséum National d'Histoire Naturelle, Paris, and the Endangered Primate Rescue Center, Cuc Phuong National Park, Vietnam.

Four linear metrics showed sexual dimorphism in the wrist, elbow, knee, and crus of the leg with males being significantly larger. Additionally, two key ratiometric indices, the intermembral index and the brachial index, show values that are intermediate between those of brachiators and more typical arboreal quadrupeds. Sexual dimorphism in load bearing regions of the arms and legs is expected of catarrhine primates. In brachiators such load bearing regions are concentrated in the forelimb while in more quadrupedal taxa they are dispersed between fore- and hindlimbs, or found mostly in the hindlimb. For both the linear metrics and the ratiometric index data this pattern of contrasts is consistent with the notion that the douc genus is a compelling example of an Old-World semibrachiator. It is hoped that these data can inform studies of ape evolution and the pronograde to orthograde transition.

Nghiên cứu giải phấu học về xương ở những loài voọc chà vá (giống *Pygathrix*)

Tóm tắt

Những nghiên cứu về hình thái chức năng xương loài voọc thuộc giống *Pygathrix* ở khu vực Đông Nam Á còn hạn chế. Bởi vì mẫu vật trong bảo tàng ít và những cá thể nuôi nhốt phân tán. Đặc điểm hình thái của xương chi, thân và hộp sọ của giống *Pygathrix* được phân tích trong nghiên cứu này. Những số đo hình thái phản ánh kích thước cơ thể và liên quan đến cách di chuyển của loài. Mẫu bao gồm ba loài, chà vá chân xám, chà vá chân nâu, và chà vá chân đen. Mẫu thuộc bảo tàng lịch sử tự nhiên Chicago, bảo tàng động vật Cambridge, bảo tàng lịch sử tự nhiên Paris, và Trung tâm Cứu họ Linh trưởng Nguy cấp, Ninh Bình, Việt Nam. Kết quả cho thấy có sự sai khác đáng kể 4 số đo hình thái xương giữa con đực và con cái. Các số đo về độ dài, rộng của xương cổ tay, xương cảng tay, xương đầu gối, và xương cảng chân ở con đực lớn hơn ở con cái. Hai chỉ số intermembral và brachial đã được phân tích cho thấy giống chà vá vừa có kiểu di chuyển chuyển cành bằng chi trước vừa có đặc trưng của kiểu di chuyển bằng bốn chi trên cây. Sự khác biệt các chỉ số đo xương chân và tay giữa hai giới tính phù hợp với nhóm linh trưởng Khỉ mũi hẹp.

Ở những loài có kiểu di chuyển chuyển cành vùng xương chịu lực tập trung ở những chi trước, trong khi đó ở những loài di chuyển bằng bốn chân, lực phân tán lên xương ở cả chi trước và chi sau, nhưng tập trung ở các sau. Những số đo và các chỉ số hình thái xương của giống chà vá phản ánh kiểu di chuyển nửa chuyển cành đặc trưng ở Khỉ cựu lục địa. Những số liệu này là cơ sở để nghiên cứu về sự tiến hóa trong kiểu di chuyển ở những loài vượn, từ đi bằng bốn chân đến đi thẳng bằng hai chân.

Introduction

Odd-nosed colobines, compromised of the genera *Rhinopithecus*, *Pygathrix*, *Nasalis*, and Simias, form a monophyletic clade and are found in habitats throughout East and Southeast Asia (Liedigk et al., 2012). Many of these taxa display striking facial coloration and body pelage patterns as well as a larger body size when compared to other Asian colobines (Disotell, 1998; Jablonski & Ru-Liang, 1995; Jablonski & Zhang, 1992). With habitat loss and high levels of human predation pressure, the population outlook for this group remains threatened (Lippold & Thanh, 1998; Long, 2004; Nadler & Streicher, 2004; Nadler et al., 2003). As an example, the grey-shanked douc langur (*Pygathrix cinerea*) has been listed as a top-25 critically endangered primate on the IUCN's Red List (www.iucnredlist.org) since its inception. Thus, documenting the skeletal anatomy and positional behavior of such critically endangered taxa is a priority for primate functional morphologists. Aside from descriptions of *Nasalis*, there are very few morphological studies of odd-nosed colobines, in part, because they are not well represented in natural history museum collections, are endemic to less documented geographical regions, and can be fragile in captivity (Lippold, 1998; Nadler et al., 2003; Sterling et al., 2006). In an effort to provide additional morphological data for this group, we describe here a sample of the genus *Pygathrix*: *P. nemaeus*, *P. cinerea*, and *P. nigripes*.

Primate skeletal anatomy is of interest insofar as correlations between morphology and functional attributes like dietary and/or locomotor behavior are well established in the literature (Shea, 2005). These correlations allow predictions to be made concerning living and extinct taxa and their adaptive niche based on skeletal morphometrics. Historically, primate limb anatomy studied as a demonstration in adaptive diversity, with a plethora of studies that developed a classificatory scheme based on these morphological data (Ashton & Oxnard, 1964; Avis, 1962; Gregory, 1928; Larson, 1993; 1995; Napier, 1963; 1967; Napier & Napier, 1967; Oxnard, 1963; Schultz, 1930). A basic version of this scheme, as presented by Napier & Napier (1967), includes vertical clinging and leaping, quadrupedalism, brachiation, and bipedalism. With the exception of quadrupedalism, these locomotor categories represent relatively specialized modes that are independent of each other and occupy extreme positions derived from more primitive and generalized locomotor behaviors in smaller bodied primate ancestors. Quadrupedalism is central to this and likely represents the antecedent condition to other more specialized non-quadrupedal modes included in this scheme. However, quadrupedalism is also an all-encompassing category that overlaps with, or transitions into, the other categories, including brachiation and the transitional semibrachiation.

