Primates in Peril
The World’s 25 Most Endangered Primates
2022–2023

Edited by
Russell A. Mittermeier, Kim E. Reuter, Anthony B. Rylands,
Leandro Jerusalinsky, Christoph Schwitzer, Karen B. Strier,
Jonah Ratsimbazafy and Tatyana Humle
CONTENTS

Preface...1
The World’s 25 Most Endangered Primates 2022–2023 ..3

Madagascar
Madame Berthe’s Mouse Lemur, Microcebus berthae ..9
Safrary Sportive Lemur, Lepilemur septentrionalis ...13
Blue-eyed Black Lemur, Eulemur flavifrons ..17
Coquerel’s Sifaka, Propithecus coquereli ...23

Africa
Rondo Dwarf Galago, Paragalago rondoensis ...31
Golden-bellied Mangabey, Cercocebus chrysogaster ...35
Southern Patas Monkey, Erythrocebus baumstarki ...38
Roloway Monkey, Cercopithecus roloway ...43
Niger Delta Red Colobus, Piliocolobus epiei ...49
Nigeria-Cameroon Chimpanzee, Pan troglodytes ellioti53

Asia
Javan Slow Loris, Nycticebus javanicus ..61
Sangihe Tarsier, Tarsius sangirensis ..67
Purple-faced Langur, Semnopithecus vetulus ..71
Golden-headed Langur, Trachypithecus poliocephalus77
Raffles’ Banded Langur, Presbytis femoralis ...81
Guizhou Snub-nosed Monkey, Rhinopithecus brelichi ..85
Gaoligong Hoolock Gibbon, Hoolock tianxing ..89
Tapanuli Orangutan, Pongo tapanuliensis ...93

Neotropics
Buffy-headed Marmoset, Callithrix flaviceps ...101
Ka’apor Capuchin, Cebus kaapori ..107
Ecuadorian White-fronted Capuchin, Cebus aequatorialis111
Groves’ Titi Monkey, Plecturocebus grovesi ..117
Brown Howler Monkey, Alouatta guariba ...121
Brown-headed Spider Monkey, Ateles fusciceps ...127
Geoffroy’s Spider Monkey, Ateles geoffroyi ...135

Other Species Considered ..142
Affiliations ..157
PREFAE

We present here the 11th edition of The World’s 25 Most Endangered Primates, this one for 2022–2023. The consultation for this list was held in an open meeting on the evening of 12 January 2022, during the IPS-SLAPrim Joint Meeting (XXVIII Congress of the International Primatological Society - IPS and IV Congress of the Latin American Society of Primatology - SLAPrim) in Quito, Ecuador (9–15 January 2022). This session was attended by more than 100 people and we subsequently consulted with many experts to refine the information on those species that were selected. Note also that since the Quito IPS Congress, originally planned for 2020, was not held until January 2022, the 2020–2022 list of the World’s 25 Most Endangered Primates wound up being this list for 2022–2023.

Using the information obtained over the past six months, we have updated the profiles for those species remaining on the list from the 2018–2020 (2022) edition and for those from previous editions that were returned to the list, and we have added additional profiles for newly listed species. Of note, the 2018–2020 edition was the last that was published before the onset of the COVID-19 pandemic.

This publication is a joint initiative of the IUCN SSC Primate Specialist Group, the International Primatological Society and Re:wild.

We are most grateful to the people and organizations who have provided major support for the conservation of endangered primates over the years, both those listed in this report and many others as well. In particular, we would like to thank Jon Stryker and Slobodan Randjelović for their support through the Arcus Foundation and in other ways, to Annette Lanjouw of the Arcus Foundation for major support of great ape and gibbon conservation, and to the Mohamed bin Zayed Species Conservation Fund for supporting numerous primate projects since 2009. Special thanks also to the Margot Marsh Biodiversity Foundation for their support of primate conservation since 1996, both through the provision of grants from the foundation itself and through the Primate Action Fund of the Primate Program at Re:wild. Besides providing the wherewithal publish this report, the foundation has funded training workshops and field courses held at multiple biennial congresses of the International Primatological Society, besides helping primatologists to attend the meetings to discuss The World’s 25 Most Endangered Primates lists. Much of the work on the administration of these grants is done by Ella Outlaw, Anthony Rylands and Jill Lucena of the Re:wild Primate Program and by William R. Konstant, a Re:wild Associate.

We thank all of those who contributed to the final 2022–2023 version. They are also listed as authors on the individual species accounts to which they contributed.

THE WORLD’S 25 MOST ENDANGERED PRIMATES 2022–2023

Here we report on the 11th edition of the biennial listing of a consensus of the 25 primate species considered to be among the most endangered worldwide and most in need of conservation measures. The previous edition (Schwitzer et al. 2019) – published in 2019 and spanning 2018-2020 – was the last to be published before the onset of the global COVID-19 pandemic. However, since the Quito IPS Congress, originally planned for 2020, was not held until January 2022, the 2018–2020 Top 25 actually wound up being the list for 2018–2022. Following the publication of the 2018–2020 list, we conducted an in-depth analysis of the traceable impacts of the 25 Most Endangered Primates lists since their inception in 2000 (Reuter et al. 2021).

The 2022–2023 list of the World’s 25 Most Endangered Primates has six species from Africa, four from Madagascar, eight from Asia, and seven from the Neotropics (Table 1). Madagascar and Brazil both have four, Indonesia has three, China, Colombia, Ecuador, Nigeria, Panama, and Tanzania have two, and Argentina, Belize, Cameroon, Costa Rica, Côte d’Ivoire, El Salvador, Ghana, Guatemala, Honduras, Democratic Republic of the Congo, Mexico, Myanmar, Nicaragua, Peru, Singapore, Sri Lanka, and Vietnam each have one.

Eight of these primates are listed as among the world’s most endangered primates for the first time – those listed with an asterisk in Table 1. The remaining 17 species and subspecies have been listed in previous versions of the 25 most endangered primates. Fourteen primates were dropped from the previous list, 2018–2020 (see Table 2).

The changes made in this list compared to the previous iteration (2018–2020) were not because the situation of the 14 species that were dropped (Table 2) has improved. In some cases, the situation has in fact worsened. By making these changes we intend rather to highlight other, closely related species enduring equally bleak prospects for their survival.

During the discussion of the 2022–2023 list at the IPS-SLAPrim Joint Meeting (XXVIII IPS Congress and IV SLAPrim Congress) in Quito, a number of other highly threatened primates were considered for inclusion. For all of these, the situation in the wild is as precarious as it is for those that finally made it on the list, thus they have been included as ‘Other Species Considered’ (p. 142).

<table>
<thead>
<tr>
<th>Country</th>
<th>Species Name</th>
<th>Common Name</th>
<th>Endangered Primates</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADAGASCAR</td>
<td>Microcebus berthae</td>
<td>Madame Berthe's Mouse Lemur</td>
<td>Madagascar</td>
</tr>
<tr>
<td></td>
<td>Lepilemur septentrionalis</td>
<td>Sahafary Sportive Lemur</td>
<td>Madagascar</td>
</tr>
<tr>
<td></td>
<td>Eulemur flavifrons</td>
<td>Blue-eyed Black Lemur</td>
<td>Madagascar</td>
</tr>
<tr>
<td></td>
<td>Propithecus coquereli*</td>
<td>Coquerel’s Sifaka</td>
<td>Madagascar</td>
</tr>
<tr>
<td>AFRICA</td>
<td>Paragalogo rondoensis</td>
<td>Rondo Dwarf Galago</td>
<td>Tanzania</td>
</tr>
<tr>
<td></td>
<td>Cercocebus chrysogaster*</td>
<td>Golden-bellied Mangabey</td>
<td>Democratic Republic of the Congo</td>
</tr>
<tr>
<td></td>
<td>Erythrocebus baumstarki*</td>
<td>Southern Patas Monkey</td>
<td>Tanzania</td>
</tr>
<tr>
<td></td>
<td>Cercopithecus roloway</td>
<td>Roloway Monkey</td>
<td>Côte d’Ivoire, Ghana</td>
</tr>
<tr>
<td></td>
<td>Piliocolobus epieni</td>
<td>Niger Delta Red Colobus</td>
<td>Nigeria</td>
</tr>
<tr>
<td></td>
<td>Pan troglodytes ellioti*</td>
<td>Nigeria-Cameroon Chimpanzee</td>
<td>Cameroon, Nigeria</td>
</tr>
<tr>
<td>ASIA</td>
<td>Nycticebus javanicus</td>
<td>Javan Slow Loris</td>
<td>Indonesia (Java)</td>
</tr>
<tr>
<td></td>
<td>Tarsius sangirensis*</td>
<td>Sangihe Tarsier</td>
<td>Indonesia (Sulawesi)</td>
</tr>
<tr>
<td></td>
<td>Semnopithecus vetulus</td>
<td>Purple-faced Langur</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td></td>
<td>Trachypithecus poliocephalus</td>
<td>Golden-headed Langur</td>
<td>Vietnam</td>
</tr>
<tr>
<td></td>
<td>Presbytis femoralis*</td>
<td>Raffles’ Banded Langur</td>
<td>Peninsular Malaysia, Singapore</td>
</tr>
<tr>
<td></td>
<td>Rhinopithecus brelichi</td>
<td>Gray Snub-nosed Monkey</td>
<td>China</td>
</tr>
<tr>
<td></td>
<td>Hoolock tianxing</td>
<td>Skywalker or Gaoligong Hoolock</td>
<td>China, Myanmar</td>
</tr>
<tr>
<td></td>
<td>Pongo tapanuliensis</td>
<td>Tapanuli Orangutan</td>
<td>Indonesia (Sumatra)</td>
</tr>
<tr>
<td>NEOTROPICS</td>
<td>Callithrix flaviceps*</td>
<td>Buffy-headed Marmoset</td>
<td>Brazil</td>
</tr>
<tr>
<td></td>
<td>Cebus kaapori</td>
<td>Ka’apor Capuchin</td>
<td>Brazil</td>
</tr>
<tr>
<td></td>
<td>Cebus aequatorialis</td>
<td>Ecuadorian Capuchin</td>
<td>Ecuador, Peru</td>
</tr>
<tr>
<td></td>
<td>Plecturocebus grovesi*</td>
<td>Groves’ Titi Monkey</td>
<td>Brazil</td>
</tr>
<tr>
<td></td>
<td>Alouatta guariba</td>
<td>Brown Howler Monkey</td>
<td>Argentina, Brazil</td>
</tr>
<tr>
<td></td>
<td>Ateles fusciceps</td>
<td>Brown-headed Spider Monkey</td>
<td>Colombia, Ecuador, Panama</td>
</tr>
<tr>
<td></td>
<td>Ateles geoffroyi</td>
<td>Geoffroy’s Spider Monkey</td>
<td>Belize, Costa Rica, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Colombia (?)</td>
</tr>
</tbody>
</table>
Table 2. Primate species included on the 2018–2020 list that were removed from the 2022–2023 list.

<table>
<thead>
<tr>
<th>Country</th>
<th>Species</th>
<th>Scientific Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADAGASCAR</td>
<td>Bemanasy Mouse Lemur</td>
<td>Microcebus manitatra</td>
<td>Madagascar</td>
</tr>
<tr>
<td></td>
<td>Lac Alaotra Bamboo Lemur</td>
<td>Hapalemur alaotrensis</td>
<td>Madagascar</td>
</tr>
<tr>
<td></td>
<td>Manombo Sportive Lemur</td>
<td>Lepilemur jamesorum</td>
<td>Madagascar</td>
</tr>
<tr>
<td></td>
<td>Indri</td>
<td>Indri indri</td>
<td>Madagascar</td>
</tr>
<tr>
<td></td>
<td>Aye-aye</td>
<td>Daubentonia madagascariensis</td>
<td>Madagascar</td>
</tr>
<tr>
<td>AFRICA</td>
<td>Kipunji</td>
<td>Rungwecebus kipunji</td>
<td>Tanzania</td>
</tr>
<tr>
<td></td>
<td>White-thighed Colobus</td>
<td>Colobus vellerosus</td>
<td>Benin, Côte d’Ivoire, Ghana, Nigeria, Togo</td>
</tr>
<tr>
<td></td>
<td>Tana River Red Colobus</td>
<td>Piliocolobus rufomitratus</td>
<td>Kenya</td>
</tr>
<tr>
<td></td>
<td>Western Chimpanzee</td>
<td>Pan troglodytes verus</td>
<td>Benin (?), Burkina Faso (?), Côte d’Ivoire, The Gambia (Extinct), Ghana, Guinea, Guinea-Bissau, Liberia, Mali, Nigeria, Senegal, Sierra Leone, Togo (?)</td>
</tr>
<tr>
<td>ASIA</td>
<td>Pig-tailed Langur</td>
<td>Simias concolor</td>
<td>Indonesia (Sumatera)</td>
</tr>
<tr>
<td></td>
<td>Golden Langur</td>
<td>Trachypithecus geei</td>
<td>Bhutan, India (Assam)</td>
</tr>
<tr>
<td>NEOTROPICS</td>
<td>Pied Tamarin</td>
<td>Saguinus bicolor</td>
<td>Brazil</td>
</tr>
<tr>
<td></td>
<td>Buffy-tufted-ear Marmoset</td>
<td>Callithrix aurita</td>
<td>Brazil</td>
</tr>
<tr>
<td></td>
<td>Olalla’s Titi</td>
<td>Plecturocebus olallae</td>
<td>Bolivia</td>
</tr>
</tbody>
</table>
Madame Berthe’s Mouse Lemur
Microcebus berthae

Blue-eyed Black Lemur
Eulemur flavifrons

Coquerel’s Sifaka
Propithecus coquereli

Sahafary Sportive Lemur
Lepilemur septentrionalis
MADAGASCAR
It is categorized as Critically Endangered on the IUCN Red List of Threatened Species – habitat loss and degradation due to slash-and-burn agriculture is causing a continuing decline in the species’ area of occupancy and extent of occurrence (Markolf et al. 2020). A population decrease of more than 80% over ten years is expected as a direct consequence of ongoing habitat destruction. Data on the species’ population size and distribution are currently being updated. There are no captive populations of this species.

As the protection of the remaining forest patches and the restoration of habitat quality and connectivity are critical to preserve biodiversity in the central Menabe region, several conservation and education programs are being implemented by NGOs using *M. berthae* as a flagship species. Development projects, reforestation, and restoration campaigns have been initiated as well.

The Aire Protégée Menabe Antimena (APMA), with the key core areas being the Kirindy and Ambadira forests, unfortunately still lacks effective law enforcement. Since the protected area’s designation in 2015, slash-and-burn practices have destroyed about 30% of its forests (Markolf et al. 2020). The loss of revenue from tourism during the COVID-19 pandemic has hampered adequate forest protection, and the absence of foreign researchers has further fueled deforestation. Effective protection of the APMA will require addressing not only the needs of a growing human population, but also the need to reduce the exploitation of natural resources.
The region suffers from a lack of sustainable agriculture, agroforestry, and livestock farming (Frank and Schäffler 2019) and there are numerous other problems to solve if we are to preserve the remaining habitat of the iconic Madame Berthe’s Mouse Lemur.

SAHAFARY SPORTIVE LEMUR

Lepilemur septentrionalis Rumpler and Albignac, 1975

Edward E. Louis Jr., Carolyn A. Bailey, Cynthia L. Frasier, Leslie Wilmet, Aubin Andriajaona, Lucile Rasoamazava, Valérie F. Rakotomalala, Mary P. Dinsmore and Timothy M. Sefczek

Lepilemur septentrionalis is a small sportive lemur with a body weight of just 600–750 g (Louis Jr. et al. 2006) from Madagascar’s far northern region. Originally believed to have been distributed across the north of Madagascar, from Montagne d’Ambre south to the Mahavavy River close to Ambilobe (Hawkins et al. 1990, Rumpler et al. 2001), it is now evidently restricted to just a few patches of forest.

In 2007, a survey in the forests of Sahafary and the Analalava Forest Reserve estimated a population of 100 (Ravaorimanana et al. 2009). A follow-up survey in 2012 and 2013 conducted by Omaha’s Henry Doorly Zoo and Aquarium and the Madagascar Biodiversity Partnership (MBP) found only three individuals in these forests, suggesting that these populations have since been completely extirpated in the two western parts of its range. As such, the species is thought to exist now only in Montagne des Français (Louis Jr. and Zaonarivelo 2015). In a subsequent field survey conducted in August and September 2019, Omaha’s Henry Doorly Zoo and Aquarium and MBP field surveys detected 87 individuals, all of them in the central-western portions of Montagne des Français. Whether this increase is based on protective steps taken by the Direction Régionale de l’Environnement et du Développement Durable to conduct ranger patrols with the MBP field teams, or an artificial response to the collapse of the surrounding habitat is not known (Bailey et al. 2020).

Prior to 2010, this species had not been studied in the wild, though more is known now about its ecology (e.g., Rasoamazava et al. 2022). It inhabits tropical dry, deciduous and gallery forest fragments (Dinsmore et al. 2016). Due to the topography of karst mountains and the deforestation from charcoal enterprises, forest habitat has become more and more disconnected in Montagne des Français, limiting migration and gene flow in the current population.

Lepilemur septentrionalis is listed as Critically Endangered on the IUCN Red List of Threatened Species (Louis Jr. et al. 2020). This must be considered one of the most restricted and least protected lemurs in Madagascar, and probably the one closest to extinction, perhaps with the exception of Microcebus berthae. The principal threat is forest loss due to illicit firewood and charcoal production. This species is also hunted for food incidentally at illegal charcoal enterprises. Most of the species’ habitat is already gone, but at least it now benefits from some protection given that Montagne des Français became a protected site in 2015 (Dinsmore et al. 2021a, 2021b).

This species is on the verge of extinction and in need of special attention. Although undertaking a captive breeding program would be an option, sportive lemurs have thus far proven difficult to keep in zoos due to their specialized folivorous diet. Continuing direct surveys linked to random patrols by government authorities is considered a minimum requirement for this species’ survival over the next ten years, prioritizing the forest fragments of Vangisay, Andrananakomba, and Ampamakiampafana, which contain 98% of the known population. As of 2022, this species was not being held in captivity (ZIMS 2022).

Conservation priorities for this species center on restoration and reforestation efforts to establish
habitat corridors between the Andranonakoba, Ambavala, and Ambatove forest fragments in Montagne des Français to allow for immigration between these lemur subpopulations. Furthermore, ranger patrols by the regional Eaux et Forêt gendarmerie, VOI (Vondron’Olona Ifotany or Communauté de Base) and local non-profit organizations should be increased in these areas to eliminate all human-related disturbances. Research priorities should include annual census surveys of the species’ remaining population. Research is also needed to confirm yearly population fluctuations and whether population increases detected between the two previous censuses (Ranaivoarisoa et al. 2013 and Bailey et al. 2020) were positive recruitment or simply the concentration of individuals into the eastern half of Montagne des Français due to habitat loss.

BLUE-EYED BLACK LEMUR

Eulemur flavifrons (Gray, 1867)

Guy Randriatahina, Sam Cotton, Dan Hending, Christoph Schwitzer, Jen Tinsman and Sylviane Volampeno

Eulemur flavifrons is a medium-sized lemur. It is sexually dichromatic but the eyes of both sexes are blue to blue-gray. It is one of the very few primates in the world that consistently has blue eyes, hence the English common name.

Following its description in 1867, the taxonomic status of this lemur was debated until genetic analysis confirmed that it was indeed distinct (Rabarivola 1998, McLain et al. 2012). The Blue-eyed Black Lemur has a very limited distribution in northwestern Madagascar. Due to the lack of locality data for the few museum specimens collected, nothing was known of its status in the wild until its ‘rediscovery’ in November 1983, when it was located in northwestern Madagascar, in forests north of Befotaka and south of Maromandia, just south of the Sambirano domain (Tattersall 1982, Koenders et al. 1985). It is now known to occur on the Sahamalaza Peninsula as well as in a stretch of forest on the adjacent mainland, extending from around Befotaka in the south to the Manongarivo mountains in the north. The Maevarano River serves as the southern boundary of the species’ range, the Sandrakota River as the eastern boundary, and the Manongarivo River anad its tributary, the Antsahakolana River, as the northern boundary (Rabarivola et al. 1991, Andrianjakarivelo 2004, Randriatahina and Rabarivola 2004, Tinsman et al. 2020). A recent range revision by Tinsman et al. (2020) estimated the Extent of Occurrence to be 3,475 km².

This lemur inhabits more or less disturbed primary and secondary subtropical, sub-humid forests, in a transition zone between the Sambirano region to the north and the western dry, deciduous forests to the south. It occurs from sea level to 1,200 m (Randriatahina and Rabarivola 2004). Its home range size and the way it uses its range differs between primary and secondary forest fragments. Schwitzer et al. (2007a) reported an average home range of 6.8 ha in primary forest, and 13.0 ha in secondary forest. These larger home ranges and the lower densities of *E. flavifrons* in secondary forest suggest that it is less suitable habitat for the species than primary forest. Parasite prevalence seems to be higher in secondary than in primary forest and appears high when compared to data from other lemurs, suggesting that *E. flavifrons* on the Sahamalaza Peninsula is generally under pressure, possibly due to the high degree of fragmentation and degradation of the remaining forest habitat (Schwitzer et al. 2010).

During a 12-month study, *E. flavifrons* ate parts of 72 different plant species from 35 families; 52.3% were fruits, and 47.7% were leaves. The animals also fed on flowers, insects, insect excretions and fungi (Polowinsky and Schwitzer 2009). At certain times of the year, the species may feed on large quantities of cicadas.

Population densities of 24 individuals/km² have been estimated in the eastern part of the species’ range (Andrianjakarivelo 2004) and 97 individuals/km² in the Ankara Forest on the Sahamalaza Peninsula (Volampeno et al. 2011), but the latter figure seems to be unusually high compared to other sites throughout the species’ range. Group size ranges from 4 to 11 (Andrianjakarivelo 2004, Randriatahina and Rabarivola 2004, Schwitzer 2004, Volampeno et al. 2011).
The Blue-eyed Black Lemur has a bimodal activity pattern, with peaks during the morning and evening twilight. It is cathemeral, with activity bouts during the day and night year-round. Nocturnal illumination and the proportion of illuminated lunar disk are positively associated with the amount of nocturnal activity. Total daily activity, as well as nocturnal activity, is higher in secondary forest than in primary forest (Schwitzer et al. 2007b).

Eulemur flavifrons is listed as Critically Endangered on the IUCN Red List of Threatened Species (Volampeno et al. 2020). The principal threat to its survival is forest destruction due to slash-and-burn agriculture, selective logging, mining and *feu de la colère* (deliberately-set fires to express people’s discontent, usually with the authorities or government policy) (Seiler et al. 2010). It is hunted for food, especially in the eastern part of its range, and captured live for the local pet trade (Reuter and Schaefer 2017b). Andrianjakarivelo (2004) found a density of up to 570 traps/km² in certain areas. In recent surveys of *E. flavifrons*, evidence of hunting or slash-and-burn agriculture was present in all locations surveyed (Tinsman et al. 2020). Brown and Yoder (2015) estimated that there will be an 88% reduction in the species’ range from 2000 to 2080 due to climate change alone. Moreover, Volampeno et al. (2015) predicted the extinction of *E. flavifrons* from the Ankarafa forest on the Sahamalaza Peninsula within a few decades if habitat destruction and fragmentation continue.

Parts of the range of *E. flavifrons* received official protected area status in 2007 as the Sahamalaza–Îles Radama National Park, including the Sahamalaza Peninsula and some mainland coastal forests to the north and east (Lernould 2002, Schwitzer and Lork 2004, Schwitzer et al. 2006, 2009). The Sahamalaza Peninsula is also a UNESCO Biosphere Reserve.

As of 2022, there were 59 individuals in captivity (ZIMS 2022). Breeding in captivity, however, has been limited, with only a small number of successful breeding pairs after some initial success with the founder generation. In these settings, obesity can also be a problem (Schwitzer 2003, Volampeno et al. 2020).
Research priorities include estimating the number and density of Blue-eyed Black Lemurs remaining, both on the mainland and on the Sahamalaza Peninsula, and determining if the hybrid zone between *E. flavifrons* and its sister species *E. macaco* still exists (Tinsman et al. 2020).

Conservation efforts are underway on the Sahamalaza Peninsula. The Association Européenne pour l’Étude et la Conservation des Lémuriens (AEECL) has run a community-based conservation program there since 2000. The program promotes alternative livelihoods and improved, sustainable farming techniques. It also provides primary and secondary education in this very remote region of the country (AEECL 2022). AEECL has been promoting ecotourism to the Sahamalaza–Îles Radama National Park and has established a tourist camp near the Ankara forest, where visitors can observe the Blue-eyed Black Lemur. The Ankara forest is also home to a field station from which lemur monitoring and forest patrols are conducted along with experimental research on different methods of reforestation and forest restoration (Cotton 2021, Hending et al. 2021). Previous reforestation initiatives to counter *E. flavifrons* habitat loss in Sahamalaza have been largely unsuccessful (Saunders 2017). The recent construction of a permanent seedling nursery in the field station is, therefore, a key step in the reforestation and restoration of the Ankara forest complex (and beyond). The nursery serves as a research base in which to refine propagation protocols and provide seedling stock, as well as providing permanent employment and alternative, sustainable, livelihoods for local people. Current reforestation locations are strategically prioritized towards areas that yield maximum benefits for Blue-eyed Black Lemurs in terms of increased connectivity between fragments and forest core-to-edge ratios (Von Bülow et al. in prep).

Outside the Sahamalaza–Îles Radama National Park, Mikajy Natiora has been working to conserve the Blue-eyed Black Lemurs of Andilambolo forest, located east of the Route Nationale 6, near the town of Maromandia. The pressures there are higher than in the protected area and include slash-and-burn agriculture. Mikajy Natiora has trained local rangers, who are now patrolling the forest, and conducts environmental outreach and community projects. Mikajy Natiora also plans to build a research camp in nearby Mahitsihazo village to better protect the Blue-eyed Black Lemurs of Andilambolo forest (Mikajy Natiora 2022).

Additional conservation efforts are needed in Manongarivo Special Reserve, which covers the largest remaining parcel of forest in the Blue-eyed Black Lemur’s range. The reserve’s rugged terrain and remote location make patrolling difficult, and human incursion into the forest for hunting, agriculture, and cattle grazing are common (Tinsman et al. 2020). Increased financial support for Madagascar National Parks rangers and clear boundary markers would help protect the Blue-eyed Black Lemur. Measures to support the communities in and surrounding Manongarivo are also critical for long-term success. A program similar to AEECL’s work in Sahamalaza or Mikajy Natiora’s work in Andilambolo forest could reduce these communities’ reliance on the Manongarivo Reserve. Further, a proposed expansion of Manongarivo Special Reserve (MEFT and MEM 2008) would place a good proportion of the Blue-eyed Black Lemur’s mainland distribution range under protection (Tinsman et al. 2020).