As a category in itself, semibrachiation, defined as the reliance on quadrupedal and forelimb dominated suspensory postures, has been problematic because it is expressed differently in New World platyrrhine monkeys as compared to Old World catarrhine monkeys. The New World semibrachiators are represented by the various genera of the prehensile tailed family Atelidae and are more specialized when compared to smaller platyrrhine monkeys with more generalized and primitive arboreal modes (Jones, 2008; Rosenberger et al., 2008). New-World semibrachiators utilize a unique form of semibrachiation in which orthograde suspensory behavior is accompanied by pendular swinging behavior whereby the forelimbs and the tail grasp arboreal substrates (Schmitt et al., 2005; Turnquist et al., 1999). In contrast, the Old-World semibrachiator group is limited to exclusively forelimb-mediated suspensory behavior. The genera included in this scheme are *Nasalis*, *Rhinopithecus*, *Presbytis*, *Colobus*, and *Pygathrix* (Ashton & Oxnard, 1964; Napier, 1963; Napier & Napier, 1967).

Other variations on transitional categories of brachiation include those modes that precede modified or true brachiation as expressed in living apes. Unfortunately, there is not a living example of what this pre-ape locomotor behavior might look like. Taking a closer look at the Old World semibrachiator group represents an intriguing antecedent condition for the types of arm swinging locomotion found in stem hominoids. The genus *Pygathrix* makes a compelling model for this investigation. For ecological reasons, one can suggest that *Nasalis* and *Rhinopithecus* have a more derived habitat relative to a truly forest living arboreal catarrhine and thus are not suitable. These large-bodied genera are found in mangrove settings or at higher altitude and colder climate where a component of locomotion is terrestrial (Boonratana, 1993; Kawabe & Mano, 1972; Ruhiyat, 1986; Zhu et al., 2014). Likewise *Presbytis* and *Trachypithecus* are not good candidates in differing from the other genera with body sizes that are smaller and locomotor behavior that is characterized by above-branch quadrupedalism with leaping

and climbing (Fleagle, 1976; 1977; 1978). Finally, the African leaf-monkey genus *Colobus* does not engage in a significant amount of suspensory behavior (Mittermeier & Fleagle, 1976; Morbeck, 1977; 1979; Struhsaker, 1975) and thus cannot serve as a model.

Since 2004 the literature on *Pygathrix* has shown that various species of this genus exhibit a significant amount of suspensory behavior, using an orthograde trunk, extended elbows, and the brachial aspect of the arm abducted above the head (Byron & Covert, 2004; Stevens et al., 2008; Workman & Covert, 2005; Wright et al., 2008). Thus, this taxon represents an ideal candidate to investigate for transitional morphological characters between orthograde apes and smaller sized, pronograde quadrupedal monkeys. This paper represents the first report on the basic skeletal morphology of a sizable sample of adult male and female douc monkeys. The sample detailed below includes red-, grey-, and black-shanked doucs (*P. nemaeus*, *P. cinerea* and *P. nigripes*) from the Endangered Primate Rescue Center (EPRC) in Cuc Phuong National Park, Vietnam. The animals were raised either in the wild or within the habitat appropriate housing found at the EPRC, and thus have engaged in natural types of semibrachiation. It is hoped that these reported data can help inform our understanding of early hominoid evolution and the pronograde to orthograde transition.

Materials and Methods

The total sample of monkeys used in this study includes 15 mature females, 21 mature males, and four of mature but undetermined sex, totaling 40 individuals. Twelve females and 19 males belong to three species, *P. cinerea*, *P. nemaeus*, and *P. nigripes*. There are five additional doucs in the sample that are one hybrid between *P. nemaeus* and *P. nigripes* and four of undetermined species taxonomy (Table 1). With the presumption that significant species level differences are absent, and in the interest of bolstering sample size, all are included in one sample for male and female doucs and tests of homogeneity are conducted. The sample is dominated by members of the EPRC populations either born in captivity or confiscated from the illegal trade in animals. However, a few specimens are represented by mostly incomplete skeletal materials found in the Field Museum of Natural History (Chicago, IL), Museum of Comparative Zoology (Cambridge, MA), and Muséum National d'Histoire Naturelle (Paris, France).

Table 1. Total of samples.

Species	female	male	sex unknown
Pygathrix cinerea	4	6	0
hybrid <i>P. nemaeus x P. nigripes</i>	0	1	0
Pygathrix nemaeus	7	9	4
Ppygathrix nigripes	1	4	0
Pygathrix spp.	3	1	0
Total (n=40)	15	21	4

Morphometric data were collected using a pair of Mitutoyo digital hand calipers connected to a Macbook workstation running Microsoft Excel. Length in mm was recorded between anatomical landmarks to the nearest 0.01 mm. A total of sixty linear morphometrics were collected for the genus *Pygathrix* (Table 2). Several of the measurements were used to compute ten ratiometric index variables that quantify size and shape within specific anatomical compartments across the skeletal sample. Statistical analysis was carried out using JMP Pro 11 software (SAS) to derive standard descriptive statistics as well as the Shapiro-Wilk W test for goodness of fit. In cases where significant W statistics were observed, further t-tests were conducted that compared female and male groups. Landmarks for these variables are considered standard for anyone familiar with skeletal anatomy and so will not be described in further detail except where necessary.