Lemould, J.-M. (2002). Un programme international de recherche et de conservation pour le lémur aux yeux
turquoise (Eulemur macaco flavifrons). Lemur News 7: 30–33.

Propithecus coquereli is endemic to the tropical, dry, lowland forests of northwestern Madagascar. Historically, the species has been reported in the Sofia region between the Betsiboka and Maevaranano watersheds (Tattersall 1982, Wilmé et al. 2006, Mittermeier et al. 2010). Its southeastern and eastern boundaries are, however, less clear and would need extensive field efforts to be properly defined (Salmona et al. 2014). To date, the southernmost known occurrence is southeast of Maevatanana along the east bank of the Betsiboka (Rakotonirina et al. 2014), and the easternmost occurrence is located near Antetemasy (just west of Befandriana Nord). Propithecus coquereli is known to occur in eleven protected areas: Anjajavy Reserve, Anjiamangirana, Ankarafantsika National Park, Bongolava forest corridor, Bora Special Reserve, Marirano, Marosakoa and Namakia, Mifoko, Narindra peninsula, and Bombetoka-Beloboka (Salmona et al. 2014, Goodman et al. 2018).

This diurnal, vertical clinger-and-leaper is most commonly found in mixed deciduous, dry forests, secondary forests, plantations, brush-and-scrub, and in mosaics of fragmented forests (Salmona et al. 2014). It has also been seen in coastal mangroves (Donati et al. 2019, Chell et al. 2020). Coquerel's Sifaka feeds mostly on young leaves, flowers, fruit, bark and dead wood in the wet season, and on mature leaves and buds in the dry season (Richard 1974, McGoogan 2011). As many as 98 different plant species have been recorded in its diet (Richard 1978a, 1978b, McGoogan 2011). As with other western sifaka species, P. coquereli regularly descends to the ground where its locomotion is often characterized as ‘dancing’, a mixture of chasséing and leaping. In the forests of Ankarafantsika, it occurs in groups of 3–10, using home ranges of 4–33 ha (Petter 1962a, 1962b, Albignac 1981, McGoogan 2011). Sexual maturity is reached at roughly 2.5 years of age for both sexes. A gestation period of 162 days normally leads to a single offspring and births are clustered in the months of June and July (Richard 1978b, 1987). Infants become completely independent by about six months of age and reach adult size by one year (Mittermeier et al. 2010 and references therein). Infanticide and cannibalism, the context of which remains to be clarified, has been reported in Mariarano (Ramsay et al. 2020).

Coquerel's Sifaka is listed as Critically Endangered on the IUCN Red List of Threatened Species (Louis Jr. et al. 2020) based on a suspected reduction of the population of 80% in the past and upcoming 30 years. The main threats to this species are habitat loss and fragmentation (Waebler et al. 2015) and hunting (Garcia and Goodman 2003, Borgerson et al. 2019). High recent (1996–2016) deforestation rates in the Bongolava (39.0%) and Ankarafantsika (11.7%) protected areas (Goodman et al. 2018), and the probability of increased deforestation in unprotected lowland forests (Schüßler et al. 2020) suggest alarming deforestation rates across P. coquereli's distribution. Slash-and-burn agriculture and annual grassland burning to create fresh pasture for livestock are the principal causes of forest loss in northwestern Madagascar, but trees are also cut to produce charcoal as well as planks for building (Waebler et al. 2015). Combined, these practices threaten all of its remaining habitats, even those that are officially protected (Goodman et al. 2018). Wildlife hunting and consumption (including lemurs) is
common around Ankarafantsika (Borgerson et al. 2019) and *P. coquereli* hunting has been reported repeatedly (Nicoll and Langrand 1989, Garcia and Goodman 2003) despite taboos on hunting sifakas. In some areas, local traditions place taboos on hunting or eating sifakas, but human immigration from other regions likely change such long-held customs (Nicoll and Langrand 1989, Borgerson et al. 2019). The species is suspected to have been completely extirpated from Bora Special Reserve after it was delisted as a protected area by the Malagasy government following high levels of degradation (Louis Jr. et al. 2020).

The latest extensive field survey, conducted between 2009 and 2011, confirmed the presence of the species in many of the remaining forest fragments in its range (Salmona et al. 2014). The Extent of Occurrence is estimated to be less than 28,000 km² (Louis Jr. et al. 2020). Its Area of Occupancy is expected to be much smaller due to the high fragmentation of its habitat. No systematic surveys have been carried out across its large range over the past 10 years. Kun-Rodrigues et al. (2014) found highly variable densities (between 5 and 100 individuals/km²) and a negative edge effect, across the Ankarafantsika National Park. The negative edge effect penetrated up to 625 m into the forest and was associated with home range sizes more than double the size of those in the interior (McGoogan 2011). Steffens and Lehman (2018) found sifakas only in the largest forest patches (19–118 ha) of the Ambanjabe mosaic landscape (Western Ankarafantsika) and reported their absence in forests smaller than 12 ha. Ramilison et al. (2021), on the other hand, reported Coquerel’s Sifaka in forest patches in Mariarano that were as small as 2.5 ha. The majority of encounters were in habitat edge zones, most groups were sighted in introduced Mango trees (*Mangifera indica*), and many sightings were in villages and fields. The latter result echoes the seeming ubiquity of *P. coquereli* across its range (Salmona et al. 2014) with its presence in all sites visited. Salmona et al. (2014) also reported that they frequently use secondary forests, plantations, and introduced Mango and Tamarind trees.
In 2009–2010, the Ankarafantsika population was considered to be the largest remaining across its range, estimated at around 47,000 individuals (Kun-Rodrigues et al. 2014). Kun-Rodrigues et al. (2014) suggested that it had been declining prior to their survey, and that it would likely continue declining, especially following the uncontrolled fires in 2021. Steffens et al. (2020) recorded sifakas in only two of the nine sites they surveyed along the periphery of Ankarafantsika National Park. In a comparative analysis of how diurnal lemurs cope with different landscape metrics, Eppley et al. (2020) found that *P. coquereli* relies on large forest blocks. Using species distribution models, Brown and Yoder (2015) inferred that *P. coquereli* is unlikely to face drastic range contraction from climate change alone between 2000 and 2080.

In 2022, 60 individuals of this species were being held in a small number of zoos around the world (ZIMS 2022), more than 50 in registered captive facilities in Madagascar, and even more held in illegal facilities that are not registered with the government (Reuter and Schaefer 2017, LaFleur et al. 2019). It is difficult to maintain healthy indriids in captivity (Zehr et al. 2014, Cassady et al. 2018). Sifakas in captivity outside of Madagascar (*P. coquereli* and *P. coronatus*) frequently suffer from gastrointestinal and diarrheal diseases, decreased longevity, low infant survivorship, and decreased reproductive success (Zehr et al. 2014, Cassady et al. 2018).

Propithecus coquereli has the highest mitochondrial (Dloop sequence) and nuclear (microsatellites) genetic diversity among the northern and northwestern sifakas, that includes *P. perrieri* and *P. tattersalli* (Bailey et al. 2016). It has the highest genome-wide heterozygosity of all assembled sifaka species genomes (*P. tattersalli, P. coquereli, P. diadema, P. verreauxi; Guevara et al. 2021*). These estimates are in line with its large geographic range and potentially large population size. It appears to be genetically structured in at least four distinct populations (Mariarano, Ankarafantsika, Anjiamangirana, and Bora), suggesting a strong effect of major rivers (Mahajamba and Sofia) and large tracts of grassland in limiting gene flow among the forests where it is found (Bailey et al. 2016). These populations also show genetic signals that imply changes in habitat connectivity (fragmentation) or population decline (Bailey et al. 2016, Guevara et al. 2021), which suggests that the demography of *P. coquereli* is impacted by both the historical human shift to extensive agropastoralism practices in the region (Voarintsoa et al. 2017) and late Quaternary climate fluctuations. The viability of the population is at high risk of being compromised if habitat availability keeps decreasing, especially given the long generation time of 10–20 years and that a decade ago there were only 47,000 individuals left in Ankarafantsika (Kun-Rodrigues et al. 2014), not all of which are reproductive. Generation time estimates are tentative, however, and partly based on data from Verreaux’s Sifaka, *P. verreauxi* (Lawler et al. 2009, Morris et al. 2011; see Salmona et al. 2017 for details).

Except for Ankarafantsika National Park, most forests where this species is found have not been surveyed for at least a decade, and the south-eastern and eastern limits of *P. coquereli*’s distribution are still unclear (Salmona et al. 2014). Clarifying *P. coquereli*’s south-eastern range is an urgent prerequisite to inclusive conservation and will require extended survey efforts in remote areas. To date, population sizes have only been estimated in Ankarafantsika (Richard 1978b, Albignac 1981, Kun-Rodrigues et al. 2014), and systematic surveys of all known localities are needed. Accurate estimates of habitat size and deforestation will allow scientists to estimate the overall population size of the species and the demographic trends—critical for proper conservation status assessments.

The prioritization of sites suitable for conserving the species should be updated (considering especially the population genetic structure and the potential barriers to dispersal) to enable the conservation of the species’ genetic diversity, and to ensure and re-establish connectivity among historically connected populations. Further fine-scale population genetic studies should be conducted, to ascertain the current level of connectivity between sites and the impacts on the viability of the remaining sifaka populations in the wild. Research efforts should also focus on the dichotomy of forest edge use—avoidance in Ankarafantsika and preference in Mariarano (McGoogan 2011, Kun-Rodrigues et al. 2014, Ramilison et al. 2021). Local traditions placing
taboos on hunting and eating sifakas may play a pivotal role, and should be leveraged (Lingard et al. 2003, Jones et al. 2008).

Current conservation projects targeting Coquerel’s Sifakas and their habitat include the long-term endeavors of Madagascar National Parks and the more recent efforts of Planet Madagascar and Operation Wallacea. They include fire management, monitoring patrols, forest restoration, and community development.

Rakotoarisoa, G. (2012). Génétique et dynamique des populations de Propithecus coquereli dans les fragments forestiers d’Anjamangirana, Ankarafantsika, Marirano

Niger Delta Red Colobus
Piliocolobus epieni

Rondo Dwarf Galago
Paragalago rondoensis

Southern Patas Monkey
Erythrocebus baumstarki

Golden-bellied Mangabey
Cercocebus chrysogaster

Nigeria-Cameroon Chimpanzee
Pan troglodytes ellioti

Roloway Monkey
Cercopithecus roloway
RONDO DWARF GALAGO

Paragalago rondoensis (Honess in Kingdon, 1997)

Tanzania

Andrew Perkin

Weighing approximately 60 g, the Rondo Dwarf Galago is the smallest of all galagos (Perkin and Honess 2013). It is distinct from other dwarf galagos in its diminutive size, a bottle-brush-shaped tail, its reproductive anatomy, and its distinctive “double unit rolling call” (Perkin and Honess 2013). Current knowledge indicates that P. rondoensis is endemic to the coastal forests of Tanzania. There are three spatially distinct sub-populations. One is in southeast Tanzania near the coastal towns of Lindi and Mtwara. The second is approximately 400 km north, in pockets of forest around the capital city of Dar es Salaam. The third sub-population is in Sadaani National Park, approximately 100 km north of Dar es Salaam. There is emerging data (vocal and penile morphological), however, that suggests the northern and southern populations may be phylogenetically distinct.

Rondo Dwarf Galagos have a mixed diet of insects and fruit. They often feed close to the ground, moving by vertical clinging and leaping in the shrubby understory. They build daytime sleeping nests, usually in the canopy (Bearder et al. 2003). As with many small primates, P. rondoensis is probably subject to predation from owls and other nocturnal predators, such as genets, palm civets and snakes. The presence of these predators invokes intense episodes of alarm calling (Perkin and Honess 2013).

Across its known range, the Rondo Dwarf Galago can be found in sympatry with a number of other galagos, including two much larger species in the genus Otolemur: Garnett’s Greater Galago O. garnetti (Least Concern: De Jong et al. 2019a) and the Thick-tailed Galago, O. crassicaudatus (Least Concern: Masters and Bearder 2019). In the northern parts of its range (for example, in Zaraninge forest, the Pugu/Kazimzumbwi Forest Reserve [FR] and the Pande Game Reserve [GR]), the Rondo galago is sympatric with the Zanzibar Galago, Paragalago zanzibaricus (Near Threatened: Perkin et al. 2020) and in the southern parts of its range (for example, in Rondo, Litipo and Noto), it is sympatric with Grant’s Galago, P. granti (Least Concern: De Jong et al. 2019b).

Paragalago rondoensis, considered Endangered on the IUCN Red List of Threatened Species (Perkin 2020), has an extremely limited and fragmented range across a number of remnant patches of Eastern African Coastal Dry Forest (Burgess and Clarke 2000) in Tanzania. These are at Zaraninge forest (06°08’S, 38°38’E) in Sadaani National Park (Perkin 2000), Pande GR (06°42’S, 39°05’E), Pugu/Kazimzumbwi (06°54’S, 39°05’E) (Perkin 2003, 2004), Rondo Nature Reserve (NR) (10°08’S, 39°12’E), and the Litipo (10°02’S, 39°29’E) and Ziwani (10°20’S, 40°18’E) forest reserves (Honess 1996, Honess and Bearder 1996). New sub-populations were identified in 2007 near Lindi town in Chitoa FR (09°57’S, 39°27’E) and the Ruwa FR (09°44’S, 39°33’E) and in 2011, in Noto Village FR (09°53’S, 39°25’E) (Perkin et al. 2011, 2013) and, of the northern population, at the Ruvu South FR (06°58’S, 38°52’E). Specimens of P. rondoensis, originally described as Galagoides demidoffi phasma, were collected by Ionides from the Rondo Plateau, southeast Tanzania in 1955, and by Lumsden from Nambunga, near Kitangari, (approximately 10°40’S, 39°25’E) on the Makonde Plateau, Newala District in 1953. There are doubts as to the persistence of the species on the Makonde Plateau, which has been extensively cleared for agriculture. In 1992, surveys there failed to detect any extant populations (Honess...
Distribution surveys have been conducted in the southern (Honess 1996; Perkin et al. unpubl. data) and northern coastal forests of Tanzania (29 surveyed) and Kenya (seven surveyed) (Perkin 2000, 2003, 2004, Perkin et al. 2013). Absolute population sizes remain undetermined, but recent surveys have provided density estimates of: 3–6/ha at the Pande GR (Perkin 2003) and 8/ha at the Pugu FR (Perkin 2004). Relative abundance has also been estimated from encounter rates: 3–10/hr at Pande GR and Pugu/Kazimzumbwi FR (Perkin 2003, 2004), and 3.94/hr at Rondo FR (Honess 1996). There is a clear and urgent need for further surveys to determine population sizes in these dwindling forest patches.

The major threat facing the Rondo Dwarf Galago is loss of habitat. All sites are subject to some level of agricultural encroachment, charcoal manufacture, and/or logging. In 2008, the known Area of Occupancy of *P. rondoensis* was <101.6 km², but new data on forest area change indicates this figure has fallen to 87.4 km². In the Pande GR (2.4 km²), Chitoa (5 km²), and Rondo (25 km²) forest reserves, forest cover remained the same between 2008 and 2014. However, forest cover between 2008 and 2014 declined in the Zaraninge forest from 20 km² to 15 km², in Pugu/Kazimzumbwi FR from 33.5 km² to 8 km², in Ruawa FR and Litipo FR from 4 km² to 3 km², and in Ziwaní FR from 7.7 km² to 1 km². Two newly discovered Areas of Occupancy are Ruvu South, in which forest cover fell from 20 km² to 5 km², and Noto, in which forest cover fell from 21 km² to 20 km² in the same time period (Burgess and Clarke 2000, Doggart 2003, Perkin et al. unpubl. data).

As habitat availability decreases, the population trend must also be assumed to be declining, the rate varying according to the level of protection of each forest fragment. All sites, except the Pande GR, Zaraninge (in Saadani National Park) and the Rondo NR, are national or local authority forest reserves and, as such, nominally, but in practice minimally, protected. Since 2008, protection of two forests has increased: the Noto plateau forest, formerly open village land, as part of a newly created village forest reserve, and the Rondo Forest Reserve has now been declared a new nature reserve. Both are important for Rondo Dwarf Galago conservation considering
their relatively large size. Given current trends in charcoal production for nearby Dar es Salaam, the forest reserves of Pugu and Kazimzumbwi were predicted to disappear over the next 10–15 years (Ahrends 2005). Recorded forest loss in Pugu/Kazimzumbwe and Ruvu South has been attributed to the rampant charcoal trade. Pande, as a Game Reserve, is relatively secure, and Zareninge forest, being in a national park, is the most protected part of the range of *G. rondoensis*. In the south, the Noto, Chitoa and Rondo populations are the most secure, as they are buffered by tracts of woodland. The type population at Rondo is buffered by woodland and *Pinus* plantations managed by the Rondo Forestry Project, and is now a nature reserve. Litipo and Ruawa forest reserves are under threat from bordering village lands. Ziwani is now mostly degraded scrub forest, thicket and grassland.

The following conservation actions are recommended to safeguard the future of this species: 1) continued monitoring of habitat loss rates, 2) surveying new areas for remnant populations, 3) implementation of community-based conservation and awareness, 4) assessment of population status and phylogenetic relationships between the sub-populations and confirmation of suspected phylogenetic distinctions. Until such time that the latter has been carried out, each subpopulation must be considered to be of high conservation value.

More than 120 years after being first described, the Golden-bellied Mangabey remains one of Africa’s least-known primates. Previously considered Data Deficient, it is now listed as Endangered on the IUCN Red List of Threatened Species (Hart and Thompson 2020). Found only in a limited range in the central Congo basin, Golden-bellied Mangabeys are highly threatened throughout their distribution and face continuing, and potentially rapid, declines.

The largest of the seven Cercocebus mangabeys, these monkeys are characterized by vivid yellow-orange fur that covers the belly and abdomen. Golden-bellied Mangabey ecology is poorly known and there have been no detailed behavioral studies of this species in the wild. Almost all insight is limited to anecdotes reported prior to the year 2000 and preliminary data recorded in 2021 from two habituated groups at LuiKotale (a study site of the Max Planck Institute of Animal Behavior) in Lokolama sector, bordering the southern sector of the Salonga National Park (SNP). Group sizes typically number 50–70 individuals (Ehardt and Butynski 2013). Home ranges are also relatively large for cercopithecine monkeys in tropical forest (approximately 20–25 km²) and are comparable and may exceed those of sympatric bonobo (Pan paniscus) communities (McLester and Fruth in prep.) Individuals travel almost exclusively terrestrially and generally climb arboreally only to sleep, forage in large fruit trees, or during heavy rainfall. The diet consists primarily of fruit, with considerable time also spent feeding on seeds and insects that are obtained from the ground, particularly in large patches of leaf litter. Similar to Agile Mangabeys (C. agilis) north of the Congo River, Golden-bellied Mangabeys are notable for relatively high rates of mammal consumption, with adult males observed regularly catching and eating Blue Duikers (Philantomba monticola) at LuiKotale (McLester 2022).

Golden-bellied Mangabeys are endemic to the Democratic Republic of the Congo (DRC). The species is known to occur in two widely separated subpopulations (a western and an eastern population – Ehardt and Butynski 2013, Hart and Thompson 2020). Surveys conducted between 1994 and 2007 (Inogwabini and Thompson 2013) and 2016–2018 (Bessone et al. 2019, 2020) identified the western population as occurring within an area of 68,000 km², bordered by the Lokolo River to the north, the Luilaka River to the east, the Kasai and Sankuru rivers to the south, and the Congo River to the west. The eastern range covers an area of about 12,000 km² with identified populations known between the Sankuru and Lubefu rivers in an area locally termed the Kipula Block (Thompson and Hart 2015). Eastern and western populations are separated by at least 300 km. There is no evidence to support the suggestion by Erhardt and Butynski (2013) that the two populations are connected by a forest corridor along the Lukenie or Sankuru rivers. The total range for both the western and eastern populations is around 80,000 km². However, Golden-bellied Mangabey occurrence is highly patchy within this large range, and their distribution and abundance remain poorly known over many areas.

The western sub-population includes portions of the southern sector of the SNP, which is the only protected area in which Golden-bellied Mangabeys occur. Known occurrence within the southern sector of SNP is patchy, with observations restricted to the northern and eastern areas of the park (n = 22 observations from about 4,000 km of line transects and recces
covering 93.5% of the sector) (Bessone et al. 2019). There are no records of *C. chrysogaster* from the southwestern area of SNP’s southern sector or from the northern sector of SNP (J. Eriksson, F. Maisels and G. Reinartz pers. comm.).

The typical elevational range for this species is 300–500 m and habituated groups at LuiKotale almost exclusively use high and dry terra firma vegetation at ≥400 m and rarely venture into swamps or riparian areas (McLester and Fruth in prep.). Approximately 60% of the habitat in the western distribution is permanent swamp or seasonally flooded and riparian forest, within which areas of terra firma forest comprise an even lower percentage (Inogwabini and Thompson 2013). In the absence of any detailed estimates of population density, limited habitat choice and large home range sizes suggest densities are likely to be low.

Golden-bellied Mangabeys are in decline throughout their distribution. In the past 20 years, at least 32% of the total potential habitat has been lost and an estimated 40% of the population extirpated (Hart and Thompson 2020). A major threat is unsustainable hunting, with high numbers of Golden-bellied Mangabeys killed for the commercial bushmeat trade in both the western and eastern populations. In the western population, surveys from 2001 to 2007 found Golden-bellied Mangabeys comprised as much as 70% of bushmeat available in some markets (Inogwabini and Thompson 2013). Surveys of markets in the eastern range conducted in 2010 found this species represented about 10% of all bushmeat recorded. That number fell considerably by 2015, when the Golden-bellied Mangabey population was also reported to have declined significantly in some localities (Thompson and Hart 2015). Hunting varies across the distribution. Rates of human activity in the northern half of the southern sector of SNP, where the species were reported to be found, were lower than in the south of the sector, where no observations of Golden-bellied Mangabeys were made (Bessone et al. 2019). In some Lokoloma sector villages in the center of the species’ distribution, Golden-bellied Mangabeys are rarely consumed as bushmeat and hunting may be reduced because larger or more conspicuous species (e.g., colobus monkeys) are easier targets for hunters (N. Bondjengo and B. Fruth, unpubl.)
Golden-bellied Mangabeys are threatened by habitat loss due to both small-scale and larger industrial logging operations. Inogwabini et al. (2013) reported that west of the Lake Mai-Ndombe, where the species no longer occurs, local communities reported its disappearance over the course of two decades following the arrival of intensive logging. Currently, small-scale logging is particularly widespread in the western range, further decreasing the availability of suitable habitat for this species. In total, more than 30% of the remaining habitat has been ceded to logging concessions (Hart and Thompson 2020).

The illegal pet trade is also a threat and captive individuals are frequently seen in both the western and eastern subpopulations, as well as in Kinshasa (Hart and Thompson 2020). The trade appears to extend internationally. In 2021, for example, a single shipment confiscated in Zimbabwe contained eleven individuals that were being smuggled to South Africa. John Hart (pers. obs.) observed captive infants for sale on the streets of Kinshasa as recently as February 2022. These observations are an alarming indicator of the threat this species is under, given that captive infants are likely a by-product of adult individuals killed for bushmeat.

Golden-bellied Mangabeys are one of Africa’s most threatened but least known primates. To effectively address ongoing declines, research is needed on their distribution, population sizes, and ecology as well as the impact of hunting and habitat transformation. Recently initiated studies of habituated groups at LuiKotale should provide the first detailed insight into the behavioral ecology of this species and can directly inform conservation planning by providing data on habitat use, ranging behavior, and dispersal patterns.

Effective protection of SNP is a high conservation priority given that it is the only protected area in the species’ range. At present, land conversion and commercial logging are relatively uncommon in the SNP but illegal hunting remains a significant threat, especially associated with villages that do not practice agriculture and for which bushmeat is the only source of income. The park is also threatened by an increase in uncontrolled commercial hunting (Bessone et al. 2019). Across the distribution, there is a critical need to confirm where Golden-bellied Mangabeys still occur, along with an improved understanding of where (and why) they are absent across their large range. This will be essential to focus resources on an effective conservation strategy.
A detailed review of the taxonomic arrangement of the patas monkeys (*Erythrocebus*) is long overdue. The Southern Patas Monkey (*Erythrocebus baumstarki*) was described by Matschie in 1906 from east of Ikoma in central-northern Tanzania. Elliot (1913) appears to be the last to recognize *baumstarki* as a species. Subsequently, this taxon has been treated as either a synonym or subspecies of *Erythrocebus patas*. Only recently has *baumstarki* been reinstated as a species (Gippoliti 2017) based on its unique pelage coloration and pattern, and geographic isolation (De Jong and Butynski 2020, 2021, De Jong et al. 2020).

Erythrocebus baumstarki is a large, slender, long-limbed, semi-terrestrial guenon that typically lives in one-male, multi-female groups. The natural history of *E. baumstarki* is poorly known. Its geographically closest relative, the Eastern Patas Monkey (*Erythrocebus patas pyrrhonotus*), has been studied in Uganda and Kenya and, at this time, is used as a proxy for the natural history of *E. baumstarki*.

In East Africa, *E. p. pyrrhonotus* prefers open, short grass, acacia woodlands and wooded savannas, where it occurs at low densities (0.03–1.50 individuals/km²). This monkey rarely sleeps in the same area on successive nights and has long day ranges (1,380–7,500 m) and large home ranges (23–52 km²; Hall 1965, Chism and Rowell 1988, Isbell 1998, Isbell and Chism 2007, Isbell 2013). These characteristics, together with its typically shy and flighty behavior and ability to run at high speed (55 km/hour; Hall 1965), makes *Erythrocebus* especially difficult to locate and observe (Makacha and Siroli 2005, De Jong et al. 2008, Loishooki et al. 2016). Like *E. p.*
pyrrhonotus in central Kenya, *E. baumstarki* is an ecological specialist, being highly dependent on large areas of healthy Whistling Thorn Acacia (*Acacia drepanolobium*), its primary food plant, and probably also upon the on-going mutualistic interactions between ants (*Crematogaster* spp.) and *A. drepanolobium*.

In the early 20th century, *E. baumstarki* occupied large parts of the Serengeti-Mara Ecosystem and Amboseli Ecosystem of southern Kenya and northern Tanzania (De Jong et al. 2008, 2009, 2020, De Jong and Butynski 2020, 2021). It seems that, at present, *E. baumstarki* remains only in the protected areas of the western Serengeti (Serengeti National Park [14,750 km²], Grumeti Game Reserve [428 km²], Ikorongo Game Reserve [567 km²], Ikona Wildlife Management Area [255 km²]), with the western Serengeti National Park being the stronghold (De Jong and Butynski 2021).

The geographic distribution of *E. baumstarki* in the early 20th century was about 66,000 km². This has declined roughly 85% to around 9,700 km² at present (post-2009). It was extirpated from Kenya in about 2015 and from the Kilimanjaro Region of Tanzania in about 2011. The present Extent of Occurrence (EOO) is roughly 2,150 km². The total number of individuals remaining in the wild is probably between 100 and 200, including between 50 and 100 mature individuals (De Jong and Butynski 2021). There is no captive population.