 Table 2. Descriptive statistics for adult douc langurs (Genus Pygathrix).

Differences Between Sexes = Significant Shapiro-Wilk (W) Statistic as a Goodness-of-Fit Test All linear measurements are reported to the nearest 0.01 mm. Ratios are presented as %.

Dependent Variable	<i>Pygathrix</i> (male or female)	n =	μ :	± σ	W-Stat	P-Value
Scapular Height (mm)	female	13	69.86	6.07	0.859	P<0.05
	male	18	76.19	5.11	0.953	NS
	Total Sample	35	73.05	7	0.946	NS
Scapular Height (mm)	female	15	55.15	4.532	0.966	NS
	male	19	63.86	5.229	0.960	NS
	Total Sample	38	59.84	6.612	0.973	NS
Glenoid Height (mm)	female	13	17.31	1.522	0.959	NS
	male	18	19.54	1.067	0.946	NS
	Total Sample	35	18.59	1.779	0.961	NS
Glenoid Width (mm)	female	13	11.99	1.317	0.808	P<0.01
	male	18	13.58	1.016	0.980	NS
	Total Sample	35	12.88	1.383	0.972	NS
Clavicle Length (mm)	female	12	59.11	4.771	0.911	NS
	male	17	67.61	5.38	0.964	NS
	Total Sample	33	63.78	6.66	0.985	NS
Humerus Length (mm)	female	15	179.3	13.85	0.913	NS
	male	20	195.9	10.24	0.980	NS
	Total Sample	38	188.6	15.6	0.968	NS
Humerus Midshaft Circumference (mm)	female male Total Sample	15 20 38	32.33 35.65 34.32	3.222 2.621 3.519	0.956 0.907 0.966	NS NS NS
Humerus Midshaft Breadth (mm)	female male Total Sample	12 17 32	9.866 10.72 10.3	1.033 0.7482 1.039	0.939 0.976 0.951	NS NS NS
Humerus Midshaft Depth (mm)	female male Total Sample	12 17 32	10.09 11.11 10.64	0.7572 1.025 1.169	0.965 0.957 0.982	NS NS NS
Humerus Head Height (mm)	female	12	18.29	1.89	0.947	NS
	male	17	20.2	1.131	0.971	NS
	Total Sample	32	19.2	1.906	0.935	NS
Humerus Head Width (mm)	female	12	16.73	1.199	0.958	NS
	male	17	18.92	1.181	0.977	NS
	Total Sample	32	17.89	1.646	0.980	NS
Humerus	female	12	27.21	2.41	0.894	NS
Biepicondylar Width	male	17	31.67	2.034	0.940	NS
(mm)	Total Sample	32	29.74	3.179	0.953	NS
Capitulum Width (mm)	female	12	9.461	1.002	0.939	NS
	male	16	10.36	0.7306	0.969	NS
	Total Sample	31	9.938	0.9785	0.979	NS
Trochlear Width (mm)	female	12	10.8	1.04	0.955	NS
	male	16	12.08	1.102	0.930	NS
	Total Sample	31	11.46	1.259	0.972	NS

		1				
Ulna Length (mm)	female male Total Sample	11 16 32	199.01 224.5 213.52	16.67 10.77 19.85	0.880 0.928 0.958	NS NS NS
Ulna Midshaft Circumference (mm)	female male Total Sample	11 16 32	20.18 22.81 21.91	3.12 2.64 3.04	0.903 0.963 0.953	NS NS NS
Ulna Midshaft Breadth (mm)	female male Total Sample	11 16 32	5.01 5.75 5.4	0.89 0.675 0.844	0.917 0.969 0.970	NS NS NS
Ulna Midshaft Depth (mm)	female male Total Sample	11 16 32	6.94 7.99 7.55	1.18 1.22 1.233	0.945 0.948 0.985	NS NS NS
Semilunar Notch Height (mm)	female male Total Sample	11 16 32	7.91 8.4 9.36	0.89 0.65 2.85	0.946 0.930 0.699	NS NS P<0.001
Olecranon Process Length (mm)	female male Total Sample	12 17 32	7.679 8.347 8.168	1.663 1.021 1.347	0.868 0.901 0.956	NS NS NS
Ulna Distal Condyle Width (mm)	female male Total Sample	11 16 32	7.66 8.94 8.51	1.04 1.09 1.3	0.927 0.852 0.947	NS P<0.05 NS
Radius Length (mm)	female male Total Sample	11 16 32	8.17 9.79 9.01	0.77 0.69 1.12	0.949 0.857 0.957	NS P<0.05 NS
Radius Midshaft Circumference (mm)	female male Total Sample	11 16 32	185.3 209.56 198.7	18.43 10.57 19.94	0.930 0.965 0.941	NS NS NS
Radius Midshaft Breadth (mm)	female male Total Sample	11 16 32	22.64 25.56 24.38	3.2 2.42 3.63	0.907 0.953 0.974	NS NS NS
Radius Midshaft Depth (mm)	female male Total Sample	11 16 32	7.32 8.09 7.69	1.25 0.73 1.04	0.945 0.935 0.950	NS NS NS
Radial Head Maximum Diameter (mm)	female male Total Sample	11 16 32	6.41 7.47 7.05	0.86 0.99 1.09	0.944 0.940 0.977	NS NS NS
Radial Head Minimum Diameter (mm)	female male Total Sample	11 16 32	14.07 16.13 15.16	1.37 0.72 1.53	0.941 0.941 0.905	NS NS P<0.01
Radial Head Circumference (mm)	female male Total Sample	11 16 32	12.07 13.83 13.03	1.13 0.78 1.32	0.968 0.965 0.945	NS NS NS
Radial Neck Circumference (mm)	female male Total Sample	11 16 32	41.91 47.13 44.66	4.16 2.58 4.69	0.951 0.959 0.931	NS NS P<0.05
Cervical Region Length (mm)	female male Total Sample	11 16 32	25 27.38 26.34	3.46 2.42 3.5	0.931 0.888 0.945	NS NS NS