Erythrocebus baumstarki is listed as Critically Endangered on the IUCN Red List of Threatened Species based on its small EOO, fragmented distribution, rapid decline in distribution and abundance, small population size, and small effective population size. All of these parameters are expected to continue to worsen as the causes are ongoing and unlikely to be reversed in the foreseeable future (De Jong and Butynski 2020, 2021).

The ultimate threat to *Erythrocebus*, and to the other primates in Tanzania and Kenya, is the rapidly growing human population, which is doubling about every 25–30 years. The main proximate threats are the widespread unsustainable exploitation of natural resources by humans, primarily due to agricultural expansion and intensification (both crops and livestock), charcoal production, fire, and development activities (settlements, roads, dams, power-lines), which have resulted in widespread habitat degradation, loss, and fragmentation, and extreme declines in wildlife populations (Homewood et al. 2001, Makaha and Sirolli 2005, BurnSilver et al. 2008, Ogutu et al. 2014, 2016, Loishook et al. 2016).

Throughout the historic range of *E. baumstarki*, *A. drepanolobium* woodlands continue to rapidly disappear due to over-use by livestock and conversion to cropland. Other major concerns are competition with people and livestock for habitat and water, particularly during droughts, hunting by poachers and domestic dogs (*Canis familiaris*), climate change, and loss of genetic variation. Although these threats apply mostly to regions outside protected areas, pastoralists now move livestock illegally into the protected areas that support *E. baumstarki* (African BioServices 2019, Veldhuis et al. 2019).

Poaching, primarily through the use of wire snares, is a widespread and serious problem in western Serengeti (Loibooki et al. 2002, Holmén et al. 2007, Nyahongo et al. 2009), the region where the remaining *E. baumstarki* population occurs, and on ranches that border the Maasai-Mara National Reserve (Ogutu et al. 2011, 2016). Although *E. baumstarki* is not a target species for poachers, it is likely that some individuals are captured in snares (Makacha and Sirolli 2005, Loisooki et al. 2016, De Jong and Butynski 2020, 2021). This monkey is probably hunted in retaliation for raiding crops. The meat is eaten and the pelt used in traditional ceremonies and witchcraft (Makacha and Sirolli 2005, Loisooki et al. 2016).

Patas monkeys require perennial sources of drinking water (Chism and Rowell 1988, Isbell and Chism 2007, De Jong et al. 2008). The all-day presence of herders and livestock at increasingly scarce sources of water appears to be a serious problem for *E. baumstarki*, particularly because of the attacks by herders and dogs.

Although data are lacking, it is likely that *E. baumstarki* experiences increased exposure to parasites and diseases at water sources as they
wait, forage, and drink in an environment that is densely populated by humans and livestock. Data are also lacking on the impacts of climate change and loss of genetic diversity. Although it seems inevitable that these impacts are negative, they pale against the more immediate threats posed by human population growth and the related degradation, loss, and fragmentation of A. drepanolobium woodlands and water sources.

Erythrocebus baumstarki has never been the focus of conservation activities and no conservation actions are planned to secure the long-term survival of this charismatic species. Indeed, with fewer than 200 individuals remaining in the wild, an EOO of only about 2,150 km², and the absence of focused conservation actions, it appears that E. baumstarki will be among the first primate extinctions for continental Africa in historic times.

De Jong and Butynski (2021) recommended the following conservation actions for E. baumstarki:
(1) Establish a network of people who will help locate all groups and then closely monitor group size and age/sex composition, home ranges, and threats; (2) Conduct detailed surveys every two years to re-assess geographic distribution, abundance, population structure, conservation status, and threats; (3) Undertake a detailed, long-term, ecological and behavioral study; (4) Implement molecular research projects to assess the level of genomic erosion; (5) Establish dedicated, reliable, wildlife water sources where E. baumstarki occurs; (6) Stop poaching and illegal livestock grazing, and keep domestic dogs out of the protected areas; (7) Study and monitor the impacts of browsing on A. drepanolobium by livestock, Savanna Elephant (Loxodonta africana), Black Rhinoceros (Diceros bicornis), and Rothschild’s Giraffe (Giraffe camelopardalis), and assess how this affects E. baumstarki; (8) Bring the plight of E. baumstarki to wide national and international attention; and (9) Produce an ‘Erythrocebus baumstarki Conservation Action Plan’ and ensure that this plan is implemented by those authorities responsible for the conservation of Tanzania’s biodiversity.

Cercopithecus roloway and its close relative Cercopithecus diana are very attractive, arboreal monkeys that inhabit the Upper Guinean forests of West Africa. The Roloway Monkey, which once occurred in many of the southern forests of Ghana and south-central and south-eastern Côte d’Ivoire, is distinguished from the Diana Monkey by its broad white brow line, long white beard, and yellow thighs. Because individuals with intermediate coat patterns are known from near the Sassandra River in Côte d’Ivoire, some scientists treat roloway and diana as subspecies of one species, C. diana (for example, Oates 2011). Of the two species, roloway is the more seriously threatened, and it is now classified as Critically Endangered on the IUCN Red List of Threatened Species (Koné et al. 2019).

Roloway Monkeys are upper-canopy specialists that prefer undisturbed forests. Destruction and degradation of their forest habitat due to illegal lumbering and clearing for agriculture and mining, together with relentless hunting for the bushmeat trade over many years, have reduced their population to small, isolated pockets. Miss Waldron’s Red Colobus (Piliocolobus waldroni) once inhabited many of the same forests as the roloway but is now almost certainly extinct (Oates 2011). Despite existing conservation efforts, there is a strong possibility that the roloway monkey will also disappear in the near future.

Ghana is experiencing a 2% rate of annual deforestation and forest degradation, which translates into approximately 135,000 ha/year of forest cover loss due to anthropogenic causes (Kyere-Boateng et al. 2021). A main driver of forest cover loss is agricultural conversion. In the high forest zone, close to 110,000 ha of forest were converted to agricultural land annually between 2000 and 2015 (O’Sullivan et al. 2018); conversion to cocoa production, in particular, accounted for 54.6% and 77.8% of closed and open forest loss, respectively (Benefoh et al. 2018). Hunting has very likely been the major cause of the crash in roloway populations. Wild meat is a major food source for Ghanaians, with an estimated 80% of the rural population dependent on it as their main source of animal protein (Trench 2000, Dempsey 2014). Any conservation measures to secure the future of the Roloway Monkey in Ghana must, therefore, consider the socio-economic needs of the local people and address them using an inclusive and sustainable model.

Surveys undertaken in Ghana in the early 2000’s have failed to confirm the presence of Roloway Monkeys in many reserves, including the Ankasa Conservation Area, Bia National Park, Kroksoua Hills Forest Reserve, Subri River Forest Reserve, Dadieso Forest Reserve, Atewa Range Forest Reserve, and Tano Offin Forest Reserve (Oates 2006, Gatti 2010, Buzzard and Parker 2012, Wiafe 2013, 2021). The only two localities in Ghana where Roloway Monkeys have been recorded by scientists or conservationists in the last decade are the community-owned forest along the Tano River (referred to as the “Ankasa-Tano Community Rain Forest”) and the Cape Three Points Forest Reserve, in the southwest of the country. The Ankasa-Tano Community Rainforest consists of patches of swamp forest along the lower Tano River, adjacent to the Tanoé-Ehy forest in Côte d’Ivoire. Surveys of these forests have been conducted since 2011 under the auspices of West African Primate Conservation Action (WAPCA), a non-government organization, and several sightings of Roloway groups have
been made, along with Mona Monkeys, Spot-nosed Monkeys, White-naped Mangabeys and Olive Colobus (WAPCA 2014, Dempsey 2014, Osei et al. 2015). WAPCA, with support from Noé, the Critical Ecosystem Partnership Fund, the French Development Agency, the Sofi Tucker Foundation and IUCN’s Programme de Petites Initiatives, has supported a community-based conservation project with communities around these forests, establishing an Ankasa-Tano Community Resource Management Area (CREMA), which works to protect the forest through the sustainable management of natural resources. In 2018, a survey of the Cape Three Points Forest Reserve recorded a single sighting of *C. roloway* and, since 2019, WAPCA has been working with the local communities and government to replicate the methodologies which were successfully implemented around the Ankasa-Tano Community Rainforest. Future conservation action should be focused around Ankasa-Tano CREMA, supporting patrols, reforestation and the effective running of the elected community management committees, as well as developing additional income revenues (e.g., from palm oil and cassava), in order to complement existing organic cocoa and coconut oil businesses. Around Cape Three Point Reserve, similar support is required to maintain the newly elected CREMA, including associated activities such as patrolling, and the development of sustainable and improved community livelihoods (for instance, honey production and ecotourism). WAPCA has an ongoing project to survey the historical range of the Roloway in Ghana, and assess their distribution and abundance more accurately. In the next two years, these surveys should be conducted in Dadiee Forest Reserve, Krokosua Hills Forest Reserve, and Yoyo River Forest Reserve using camera traps and audio recorders, as well as more traditional methods.

The Roloway Monkey’s status in neighboring Côte d’Ivoire is also dire. In the late 1990s, Roloway Monkeys were known or strongly suspected to exist in three forests: the Yaya Forest Reserve, the Tanoé-Ehy forest adjacent to the Ehy Lagoon, and Parc National des Îles Ehotilé (McGraw 1998, 2005, Koné and Akpatou 2005, Gonedélé Bi et al. 2013). Surveys of 18 areas between 2004 and 2008 (Gonedélé Bi et al. 2008, 2012) confirmed
the presence of Roloway Monkeys only in the Tanoé forest, suggesting that the Roloway Monkey may have been eliminated from at least two forest areas (Parc National des Îles Ehotilé and Yaya Forest Reserve) in the last dozen years. Subsequent surveys carried out in southern Côte d’Ivoire suggest a handful of Roloway Monkeys may still survive in two forest reserves along the country’s coast. In June 2011, Gonedélé Bi observed one Roloway individual in the Dassioko Sud Forest Reserve (Bitty et al. 2013, Gonedélé Bi et al. 2014). In 2012, Gonedélé Bi and A.E. Bitty observed Roloway Monkeys in Port Gauthier Forest Reserve, and in October 2013, Gonedélé Bi obtained photographs of monkeys poached inside this reserve, including an image purported to be a Roloway. The beard on this individual appears short for a Roloway, raising the possibility that surviving individuals in this portion of the interfluvial region may in fact be hybrids. In any case, no sightings of Roloway Monkeys have been made in the Dassioko Sud or Port Gauthier forest reserves since 2012. These reserves are described as coastal evergreen forests, and both are heavily degraded due to a large influx of farmers and hunters from the north of the country (Bitty et al. 2013). Gonedélé Bi and colleagues, in cooperation with Société de Développement des Forêts (SODEFOR) and local communities, have organized regular surveys aimed at removing illegal farmers and hunters from both reserves. However, surveys made in August 2015 revealed that a logging company (Société Industrielle de Bois et Débités) had begun clearing a portion of the Port Gauthier Reserve. A recent recce survey conducted by Lezou in September 2021 indicated that the situation has become more dire. During this survey, no primates were observed, poaching signs inside the reserve were high (1.46 signs per km), and traditional hunters (Dozo) were acting as a military force inside the reserve (Lezou 2021).

Thus, the only forest in Côte d’Ivoire where Roloway Monkeys are confirmed to still exist is the Tanoé-Ehy forest adjacent to the Ehy Lagoon, and immediately across the Tano River from the Ankasa-Tano Community Rainforest in Ghana. This wet forest also harbors one of the few remaining populations of White-naped Mangabeys (Cercocebus lunulatus) and White-thighed Black-and-white Colobus (Colobus vellerosus) in Côte d’Ivoire. An intensive camera trapping campaign in the Tanoé-Ehy Forest initiated to ‘rediscover’ Miss Waldron’s Red Colobus began in late 2019. This initiative, supported by Re:Wild, has yielded videos and photographs of Roloways, White-naped Mangabeys, White-thighed Black-and-white Colobus, but not Miss Waldron’s Red Colobus, together with other arboreal vertebrates, including the Tree Pangolin (Phataginus tricuspis). Efforts led by I. Koné involving several organizations, including the NGOs West African Primate Conservation Action (WAPCA), Action pour la Conservation de la Biodiversité en Côte d’Ivoire (ABC-CI), Mulhouse Zoo, and SOS Forêts, helped stop a large palm oil company from causing further habitat degradation, and a community-based conservation program initiated in 2006 has helped reduce poaching in this forest (Koné 2015). Thanks to continued efforts of communities supported by the Centre Suisse de Recherches Scientifiques (CSRS) and various partners including the Association Française des Parc Zoologique (AFdPZ), WAPCA, Parcs de Noé, the Critical Ecosystem Partnership Fund (CEPF), Rainforest Trust, and Re:Wild, the Tanoé-Ehy forest was recently officially designated as a community reserve, the first of its kind in Côte d’Ivoire. Hunting and chainsaw milling still occur in that forest, posing serious threats to the survival of its primate populations. Water pollution linked to gold mining at the periphery of the Tanoé-Ehy Forest represents an emerging threat. In 2021, the CSRS and several partners succeeded in stopping the launch of a gold mining project at the north-western periphery of the Tanoé-Ehy forest (Koné et al. 2021).

As the potential last refuge for Roloway Monkeys and one of the last refuges for White-naped Mangabeys and White-thighed Black-and-white Colobus, the protection of the Tanoé-Ehy Forest in Côte d’Ivoire and the adjacent Ankasa-Tano Community Rain Forest in Ghana should be the highest conservation priority. By any measure, the Roloway Monkey must be considered one of the most Critically Endangered monkeys in Africa and is evidently on the verge of extinction (Oates 2011). In addition, the captive population is now so small that extinction in captivity is also a strong possibility (Lefaux and Montjardet 2016).