Thoracic Region Length (mm)	female male Total Sample	10 16 26	129.42 134.55 132.58	11.99 28.83 23.61	0.874 0.857 0.892	NS P<0.05 P<0.05
Lumbar Region Length (mm)	female male Total Sample	10 17 27	146.97 149.67 148.67	16.97 29.96 25.67	0.836 0.880 0.904	P<0.05 P<0.05 P<0.05
Sacrum Length (mm)	female	9	41.21	4.79	0.888	NS
	male	17	41.57	6.35	0.956	NS
	Total Sample	26	41.45	5.76	0.945	NS
Pelvis Height (mm)	female	12	136.17	9.3	0.919	NS
	male	17	147.14	8.24	0.939	NS
	Total Sample	32	141.86	10.93	0.972	NS
Ilium Length (mm)	female	12	86.22	7.45	0.897	NS
	male	17	89.6	5.37	0.959	NS
	Total Sample	32	88.1	6.68	0.977	NS
Ilium Breadth (mm)	female	12	35.94	3.31	0.904	NS
	male	17	39.97	3.92	0.970	NS
	Total Sample	32	37.99	4.2	0.966	NS
Ischium Length (mm)	female	12	24.95	4.03	0.823	P<0.05
	male	17	28.1	3.84	0.888	P<0.05
	Total Sample	32	27.46	4.56	0.934	NS
Pubis Length (mm)	female	12	38.03	3.9	0.973	NS
	male	17	38.1	3.29	0.893	NS
	Total Sample	32	38.33	3.73	0.947	NS
Acetabulum Height (mm)	female	12	21.61	1.84	0.972	NS
	male	17	22.98	1.28	0.968	NS
	Total Sample	32	22.37	1.69	0.979	NS
Acetabulum Width (mm)	female	12	17.45	1.89	0.919	NS
	male	17	18.55	1.55	0.948	NS
	Total Sample	32	18.08	1.72	0.989	NS
Femur Length (mm)	female	11	210.7	14.45	0.890	NS
	male	17	230.4	9.823	0.946	NS
	Total Sample	31	221.62	16.56	0.945	NS
Femur Midshaft Circumference (mm)	female male Total Sample	11 17 31	37.36 40.24 39.23	4.202 2.84 3.766	0.944 0.895 0.948	NS NS NS
Femur Midshaft Breadth (mm)	female male Total Sample	11 17 31	11.71 12.54 12.15	1.407 1.161 1.379	0.971 0.948 0.951	NS NS NS
Femur Midshaft Depth (mm)	female male Total Sample	11 17 31	11.23 12.37 11.87	1.124 0.87 1.146	0.968 0.975 0.964	NS NS NS
Femur Head Height (mm)	female	11	17.17	1.402	0.890	NS
	male	17	18.77	0.8895	0.960	NS
	Total Sample	31	18.02	1.387	0.957	NS
Femur Head Width (mm)	female male Total Sample	11 17 31	17.06 18.77 17.98	1.332 0.7935 1.357	0.887 0.966 0.952	NS NS NS