The Niger Delta Red Colobus (*Piliocolobus epieni*) is endemic to the marsh forests in the central part of the Niger Delta of Nigeria (Oates 2011). Its species name is derived from its name in the language of the Ijaw people who inhabit the limited area of about 1,500 km² in Bayelsa State where it occurs. *Piliocolobus epieni* only became known to science in 1993, in the course of a biodiversity survey co-ordinated by C. Bruce Powell (Blench 2007). Studies of vocalizations and mitochondrial DNA suggest that this population is not closely related to its closest relatives geographically, the Bioko Red Colobus (*Piliocolobus pennantii*) and Preuss’s Red Colobus (*Piliocolobus preussi*) of eastern Nigeria and western Cameroon, leading Ting (2008) to treat this monkey not as a subspecies of *P. pennantii* (see Groves 2001, Grubb et al. 2003) but as a distinct species. Groves (2007) regarded almost all the different red colobus monkeys, including *epieni*, *pennantii* and *preussi*, as separate species in the genus *Piliocolobus* – a taxonomy that we follow here. The IUCN Red List of Threatened Species has regarded *P. epieni* as Critically Endangered since 2008 (Ikemeh et al. 2019).

The marsh forests where the Niger Delta Red Colobus is found have a high water table all year round but do not suffer deep flooding or tidal effects. The most intensive ecological study of this monkey, by Lodewijk Werre in 1994–1996 suggested that the clumped distribution of food species in the marsh forest is a key factor restricting *P. epieni* to its limited range, which is demarcated by the Forcados River and Bomadi Creek in the northwest, the Sagbama, Osiama and Apoi creeks in the east, and the mangrove belt to the south (Werre 2000). At the time of its discovery in the mid-1990s, this red colobus was locally common, especially in forests near the town of Gbanraun, but it was beginning to come under intense pressure from degradation of its habitat and commercial hunting. Important colobus food trees, especially *Fleroya ledermannii*, were being felled at a high rate by artisanal loggers, and the logs were floated out of the delta on rafts to processing centers in Lagos and elsewhere. In addition, large canals dug as part of oil extraction activities, as well as smaller canals dug by loggers into the interior swamps, were changing local hydrology (Werre and Powell 1997, Grubb and Powell 1999). The Ijaw people are traditionally fishermen, but outside influences introduced by the oil industry have encouraged commercial bushmeat hunting and logging throughout the Niger Delta.

The most recent range-wide assessment of *P. epieni*, conducted in 2013, suggests that as a result of habitat destruction and hunting the population has declined significantly since the 1990s, and that it may now be around 90% lower than estimated 25 years ago (Ikemeh 2015). In the 2013 survey, the presence of *P. epieni* was confirmed only in four forest areas, and it was considered extirpated from 11 other forests where it had been reported in the 1990s by Werre (2000). Cumulative survey data indicate that the current number of individuals surviving in the wild may be only a few hundred (Ikemeh 2015). Insecurity in the region and the consequences of poor governance, amongst other factors, have exacerbated the major threats of habitat degradation and commercial hunting. Because red colobus monkeys are known to be sensitive to habitat disturbance and hunting in other parts of Africa (Struhsaker 2005), it is feared that the
Niger Delta Red Colobus, with its very restricted range, is at high risk of extinction.

The red colobus monkeys are probably more threatened than any other taxonomic group of primates in Africa (Oates 1996, Struhsaker 2005). *Piliocolobus preussi* (western Cameroon and eastern Nigeria), *Piliocolobus pennantii* (Bioko Island, Equatorial Guinea) and *Piliocolobus rufomitratus* (Tana River, Kenya) are all regarded as Critically Endangered from different combinations of habitat loss and hunting, while *Piliocolobus waldroni* (eastern Côte d'Ivoire and western Ghana) may already be extinct (Oates 2011).

The Niger Delta Red Colobus shares its marsh forest habitat with two other threatened primates; the Nigerian White-throated Guenon (*Cercopithecus erythrogaster pococki*) and the Red-capped Mangabey (*Cercocebus torquatus*) (Ikemeh 2015). Also found in these forests are the Putty-nosed Monkey (*Cercopithecus nictitans*), the Mona Monkey (*Cercopithecus mona*) and the Olive Colobus (*Procolobus verus*) (Efenakpo et al. 2018). However, political instability in the delta, related in the most part to disputes over the allocation of oil revenues, has hindered progress in biodiversity conservation during the last decade (Ikemeh 2015).

The two most important remaining areas for *P. epieni* conservation have been identified as the Apoi Creek Forests, flanked by the communities of Gbanraun, Apoi and Kokologbene, and forests near Kolotoro (Ikemeh 2015). However, in the absence of conservation intervention, the Otolo-Kolotoro-Ongoloba area has been devastated by excessive logging, driving the population in that area to the edge of extinction. In 2021, a community-based conservation area was established covering 1,109 ha in Apoi Creek Forest. This area is under the customary authority of the Apoi community, and protects 150–300 Niger Delta Red Colobus Monkeys, possibly the most significant population anywhere. The effort to create a community conservancy has been coordinated by a local conservation group – the Southwest Niger Delta Forest Project. Further priority actions needed to secure the survival of this species include establishing appropriate laws at the state and national level to protect the species...
and its habitat and conducting new surveys to identify sites where other viable populations still exist and where additional protected areas might be created. Finally, efforts need to continue to increase local level awareness on the ecological importance of the species and its habitat.

The Nigeria-Cameroon Chimpanzee (Pan troglodytes ellioti), until recently known as P. t. vellerosus, ranges from Cameroon, west of the Sanaga River, to Nigeria (Gonder et al. 2006, Oates et al. 2009). Pan t. ellioti has two distinct genetic groups, one associated with lowland and mountainous rainforest in west Cameroon and east Nigeria, and the second with the forest-woodland-savannah mosaic in central Cameroon (Mitchell et al. 2015a). It inhabits primary and secondary moist lowland forest, montane and submontane forest, dry forest, gallery forest in savanna woodland, and farmland, and spans an altitudinal range from sea level to 2000 m (Oates 2011, Sesink Clee et al. 2015, Abwe et al. 2020).

Pan t. ellioti has the smallest geographic range and is the least numerous subspecies of chimpanzee with a total population that is almost certainly less than 9,000 individuals and probably less than 6,000 remaining in the wild (Morgan et al. 2011). One of the largest, and probably most secure, subpopulations of P. t. ellioti is in Gashaka-Gumti National Park in Nigeria, which has an estimated subpopulation of 900–1,000 individuals (Ogunjemite and Ashimi 2010, Adanu et al. 2011). Other major subpopulations are found in Cameroon in the Banyang-Mbo Wildlife Sanctuary (estimated at 500–900 or 800–1,450 individuals, depending on the nest-decay parameters used; Greengrass and Maisels 2007), in the Ebo forest (estimated at 626–1,480 individuals; M.S. Ndimbe and B.J. Morgan pers. comm. 2015), and in Mbam and Djerem National Park (at least 500 individuals; Kamgang et al. 2020). Recent genetic studies especially in the mountainous region along the Nigeria-Cameroon border and south of the Adamawa Plateau in Central Cameroon estimate the current effective population size of P. t. ellioti in Cameroon at 3,000–4,500 individuals (Mitchell et al. 2015b).

The Nigeria-Cameroon Chimpanzee is classified as Endangered on the IUCN Red List of Threatened Species based on an inferred population size reduction of 50% over a three-generation period from the mid-1980s to 2060 (Oates et al. 2016). Within its larger range, P. t. ellioti is most seriously threatened in two subregions: southwestern Nigeria and northwestern Cameroon. In each of these subregions, total chimpanzee population numbers are very small (probably less than 250), suitable habitat is highly fragmented, and hunting pressure is intense, and population declines exceeding 80% are likely in the 1985–2060 period (Greengrass 2009, Ikemeh 2013, Fotang et al. 2021a). The reduction in P. t. ellioti populations is due to increasing anthropogenic pressure exacerbated by human population growth in Cameroon and Nigeria, and linked with poaching (for bushmeat, traditional medicine, and the pet trade) and habitat loss from farming, logging, fire, and commercial plantations (Morgan et al. 2011). Analysis of the viability of this subspecies in Cameroon and Nigeria through extinction-risk modeling has shown that the species could become extinct in 2035 if appropriate conservation
measures are not initiated and implemented (Hughes et al. 2011). Climate change is expected to further shrink P. t. elliotti habitat in the forest-woodland-savannah mosaic over the coming century (Sesink Clee et al. 2015). Since 2018, political instability, especially in Cameroon’s Northwest and Southwest Regions and along the entire boundary with Nigeria, has stalled research and conservation efforts in the central area of the P. t. elliotti range. The proliferation of arms and ammunition and local communities taking refuge in the forest could jeopardize not only fragile chimpanzee communities (Mbambe forest, Kom-Wum Forest Reserve) but also well-established populations, including in Korup National Park and Banyang-Mbo Wildlife Sanctuary. The species has already disappeared from some sites such as the Bafut-Ngemba Forest Reserve, Nkwende Hills (Bobo et al. 2013), South Bakundu Forest Reserve (Eno-Nku 2004) in Cameroon and the Ala, Oba Hills and Ogbesse Forest Reserves in Nigeria (Greengrass 2006).

Pan t. elliotti occurs in several important protected areas, including the Gashaka-Gumti National Park, Cross River National Park and Afì Mountain Wildlife Sanctuary in Nigeria, and Mbam and Djerem National Park, Korup National Park, Takamanda National Park, Mount Cameroon National Park, and Banyang-Mbo Wildlife Sanctuary in Cameroon (Morgan et al. 2011). More recently, the presence of a viable population of Nigeria-Cameroon chimpanzee was confirmed in Mpem and Djim National Park, in the forest-woodland-savannah mosaic of central Cameroon (O. Doumbé and A. Ngouh unpubl. data 2021). Management effectiveness varies across protected areas; poaching for bushmeat occurs, in most of them, sometimes at high levels. Biological surveys, including non-invasive sample collection efforts for genetic studies throughout much of the subspecies’ range in Cameroon, have shown that many chimpanzees still survive outside protected areas (Mitchell et al. 2015b). One is the Yabassi Key Biodiversity Area which encompasses the Ebo forest, where chimpanzee and gorilla conservation efforts have been underway since 2005 (Abwe and Morgan 2008). Pan t. elliotti also survives in community-managed forests such as the Mbe Mountains in Nigeria.
Like other chimpanzees, *P. t. ellioti* is omnivorous. Fruits (including figs) make up a large proportion of the diet, but leaves, bark, stems and animals are also eaten, especially when fruits are scarce (Dutton and Chapman 2015, Abwe et al. 2020). Tools made from plant parts are used to extract honey and also ants and termites from their nests (Fowler and Sommer 2007, Abwe and Morgan 2008), stone and wooden hammers are used to crack nuts (Morgan and Abwe 2006), and monkeys and other mammals are probably captured for food (Morgan et al. 2012, Abwe et al. 2020). *Pan t. ellioti* nesting is linked to ecological and environmental factors. They build nests mainly in trees, but ground-nesting is common in several populations (Last and Muh 2013, Abwe and Morgan 2008, Fotang et al. 2021b).

Long-term research and conservation outreach for *P. t. ellioti* are ongoing in Gashaka-Gumti National Park in Nigeria, and Ebo forest and Mbam & Djerem National Park in Cameroon (Sommer et al. 2004, Abwe and Morgan 2008, Morgan et al. 2011). Chimpanzee ecological research with a focus on habitat characterization, feeding and nesting behavior, and population structure and dynamics is key in informing conservation action for populations in and outside protected areas (Morgan et al. 2011). Conservation outreach programs in Cross River National Park, Mbe Mountains, Afi Mountain Wildlife Sanctuary, and Ise forest in Nigeria, and Ebo forest and Mbam & Djerem National Park in Cameroon are designed to ignite community interest in chimpanzee monitoring and conservation through protected area management, chimpanzee guardian clubs in Ebo, and a wildlife center at the three sites, respectively, in addition, inclusive land use planning efforts in Ebo preceded by community participatory mapping envisage conservation units including the nut-cracking chimpanzee population west of the forest, and gorilla-chimpanzee habitat north of the forest.

JAVAN SLOW LORIS
Nycticebus javanicus É. Geoffroy Saint-Hilaire, 1812

Indonesia

K. Anna I. Nekaris and Vincent Nijman

Habitat loss and habitat degradation throughout Southeast Asia threaten all nine species of slow and pygmy loris with extinction – Pygmy Xanthonycticebus pygmaeus, Greater Nycticebus coucang, Bengal N. bengalensis, Philippine N. menagensis, Bornean N. borneanus, Kayan N. kayan, Sody’s N. bancanus, Sumatran N. hilleri, and Javan N. javanicus (Munds et al. 2013, Pozzi et al. 2014, Rowe and Myers 2016, Nekaris and Nijman 2022). Slow and pygmy lorises exhibit numerous unique traits including slow life history, locomotion and digestion, and the ability to enter torpor and hibernate, and they are the only venomous primates (Nekaris 2014). Still, wild slow lorises have seldom been studied for more than a year (Cambodia X. pygmaeus, Starr et al. 2011; Malaysia N. coucang, Wiens et al. 2006; India, N. bengalensis, Das et al. 2014), with only N. javanicus being the focus of a long-term study (Nekaris 2016). Many researchers and conservationists have only ever seen a slow or pygmy loris in the illegal wildlife trade, either dried on bamboo sticks in preparation for traditional medicine, paraded as a photo prop on a tourist beach, or sold as a pet (Schulze and Groves 2004, Das et al. 2009, Nijman et al. 2015, Osterberg and Nekaris 2015). The extreme popularity of viral slow loris internet videos is a double-edged sword, to some extent making the public aware of their decline, but also causing the public to think that they are not threatened (Nekaris et al. 2013a). The level of international trade was sufficiently large for the genus Nycticebus (now Nycticebus and Xanthonycticebus) to be transferred to CITES Appendix I in 2007 (Nekaris and Nijman 2007, 2022), meaning that all commercial international trade is prohibited.