		T			Г	
Femur Biepicondylar Width (mm)	female male Total Sample	11 17 31	28.3 31.96 30.47	2.324 1.407 2.556	0.945 0.930 0.947	NS NS NS
Femur Condyle Depth (mm)	female	11	23.69	1.738	0.920	NS
	male	17	26.58	1.166	0.964	NS
	Total Sample	31	25.37	2.105	0.934	NS
Tibia Length (mm)	female	11	187.94	12.37	0.927	NS
	male	16	207.27	9.65	0.967	NS
	Total Sample	32	199.05	15.41	0.969	NS
Tibia Midshaft Circumference (mm)	female male Total Sample	11 16 32	36.18 40 38.66	4.62 3.52 4.55	0.895 0.924 0.905	NS NS P<0.01
Tibia Midshaft Breadth (mm)	female	11	8.59	1.34	0.967	NS
	male	16	9.46	1.02	0.956	NS
	Total Sample	32	9.14	1.2	0.984	NS
Tibia Midshaft Depth (mm)	female	11	13.21	1.79	0.908	NS
	male	16	14.63	1.08	0.942	NS
	Total Sample	32	14.01	1.66	0.940	NS
Tibia Plateau Breadth (mm)	female male Total Sample	11 16 32	26.78 30.39 29.13	3.13 3.13 3.48	0.930 0.750 0.917	NS P<0.001 P<0.05
Tibia Plateau Depth (mm)	female male Total Sample	11 16 32	20.99 22.87 22.22	3.24 2.7 3.09	0.889 0.918 0.961	NS NS NS
Tibia Distal Width (mm)	female	11	18.15	1.73	0.969	NS
	male	16	20.53	1.23	0.954	NS
	Total Sample	32	19.57	1.79	0.976	NS
Tibia Distal Depth (mm)	female male Total Sample	11 16 32	14.83 17.08 16.24	1.05 1.2 1.52	0.896 0.908 0.970	NS NS NS
Fibula Length (mm)	female	11	172.31	10.22	0.962	NS
	male	16	190.89	10.82	0.915	NS
	Total Sample	31	182.94	15.76	0.985	NS
Calcaneus Length (mm)	female	11	34.9	2.29	0.895	NS
	male	16	38.98	2.28	0.937	NS
	Total Sample	31	37.24	3.03	0.945	NS
Talus Length (mm)	female	11	23.78	1.38	0.931	NS
	male	16	27.19	1.33	0.907	NS
	Total Sample	30	26	2.28	0.970	NS
Talus Trochlear Breadth (mm)	female male Total Sample	11 16 30	12.35 13.94 13.27	1.03 0.95 1.23	0.959 0.978 0.978	NS NS NS
Intermembral Index (%)	female	11	91.18	5.755	0.863	NS
	male	16	93.11	1.752	0.952	NS
	Total Sample	30	92.37	3.9	0.834	P<0.001
Brachial Index (%)	female	12	103.5	4.979	0.913	NS
	male	16	106.2	3.217	0.941	NS
	Total Sample	31	104.7	4.25	0.923	P<0.05

Crural Index (%)	female	11	89.2	1.49	0.928	NS
	male	16	90.17	1.464	0.961	NS
	Total Sample	30	89.77	1.509	0.959	NS
Scapular Shape Index	female	12	125.84	10.16	0.9214	NS
(%)	male	17	118.46	8.89	0.9407	NS
Height / Width	Total Sample	35	121.32	9.38	0.9494	NS
Clavicle Index (%) Calvicle Length / ((Acetabulum Height*Width)^1/2)	female	12	305.3	17.91	0.900	NS
	male	17	329.1	35.44	0.953	NS
	Total Sample	32	317.7	31.08	0.954	NS
Humerus Gracility Index (%) Humerus Length / ((circumference* breadth*depth)^1/3)	female male Total Sample	12 17 32	1223 1227 1226	133.3 76.7 97.28	0.965 0.944 0.962	NS NS NS
Ulna Gracility Index (%) Ulna Length / ((circumference* breadth*depth)^1/3)	female male Total Sample	11 16 32	2297.25 2239.59 2252.48	411 256.23 296.97	0.9581 0.9443 0.9569	NS NS NS
Olecranon Length Index (%) Olecranon Process Length / ((Acetabulum Height*Width)^1/2)	female	11	40.18	6.43	0.9527	NS
	male	16	43.74	5.26	0.9514	NS
	Total Sample	31	42.06	5.62	0.9765	NS
Radius Gracility Index (%) Radius Length / ((circumference* breadth*depth)^1/3)	female male Total Sample	12 17 32	1832 1822 1832	259.6 159.6 197.1	0.976 0.926 0.981	NS NS NS
Lumbar Index (%)	female	9	107.63	8.42	0.842	NS
(Lumbar Height /	male	14	108.3	7.6	0.933	NS
Thoracic Height)	Total Sample	23	110.58	8.3	0.942	NS

Results

In total 60 variables from the post-cranial skeleton are reported from the largest known sample of the genus *Pygathrix*. Overall, they describe an arboreal, tailed, Old World monkey that is medium to large bodied. The computed W-statistic represents a test of homogeneity with the null hypothesis that one single distribution of data is observed and not something with multimodal and non-normal data. The closer the W-stat is to 1.0, the closer to complete uniformity in the data. Significant p-values indicate significantly low W-statistics and reject the null hypotheses (i.e., the distribution of that group for that dependent variable is not uniform and is therefore non-normal).

Significantly non-homogenous variables are Scapula Height, Glenoid Width, Semilunar Notch Height, Ulna Distal Condyle Width (UDCW), Radius Length, Radial Head Minimum Diameter, Radial Neck Circumference (RNC), Thoracic Region Length, Lumbar Region Length, Ischium Length, Tibia Midshaft Circumference (TMC), and Tibial Plateau Breadth (TPB). Of these variables RNC, UDCW, TMC, and TPB (of the elbow, wrist, knee and crus of the lower leg) are the only ones that exhibit significant sexual dimorphism revealed by t-tests comparing known male and female groups. Each of these four comparisons from the elbow, wrist, and the lower leg where males which are significantly larger than females (Fig. 1).