Javan Slow Lorises are listed as Critically Endangered on the IUCN Red List of Threatened Species, thus here we use this species as the flagship for slow and pygmy loris conservation (Nekaris et al. 2013b). Since being re-recognized as a species by IUCN in 2006, work on the Javan Slow Loris has increased and provides a sound example of understanding and mitigating the threats to a highly threatened species.

Capture to meet the demand for pets is the most severe threat to the survival of Javan Slow Lorises. Despite being legally protected in Indonesia since 1973, with their striking coloration and their presence on Java, Indonesia’s commercial center, it is no wonder that Indonesian pet traders in the 1990s targeted Javan Slow Lorises above other endemic slow loris species. Analysis of slow lorises in the wildlife markets of Java and Bali shows that the overall number openly offered for sale remains fairly constant, but the species composition changed, with fewer Javan Slow Lorises counted (Nijman et al. 2017). Traders claim that Javan Slow Lorises are increasingly difficult to obtain and, as with other wildlife, trade has moved from animal markets only, to both animal markets as well as online trade. COVID-19 thus far has had limited effect on the wildlife markets and trade in Javan Slow Lorises; during lockdowns and times of regional travel restrictions the number of visitors and vendors may have dropped temporarily, but in general wildlife markets have remained open.

Successful prosecution of lawbreakers buying or selling slow lorises in Indonesia is a very rare occurrence and despite hundreds of slow lorises having been confiscated from traders over the last decade, we are only aware of a
handful of successful prosecutions (Nekaris and Nijman 2018). Wildlife traders in Indonesia have increasingly turned to social media to advertise their illegal stock, including Javan Slow Lorises. The huge rise in Facebook, Instagram, and WhatsApp means that many are sold via social media without ever being seen in a wildlife market. An ongoing online monitoring program by the Little Fireface Project suggests that dozens of live Javan Slow Lorises are offered for sale in online forums. This monitoring revealed that slow lorises in Indonesia are also traded for medicinal purposes, mainly in the form of slow loris oil, and Javan Slow Lorises are one of three species most affected by this trade (Nekaris et al. 2020).

Slow lorises are the only venomous primates and, amongst other functions, use their venom for interspecific competition (Nekaris et al. 2020). To avoid being bitten by the venomous slow lorises, traders habitually cut or pull out an animal’s lower front teeth prior to selling them (Nekaris et al. 2013c). Traders may also cut teeth prior to packing slow lorises tightly into crates, as they often damage each other with their venomous bites during transport. Fuller et al. (2018) showed that following confiscations and during rehabilitation, nearly 30% die in the first 6 months, with morbidity from wounds (mainly bites) being the main cause. Other causes of death due to dental removal include dental abscess or pneumonia (Nekaris and Starr 2015). Those that do survive are no longer able to eat their preferred food (gum) (Das et al. 2014) or engage in the important behavior of social grooming with the toothcomb, meaning that any confiscated animals are unlikely to survive if released to the wild.

Reintroduction itself is a threat to the Javan Slow Loris. In the major markets in Java, at least four other slow loris species from Borneo and Sumatra are traded alongside the Javan Slow Loris, and in the markets in Sumatra at least three species are regularly traded, including Javan Slow Lorises. Likewise, traders based in Java and Sumatra offer several species for sale, including ones that do not occur naturally on the island where the traders reside. The similar appearance of slow lorises, to the untrained eye, results in release of slow loris species from Sumatra and Borneo into Java, and Javan Slow Lorises in Sumatra and Borneo, causing potential for hybridization
or even displacement of native species by introduced ones (Nekaris and Starr 2015). The ability of slow lorises to persist in human habitat if left undisturbed means that well-meaning people may translocate animals to habitat that is unknown to the animals, exacerbating these problems (Kumar et al. 2014).

Moore et al. (2014) assessed the success of Javan Slow Loris reintroductions, finding a death rate of up to 90%. Illness, hypothermia and exhaustion were all implicated in the death of slow lorises. Reintroductions were started before the basics were known about the Javan Slow Loris' behavior, ecology, or distribution. No habitat suitability assessment could be made, since details were lacking on the type of habitat the species preferred and what it avoided. It has recently been reported by rescue centers that the success rates of Javan Slow Loris reintroductions are improving, but unfortunately no published data are available to verify these claims. Newspaper reports show that up to 30 slow lorises are released in one site at one time, but the highly territorial and venomous nature of slow lorises means that such releases are destined to have a high failure rate. A related study of pygmy lorises in Vietnam found that the season of release and age should be considered to increase the likelihood of survival (Kenyon et al. 2014).

To obtain vital information on the Javan Slow Lorises, in 2011 the Little Fireface Project instigated a study of the species' behavioral ecology in Garut District of West Java, Indonesia (Nekaris 2016). This multi-disciplinary project has obtained data on home range size, social organization, infant dispersal, and feeding ecology. It was found that both sexes disperse from their natal range at about 20 months old, dispersal distances are 1–3 km from the natal range, home range sizes are large relative to the size of the animal (5–10 ha), the species goes into torpor, and the diet comprises mainly gum, supplemented with nectar and insects (Cabana et al. 2017, 2019). Several initiatives have been put into place to conserve slow lorises in the area and in other parts of Java. National workshops have been held for law enforcement officers and rescue center employees to provide essential data for a national slow loris action plan. At the local level, slow lorises are often totally dependent on local people for their protection, feeding on human-planted tree species and residing in farmland. Thus, a major conservation program combining empowerment activities, conservation education, and village events has been launched, and it is hoped that it can be used as a model for other key slow loris sites in Indonesia (Nekaris and Starr 2015). One such program involved building bridges for slow lorises to connect habitat. Most of these bridges are made of water hose pipes that also help to irrigate the land of farmers. This program was accompanied by an intensive education program for children and their parents, making people aware of the lorises who live on their land (Birot et al. 2020, Nekaris et al. 2021). This program has been reproduced by other loris conservation projects in Bangladesh and in Thailand, where artificial bridges have also been used successfully by N. bengalensis. Because many slow loris species rely on non-protected farmland, helping local people to understand their important role in pollination and pest control can be vital for populations to persist. With this in mind, extending on the building bridges program, the Little Fireface Project also developed an eco-friendly coffee program, with cooperatives of farmers achieving Wildlife Friendly Certification. The certification involved a total hunting ban in the area, as well as significant reforestation of endemic tree species (Campera et al. 2021).

For a long time, slow lorises were thought to be common throughout Indonesia, and the presence of animals in trade was believed to be an indicator of their abundance. We are only beginning to unravel the complexity of their taxonomy and distribution, leading to a bleak overall picture. While Java has an impressive and comprehensive protected area network, encompassing over 120 terrestrial conservation areas and covering 5,000 km², enforcement of environmental laws and active protection in most of these parks is lacking and, as indicated above, many of the Javan Slow Lorises are found outside the protected area network. Besides curbing the illegal trade, it is paramount that these conservation areas, and indeed all other remaining forest areas on the island, are effectively protected.

Sometime ago in the distant past, a small family of tarsiers found itself trapped on a floating island of vegetation, tossed about on the Pacific Ocean (Shekelle et al. 2013). Drifting northward from their home on Sulawesi, they travelled for days, up to 200 km from where their journey began, their life raft touched on the tiny island of Sangihe. Sangihe Island is an active volcano that pushed upward from the ocean floor several thousands of meters below the surface. Thus, like the more famous island chains of Hawaii and Galapagos, all life found on Sangihe Island arrived as wandering vagabonds, just as these tarsiers did. For a million years or more, these tarsiers lived in isolation, evolving into the species *Tarsius sangirensis*.

Isolated no more, Sangihe Island has the bustling port city of Tahuna, home to 33,000 people, an airport, and many of the conveniences of industrialized life. The island, of 547 km² (Shekelle and Salim 2009), is about one-fifth the size of Luxembourg. With a human population of 140,000 (Badan Pusat Statistik, 2022) crowded into 255 people per km², the island would rank tenth highest in terms of population density – just ahead of Luxembourg – were it a European nation. Looked at another way, Sangihe Island is slightly smaller than the Isle of Man, but its population is about 175% larger.

The northern half of Sangihe Island is dominated by the volcano, Mt. Awu, ranked as the fourth most deadly volcano in Indonesia’s “Ring of Fire” (Bani et al. 2020). In 2021, a concession for a gold mine was ceded on the southern half of the island. The BBC named Sangihe Island, “Indonesia’s Gold Island”, an island made of gold (BBC, 2021). Unfortunately, as far as is known, the highest value conservation habitats are on the southern end of Sangihe (Whitten, 2006), in the gold mine concession.

Sangihe Island is famous to bird conservationists for its highly threatened avifauna. The Cerulean Flycatcher (*Eutrichomyias rowleyi*) graced the first cover of the journal, *Conservation Biology*, accompanying an article concerned that it had gone extinct (see Whitten 2006). When its rediscovery in the wild was announced in 2006, its conservation hinged on a 940-ha patch of mixed primary and secondary forest that had been zoned by the community as a water catchment, a level of protection so limited that it did not even prohibit hunting (Whitten 2006). In an amazing contrast to the near disregard of this forest by anyone other than the local community, it was known to shelter three species of Critically Endangered birds – no other place in Indonesia has more than one Critically Endangered bird species (Whitten 2006). In addition to the Cerulean Flycatcher, the Sangihe Shrike-Thrush (*Coracornis sanghirensis*) and the Sangihe White-eye (*Zosterops nehrkorni*) are also Sangihe Island endemics (Whitten 2006). All rely on that 940-ha patch of forest, a little less than three times the size of New York’s Central Park, now within the gold mine concession.

We can add to this list a small primate, *Tarsius sangirensis*. It is listed as Endangered on the IUCN Red List of Threatened Species (Shekelle 2020). The presence of the gold mine across the southern half of the island, and the loss of the local community’s ability to manage their own forests, has greatly changed the threat status to the Sangihe Island Tarsier, and to all of the endemic biodiversity of the Island. Shekelle and Salim (2009) found that the Sangihe Island Tarsier...
was at risk from a small extent of occurrence and area of occupancy, small population size, high risk of volcanism, high human population density, fragmented populations (many of which are in marginal habitat), and lack of conservation areas. There are no ex situ conservation options for any tarsier species, should their extinction in the wild become imminent.

Local people have protested the gold mine, and one anti-mine government official died under conditions that some find suspicious. They have created a petition on Change.Org that has nearly 150,000 signatures. If it is determined that the gold mining company, PT. Tambang Mas Sangihe (TMS), the Indonesian company registered by BARU Gold Corporation, has a legal right to mine gold on Sangihe Island, then that must be respected. Listing Tarsius sangirensis among the World’s 25 Most Endangered Primates tells the gold mine that the eyes of the world are focused on its management of the biodiversity that it has been entrusted by Indonesian mining laws to preserve.

Extensive deforestation occurred following the cessation of Sri Lanka’s 26-year civil war in 2009, escalating human-primate conflicts and undermining the long-term survival of three Sri Lankan primates, *Semnopithecus vetulus*, *S. priam thersites* and *Macaca sinica* that are not only endemic, but also threatened with extinction. As public outcry and political pressure mounted to resolve these conflicts, several government institutions and non-governmental organizations, led by SPEARS Foundation, helped the country’s Department of Wildlife Conservation (DWC) to develop an action plan for people to conserve and coexist with all species of monkeys. The plan was submitted to the country’s government in March 2016 for cabinet approval.

While awaiting approval, SPEARS Foundation used funds from foreign donors to implement some key elements of the plan. One was to develop Community Conservation Areas (CCAs), which, when established, would be administered and managed sustainably by local communities under DWC supervision. To find suitable sites for CCAs, the SPEARS team analyzed complaints of human-monkey conflicts received by the DWC between 2007 and 2015. The analysis indicated that conflicts occurred throughout the country, but their frequency varied between localities (Cabral et al. 2018). Thirteen field surveys were conducted, therefore, from 2016 to 2018, to locate sites best suited for the establishment of CCAs. Information from these surveys and other relevant data on all four Purple-faced Langur subspecies are presented below.

Three of the four subspecies of *Semnopithecus vetulus* are Endangered. The fourth, the western subspecies, *S. v. nestor*, is Critically Endangered (Rudran et al. 2020a). The range of the Western Purple-faced Langur (*Semnopithecus vetulus nestor*) includes the most densely populated region around Colombo, the country’s capital. Urbanization poses a serious threat, therefore, to the long-term survival of this Critically Endangered and endemic subspecies (Rudran et al. 2009, 2020a). A survey conducted in 2007 (Rudran 2007) indicated that 81% of *S. v. nestor*’s historical range (Hill 1934, Phillips 1981) had been deforested and converted to human altered landscapes. Due to this habitat reduction, much of *S. v. nestor*’s current population subsists mainly on fruit from home gardens (Dela 2007, Rudran 2007). Nutritional consequences of feeding on a low diversity diet of cultivated fruits are unclear but considered detrimental to the folivorous *S. v. nestor* (Rudran 2015).