Additionally, two key ratiometric indices exhibit sexual dimorphism, the Intermembral Index (IM),

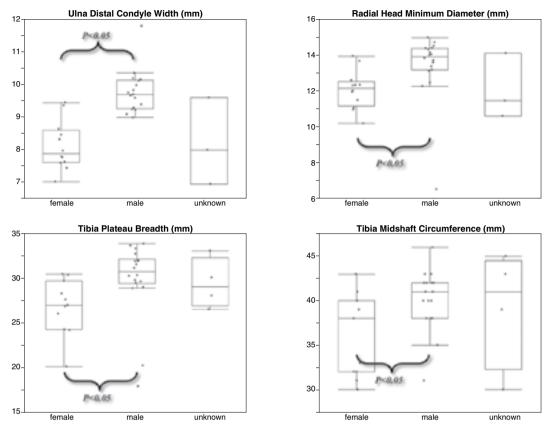


Fig.1. Four linear metrics that showed significant sexual dimorphism. Significant p-value represents a rejection of the null hypothesis that males and females are the same and uses a t-test. Unknowns were left out of the t-test.

and Brachial Index (BR). They show values that are intermediate between those of brachiators and more typical arboreal quadrupeds. As a total sample the IM was 92.4% with males showing slightly larger (93.1%) than female (91.2%) values. The BR for the total sample was 104.7% with males (106.2%) being larger than females (103.5%) in this measure. Thus, the douc langur has relatively long arms and forearms consistent with more suspensory locomotor habits. Furthermore, the larger male specimens are in an even greater direction toward suspensory morphology having relatively longer arms and forearms than even female doucs.

Discussion/Conclusions

In this study a sample of 40 adult douc langurs of the genus *Pygathrix* are described. A series of basic skeletal measurements derived from limb, girdle, and vertebral regions are presented. Four variables were observed to show significant sexual dimorphism at the elbow, wrist, knee, and the lower leg (Fig. 1). This sexual dimorphism is not surprising given that each feature is found at a major load-bearing region of the fore- and hindlimb. Increased tibial loadings would be true of larger sizes for quadrupedal locomotion. Increased forearm loadings would be true of larger sizes for forelimb mediated suspensory behavior. This pattern of significance underscores the transitional nature of the semibrachiator category and the importance of *Pygathrix* as a catarrhine representative.

In this study, the genus *Pygathrix* is described as a homogenous statistical population and so is not divided into species or sex. For the sake of comparative contrast with other catarrhines, this facilitates testing the morphological substantiation of the "Old-World Semibrachiator" category (Ashton & Oxnard, 1964; Napier, 1963). This test of the semibrachiator concept is relevant because of findings that many colobines from that earlier category do not arm swininging, and thus, are not

actually semibrachiators (Mittermeier & Fleagle, 1976; Morbeck, 1977; 1979). Recent attention has been paid to doucs because they do complement their quadrupedal locomotion with armswinging (Byron & Covert, 2004; Covert et al., 2004; Stevens et al., 2008; Wright et al., 2008) making them an ideal taxon to understand the evolutionary origins of orthograde positional behavior.

In the classic description of the Old-World semibrachiator group (Napier & Napier, 1967) reports of average intermembral index (93%) and brachial index (104%) are cited for *Pygathrix* from earlier work (Milne-Edwards & Pousargues, 1898; Washburn, 1942). Only one other odd-nosed Asian Colobine has such high values for these indices, the proboscis monkey, Genus: *Nasalis*. The other colobines of Asia and Africa have lower intermembral and brachial index values in the range of typical arboreal quadrupeds (i.e., the legs are relatively longer than arms and the antebrachium is relatively shorter than the brachium). In the most specialized brachiators like *Hylobates*, an intermembral index of 129% and brachial index of 113% are reported, indicating how forelimb (and forearm) dominated these animals are (Schultz, 1930). Among platyrrhines the New World semibrachiators more closely approximate the limb index condition of true brachiators. However, with a prehensile tail as a major component of the locomotor stride, this group does not exhibit a transitional condition that is relevant to the pronograde to orthograde transition that occurred in catarrhine primates.

The results for *Pygathrix* presented in this paper are intermediate between typical arboreal quadrupedal monkeys and true gibbon-type brachiators, and match expectations for this taxon. This douc sample's intermembral index is 92.4±3.9% and the brachial index is 104.7±4.3%. These data are significant because they provide information on the skeletal anatomy of a medium-sized catarrhine leaf monkey that exhibits sexual dimorphism and is adapted for a highly arboreal habitat. For these reasons, *Pygathrix* is a compelling model for early hominoid evolution and the origins of orthograde suspensory behavior.

Having a transitional type of locomotor behavior that overlaps with true brachiators as well as quadrupedal catarrhines is also predicted for a group designated pro-brachiation that purportedly includes ancestral hominoid taxa like *Proconsul* (Napier, 1963). These taxa precede the true brachiation of more derived hominoids (like chimps and gibbons). Recent work on an extinct stem catarrhine taxa from the European Miocene describes functional similarities with New World semibrachiators that are interpreted to mean that *Pliopithecus vindobonensis* likely performed forelimb suspensory locomotion (Arias-Martorell et al., 2014; Rein et al., 2015). Most recently reports of a more modern stem hominoid from the European Miocene describe *Pliobates cataloniae* as an arboreal, small-bodied, quadruped with a wrist that permitted greater rotation (Alba et al., 2015; Benefit & McCrossin, 2015). Including *Pygathrix* in these types of analyses should be a goal for anyone interested in ape locomotion and evolution. Currently these types of analyses are standard for primate taxa commonly found in natural history museum collections. It is hoped that the results presented here, and the availability of the EPRC skeletal collection to future investigators, help inform more complete studies of primate morphology.

Acknowledgements

Travel that made this work possible was in part provided by the following grant: NSF 03522512. These authors wish to thank Tilo Nadler for making these rare specimens available to study as well as the natural history museums of Chicago, Paris, and Cambridge, MA for also making specimens available. Specifically, it should be recognized that the Endangered Primate Rescue Center, Vietnam has made this study possible by receiving and caring for confiscated animals from the illegal wildlife trade. The head animal keeper, Elke Schwierz, deserves special commendation for the daily care of these rare animals. Finally, we thank Bert Covert for his mentorship and assistance on this project.

References

Alba DM, Almécija S, Demiguel D, Fortuny J, Ríos MDL, Pina M, Robles J M & Moyà-solà S (2015): Miocene small-bodied ape from Eurasia sheds light on hominoid evolution. Science 350, aab2625.

Arias-Martorell J, Tallman M, Potau JM, Bello-Hellegouarch G & Pérez-Pérez A (2014): Shape analysis of the proximal humerus in orthograde and semi-orthograde primates: Correlates of suspensory behavior. Am. J. Primatol. 77, 1–19.

Ashton EH & Oxnard CE (1964): Functional adaptations in the primate shoulder girdle. Proc. Zool. Soc. London 142, 49-66.

- Avis V (1962): Brachiation: the crucial issue for man's ancestry. Southwest. J. Anthr. 18, 119–148.
- Benefit BR & McCrossin ML (2015): A window into ape evolution. Science 350, 515-516.
- **Boonratana R** (1993): The Ecology and Behaviour of the Proboscis Monkey (*Nasalis larvatus*) in the lower kinabatangan, Sabah. Asian Primates 4, 13-14.
- Byron CD & Covert HH (2004): Unexpected locomotor behaviour: brachiation by an Old World monkey (*Pygathrix nemaeus*) from Vietnam. J. Zool. 263, 101–106.
- Covert HH, Workman C & Byron C 2004: The EPRC as an important research center: ontogeny of locomotor differences among Vietnamese colobines. In: Nadler T, Streicher U & Ha Thang Long (eds.): Conservation of Primates in Vietnam; pp. 121–129. Frankfurt Zoological Society, Hanoi.
- Disotell TR (1998): The natural history of the doucs and snub-nosed monkeys. Am. J. Phys. Anthropolgy 110, 474–476.
- **Fleagle JG** (1976): Locomotor behavior and skeletal anatomy of sympatric Malaysian leaf-monkeys (*Presbytis obscura* and *Presbytis melalophos*). Yearb, Phys. Anthropology 20, 440–452.
- Fleagle JG (1977): Locomotor behavior and muscular anatomy of sympatric Malaysian Leaf-Monkeys (*Presbytis obscura* and *Presbytis melalophos*). Am J. Phys. Anthropology 46, 297–308.
- Fleagle JG 1978: Locomotion, posture, and habitat utilization in two sympatric, Malaysian leaf-monkeys (*Presbytis obscura* and *Presbytis melalophos*). In: Montgomery GG (ed.): The Ecology of Arboreal Folivores; pp. 243–251. Smithsonian Institution Press, Washington DC.
- Gregory WK (1928): Were the ancestors of man primitive brachiators? Proc. Am. Philos. Soc. 67, 129-150.
- Ha Thang Long 2004: Distribution and status of the grey-shanked douc langur (*Pygathrix nemaeus*) in Vietnam. In: Nadler T, Streicher U & Ha Thang Long (eds.): Conservation of Primates in Vietnam; pp. 52–57. Frankfurt Zoological Society, Hanoi.
- IUCN Red List of Threatened Species. Downloaded 26 Oct. 2015.
- Jablonski NG & Ru-Liang P (1995): Sexual Dimorphism in the Snub-Nosed Langurs, Am. J. Phys. Anthropology 96, 251–272.
- **Jablonski NG** & **Zhang PY** (1992): The Phylogenetic Relationships and classification of the Doucs and Snub-Nosed Langurs of China and Vietnam. Folia Primatol. 60, 36–55.
- **Jones AL** (2008): The evolution of brachiation in ateline primates, ancestral character states and history. Am. J. Phys. Anthropology 137, 123–44.
- Kawabe M & Mano T (1972): Ecology and Behavior of the wild proboscis monkey, *Nasalis larvatus* (Wurmb) in Sabah, Malaysia. Primates 13, 213-228.
- **Larson SG** 1993: Functional morphology of the shoulder in primates. In: Gebo DL (ed.): Postcranial adaptation in nonhuman primates; pp. 45-69. Northern Illinois Press, DeKalb, IL.
- **Larson SG** (1995): New characters for the functional interpretation of primate scapulae and proximal humeri. Am. J. Phys. Anthropology 98, 13–35.
- Liedigk R, Yang M, Jablonski NG, Momberg F, Geissmann T, Lwin N, Hla TH, Liu Z, Wong B & Ming L (2012): Evolutionary history of the odd-nosed monkeys and the phylogenetic position of the newly described Myanmar snub-nosed monkey Rhinopithecus strykeri. PLoS One 7, e37418.
- Lippold LK 1998: Natural History of Douc Langurs. In: Jablonski NG (ed.): The Natural History of the Doucs and Snub-Nosed Monkeys; pp. 191–206. World Scientific Publishing Co., Singapore.
- **Lippold LK & Vu Ngoc Thanh** 1998: Primate Conservation in Vietnam. In: Jablonski NG (ed.): The Natural History of the Doucs and Snub-Nosed Monkeys; pp. 293–300. World Scientific Publishing Co., Singapore.
- Milne-Edwards A & Pousargues E de (1898): Le Rhinopitheque de la vallee du haut Mekong (Rhinopithecus bieti Milne-Edwards). Nouv. Archs Mus. Hist. Nat., Paris 3, 121–142.
- Mittermeier RA & Fleagle JG (1976): The locomotor and postural repertoires of *Ateles geoffroyi* and *Colobus guereza*, and a re-evaluation of locomotor category semibrachiation. Am. J. Phys. Anthropology 45, 235–256.
- **Morbeck ME** (1977): Positional Behavior, Selective Use of Habitat Substrate and Associated Non-Positional Behavioral in Free-Ranging *Colobus guereza*. Primates 8, 35–58.
- **Morbeck ME** 1979: Forelimb use and positional adaptation in *Colobus guereza*: integration of behavioral, ecological, and anatomical data. In: Morbeck ME, Preuschoft H & Gomberg N (eds.): Environment, Behavior, and Morphology: Dynamic Interactions in Primates; pp. 95–117. Gustav Fischer, New York.
- Nadler T & Streicher U 2004: The primates of Vietnam an overview. In: Nadler T, Streicher U & Ha Thang Long (eds.): Conservation of Primates in Vietnam; pp. 5–14. Frankfurt Zoological Society, Hanoi.
- Nadler T, Momberg F, Nguyen Xuan Dang & Lormee N (2003): Leaf Monkeys Vietnam Primate Conservation Status Review 2002-Part 2. Fauna & Flora International and Frankfurt Zoological Society, Hanoi.
- Napier JR 1963: Brachiation and brachiators. In: Napier J & Barnicot NA (eds.): The Primates; pp. 183–195. Zoological Society of London, London.
- Napier JR (1967): Evolutionary aspects of primate locomotion. Am J Phys Anthropology 27, 333–342.
- Napier JR & Napier P (1967): A handbook of living primates: morphology, ecology, and behaviour of nonhuman primates. Academic Press, London.
- Oxnard CE 1963: Locomotor adaptations of the primate forelimbs. In: Napier J & Barnicot NA (eds.): The Primates; pp. 165–182. Zoological Society of London, London.
- Rein TR, Harvati K & Harrison T (2015): Inferring the use of forelimb suspensory locomotion by extinct primate species via shape exploration of the ulna. J. Hum. Evol. 78, 70–79.
- Rosenberger AL, Halenar L, Cooke SB & Hartwig WC 2008: Morphology and Evolution of the Spider Monkey, Genus Ateles. In: Campbell C (ed.): Spider Monkeys; pp. 19-49. Cambridge University Press, Cambridge.

- Ruhiyat Y (1986): Preliminary study of proboscis monkey (*Nasalis larvatus*) in Gunung Palung Nature Reserve, West Kalimantan. Kyoto Univ. Overseas Res. Rep. Stud. Asian Non-Human Primates 5, 59–69.
- Schmitt D, Rose M, Turnquist JE & Lemelin P (2005): Role of the prehensile tail during ateline locomotion: Experimental and osetological evidence. Am. J. Phys. Anthropology 126, 435–446.
- Schultz AH 1930: The skeleton of the trunk and limbs of higher primates. In: Human Biology: A Record of Research; pp. 303–438.
- Shea BT (2005): Shaping Primate Evolution. Form, Function and Behavior. Int. J. Primatol. 26, 1483-1485.
- Sterling EJ, Hurley MM & Le Duc Minh (2006): Vietnam: A Natural History. Yale University Press, New Have.
- Stevens NJ, Wright KA, Covert HH & Nadler T (2008): Tail postures of four quadrupedal leaf monkeys (*Pygathrix nemaeus*, *P. cinerea*, *Trachypithecus delacouri* and *T. hatinhensis*) at the Endangered Primate Rescue Center, Cuc Phuong National Park, Vietnam. Vietnamese J. Primatol. 1, 13-24.
- Struhsaker TT (1975): The Red Colobus Monkey. University of Chicago Press, Chicago.
- Turnquist JE, Schmitt D, Rose MD & Cant JG (1999): Pendular motion in the brachiation of captive *Lagothrix* and *Ateles*. Am. J. Primatol. 48, 263–281.
- Washburn SL (1942): Skeletal proportions of adult langurs and macaques. Hum. Biol. 14, 444–472.
- Workman C & Covert HH (2005): Learning the ropes: the ontogeny of locomotion in red-shanked douc (*Pygathrix nemaeus*), Delacour's (*Trachypithecus delacouri*), and Hatinh langurs (*Trachypithecus hatinhensis*) I. Positional behavior. Am. J. Phys. Anthropology 182, 371–380.
- Wright KA, Stevens NJ, Covert HH & Nadler T (2008): Comparisons of Suspensory Behaviors among *Pygathrix cinerea*, *P. nemaeus*, and *Nomascus leucogenys* in Cuc Phuong National Park, Vietnam. Int. J. Primatol. 29, 1467–1480.
- Zhu WW, Garber PA, Bezanson M, Qi X-G & Li B-G (2014): Age- and sex-based patterns of positional behavior and substrate utilization in the golden snub-nosed monkey (*Rhinopithecus roxellana*). Am. J. Primatol. 77, 98–108.