Besides depleting natural food sources, deforestation causes habitat fragmentation, forcing animals to travel on the ground and along power lines to move between fragments. These movements increase mortality by exposing them to attacks by dogs, speeding vehicles, and electrocution (Parker et al. 2008). In some parts of its range, *S. v. nestor* is occasionally shot and killed as a pest while feeding in home gardens (Dela 2004). Such human-induced fatalities reduce group sizes and appear to lead to local extinctions in *S. v. nestor*’s range (Rudran 2007).

The Highland Purple-faced Langur (*S. v. monticola*), also known as the Bear Monkey, was studied for two years at Horton Plains by Rudran (1973a, 1973b) nearly fifty years ago. When the area was surveyed again in 2016, Rudran noted
The Northern Purple-faced Langur (S. v. philbricki) was investigated for two years in the late 1960s (Rudran 1973a, 1973b) when conflicts with humans were not a serious issue. In the late 1970s, however, the impact of the Accelerated Mahaweli Development Program (AMDP) on wildlife in S. v. philbricki’s range became a serious concern. To mitigate this concern, an Environmental Impact Assessment (EIA) of the AMDP recommended the establishment of four new national parks around the development area (Tippetts-Abbett-McCarthy-Stratton 1980). While these areas provided protection to S. v. philbricki, serious threats such as habitat fragmentation and hunting for food, medicinal purposes and rituals still remained in other areas (Wickremasinghe et al. 2016). Similar findings have also been reported by other investigators (Nahallage and Huffman 2013). Two surveys conducted in 2018 by SPEARS Foundation staff found that populations of the highly arboreal S. v. philbricki were fewer than that of the other two subspecies in the area due to the fragmentation of their habitat.

In the last couple of years, the COVID-19 pandemic has hampered the SPEARS team’s field activities, though the pandemic did provide the team with opportunities to publish data that it had on file, to produce video documentaries about their efforts, and to develop a device appreciable changes to the vegetation. Many species previously recorded as important food plants of the Bear Monkey were dead or dying. This appeared to be primarily due to debarking of the adult trees and consumption of saplings by the sambar (Cervus unicolor) population, which had increased in numbers because of the invasive soft grass introduced to Horton Plains with the fertilizer used by a now defunct potato farm (Adikaram et al. 1999). The death and lack of regeneration of food plants appear to have undermined Bear Monkey survival. A census was not conducted in 2016, but early morning loud calls of harem males were considerably less frequent than before, indicating a population decline. The area was surveyed again in 2017 to collect data on crop damage and human attitudes towards monkeys.

Three surveys were conducted in the range of the Southern Purple-faced Langur (S. v. vetulus) in 2017. In addition, a long-term study of S. v. vetulus (Roscoe et al. 2013) reported several threats to the future survival of this subspecies. These threats were the same as those experienced by S. v. nestor. Additionally, a major highway constructed through S. v. vetulus’ range is expected to create a permanent barrier to gene flow between the populations found along the coast and the interior of the country.

The area was surveyed again in 2017 to collect data on crop damage and human attitudes towards monkeys.
designed to reduce financial losses due to crop damage by monkeys.

In regards to publications published during COVID-19, these were based on data that had been collected prior to the onset of pandemic. One of the articles discussed an ethno-primatological approach to conserving the Critically Endangered Western Purple-faced Langur (Rudran et al. 2020). This paper was the outcome of a 14-year effort during which time the SPEARS team implemented annual outreach activities with the aim of building support in rural communities, so that they would become staunch allies in promoting the conservation of the species. These efforts were managed by a non-governmental organization, because the Sri Lankan government’s wildlife agency did not have adequate staff and financial resources to deal with critically important wildlife conservation issues. Donor agencies are urged, therefore, to provide long-term financial support to the country’s non-governmental organizations that have demonstrated their unwavering commitment to promote wildlife conservation. Such support may also be useful in other countries that have rural communities and wildlife protection agencies with characteristics similar to those in Sri Lanka.

As another example, the SPEARS team published research about the use of an ethnoprimatological approach to mitigate Sri Lanka’s human-monkey conflicts (Rudran et al. 2021). This problem had skyrocketed after 2009, when the end of Sri Lanka’s 26-year ethnic war precipitated extensive deforestation to expand the country’s agricultural base and economy. To assess the intensity of this country-wide problem, the SPEARS team conducted field surveys, for five days each month from January 2016 to June 2018, in 11 of Sri Lanka’s 25 administrative districts. During these 30 months, the survey team held semi-structured interviews with more than 1,600 adults, which were used to craft recommendations, including a recommendation to establish a private insurance scheme or a government-sponsored compensation program to deal with human-monkey conflicts (Rudran et al. 2021). In addition, and since human-monkey conflicts occurred throughout the country, officers of the understaffed and underfunded wildlife agency could not be expected to travel extensively to assess the damage before providing compensation. The SPEARS Team, therefore, recommended that local community organizations be tasked with assessing the damage (Rudran et al. 2021). The recommendation also stressed that requests for compensation payments should be submitted to wildlife authorities only with convincing and verifiable supporting evidence. This arrangement was recommended to help prevent bogus claims for crop damage by monkeys.

The SPEARS team’s articles were published in scientific journals not easily accessible to people living in Sri Lanka. To stimulate local interest about Sri Lanka’s monkeys and its natural habitats, the SPEARS team used video footage taken before the pandemic to produce nine presentations in English and the two local languages. Each presentation lasted anywhere from two to nearly 30 minutes, and introduced local people to the objectives of the SPEARS team, the diversity of Sri Lankan monkeys, and causes of human-monkey conflicts. Some presentations also provided information on interesting local species and important natural habitats, such as the Malabar Pied Hornbill and the country’s vanishing wetlands. These popular video presentations were shown at several public meetings held by the SPEARS team before the pandemic took hold in Sri Lanka.

Another pre-pandemic project launched by the SPEARS Team involved the development of a motion sensing device designed to emit loud alarm signals when monkeys enter home gardens and croplands. When the alarm is activated, the homeowner was expected to use his/her cell phone to alert the crop protection brigade (Rudran et al. 2021) composed of unemployed and underemployed youngsters, who have their own modes of conveyance and expertise in using catapults and other non-lethal devices to chase away monkeys. When the monkeys are evicted, homeowners whose crops were saved would compensate the crop protection brigade. In this manner the crop protection program will not only help minimize financial losses incurred by homeowners but also provide gainful employment to local youngsters. This program is expected to become functional after
the pandemic dies out and does not pose any further threats to human health.

In conclusion, although Sri Lanka’s monkeys face a perilous future (Rudran 2013), there is hope that they can be conserved. One reason for hope is that most Sri Lankans follow the Buddhist doctrine of compassion towards all living things. Promoting this doctrine and Buddha’s own reverence of the forest presents, therefore, opportunities to deter deforestation in a country steeped in cultural traditions but ignorant of the detrimental effects of habitat destruction. Another reason for optimism stems from a decision by successive governments to increase Sri Lanka’s forest cover from 27% to 36% using native plants, to achieve the country’s economic development goals (Yatawara 2011). The political will to increase forest cover augurs well for the future protection of wildlife. It is important that the Sri Lankan government approves the 2016 action plan in order to ensure a steady flow of financial support to conserve Sri Lanka’s monkeys.

As langur numbers recover interest in poaching by people from adjacent regions may also revive (Leonard et al. 2016).

Although the growth of the population is encouraging, the overall status of the species remains critical, and the total population is worryingly small. Habitat fragmentation and hunting has divided the remaining population into several isolated sub-populations, some of which are non-reproducing social units. A surplus of young males is a cause for concern as take-over attempts can lead to infanticide, inadvertent infant deaths, and group fragmentation, all of which have been recorded since 2018 (N. Leonard unpubl. data). Reproduction appears to only take place in groups above a threshold size, making group fragmentation a cause of concern for population growth.

The total reproductive output of Trachypithecus poliocephalus has been low due to the small population and the long inter-birth cycle but records indicate that the birth rate is increasing, with 55% of the total births recorded between 2000 and 2022 having taken place from 2017 to 2022. Births occur throughout the year, with a peak in February–April, just prior to the rainy season (Leonard et al. 2016), with a corresponding peak in conception in August-October at the conclusion of the rainy season. The portion of reproductively active females giving birth each year varies, but on average approximately 30% of the active females do so (N. Leonard unpubl. data).
In 2012, after many years of planning and preparation, two females were successfully translocated from a small offshore islet, where they had become stranded, to the relative safety of the strictly protected core zone of Cat Ba National Park. There they assimilated into existing groups containing males, thus giving them the opportunity to reproduce for the first time. It is hoped that continued protection efforts and additional population management interventions such as these will enhance the rebound of this species.

The Cat Ba Archipelago and adjacent Ha Long Bay are nationally and internationally recognized for their importance to biodiversity conservation. Cat Ba National Park was established in 1986. It presently covers more than half of the main island. Ha Long Bay was established as a World Heritage site in 1994, and the combined archipelago includes about 1,500–2,000 large and small islands, cliffs and rocks. In 2004, the Cat Ba Archipelago was designated a UNESCO Man and the Biosphere Reserve. Despite the conservation designations and laws to protect the region, nature and wildlife protection on Cat Ba Island is deficient. Environmental awareness and commitment among the local communities is slowly increasing, and hunting/trapping of all animals on the island illegal. Unfortunately, efforts to effectively conserve the langurs and their habitat continue to face major obstacles from increasing tourism development, increasing human population and severe deficiencies in law enforcement (Stenke 2005, Leonard 2018). As is common elsewhere in the region, poaching by local people is driven by livelihood issues, brought about by low incomes and lack of employment opportunities. Immense local and regional demand for wildlife and animal parts for food and dubious traditional medicines provide a market for poached animals and plants. Although langur hunting ostensibly stopped years ago, the 2015 decline in numbers raises doubts as to the permanence of the hunting cessation. Regardless, hunters continue to poach other animals and plants in langur areas, thus jeopardizing langur habitat. Strict enforcement of the established protections is therefore necessary for the survival of all species on Cat Ba Island that are targeted by the illegal Asian wildlife trade.
A conservation program for the Cat Ba Langur is supported by Zoo Leipzig, Zoological Society for the Conservation of Species and Populations (ZGAP), and the Allwetterzoo Münster in Germany. The project was initiated on Cat Ba Island in November 2000 by Allwetterzoo Münster and ZGAP. The aim of the Cat Ba Langur Conservation Program is to provide protection for the langurs and their habitat, to conduct research that will help inform future population management decisions, and to help contribute to the conservation of the overall biodiversity of the Cat Ba Archipelago, all in collaboration with Vietnamese authorities.

Presbytis femoralis was formerly regarded as a species with three subspecies: P. f. femoralis, P. f. percura and P. f. robinsoni (Groves 2001, Roos et al. 2014). Based on multiple species delimitation algorithms applied to a dataset covering 40 species and 43 subspecies of Asian colobines, including the complete mitochondrial genomes of the three subspecies of P. femoralis, all three were resurrected to species (Ang et al. 2020).

The Raffles’ Banded Langur (P. femoralis) is found only in Singapore and southern Peninsular Malaysia (in Johor state and a small part of Pahang state). The populations in Singapore and Malaysia are isolated from one another by the Strait of Johor. In Singapore, this primate is found mainly in the Central Catchment Nature Reserve (CCNR), the largest in the country. The CCNR comprises 2,880 hectares of lowland primary and secondary forest, and freshwater swamp forest. In Malaysia, most populations occur in the state of Johor, i.e., in Endau Rompin National Park, Gunung Arong, Gunung Belumut, Gunung Lambak, Gunung Panti, Gunung Pulai, Kampung Johor Lama, which are isolated from each other, with just one known population in the state of Pahang (Rompin State Park).

As of 2021/22, there are 70 individuals in the Singapore population with a sex ratio (male:female:unknown) of 26:24:20 (Ang and Jabbar 2022). There are no reliable population estimates available for the conspecifics in Malaysia, but it is believed that only a few hundred individuals remain (Abdul-Latif et al. 2019, Ang and Jabbar 2022). The overall population of P. femoralis, therefore, could be less than 250 mature individuals in the wild.

Presbytis femoralis eats young leaves, fruits, seeds, and flowers. A total of 61 plant species from 34 families were identified in the diet of P. femoralis in Singapore (Srivathsan et al. 2016, Ang and Jabbar 2022). In Malaysia, 27 plant species from 17 families in Kampung Johor Lama (Najmuddin et al. 2019a) and no less than 38 species from 20 families in Gunung Lambak (Z. H. Lee unpubl. report) were documented as food for the langurs.

The species is classified as Critically Endangered on the IUCN Red List of Threatened Species (Ang et al. 2021a) and is listed in Appendix II of CITES. It is protected in Peninsular Malaysia under Schedule 2 of the Wildlife Conservation (Amendment of Schedule) Order 2012 under the Presbytis spp. group. In Singapore, it is protected under the Protected Wildlife Species Rules 2020 of the Wildlife Act (Chapter 351) as Presbytis femoralis femoralis.

Deforestation and habitat conversion continue to be the major threats to this species. It is particularly affected by forest clearance and disturbance from urban development in Singapore and from oil palm plantations in Malaysia. As a result, known populations are distributed in fragmented habitats, and fragmentation is thus recognized as an additional stressor. Presbytis femoralis shows low genetic variability (Ang et al. 2012, Srivathsan et al. 2016) in Singapore, and there is still a lack of data on this species from Malaysia, where population numbers and the distribution are not up to date.

Casualties in both countries have been recorded as individuals attempt to travel between fragmented habitats using roads and electric
cables (Ang and Jabbar 2020; N. Ruppert, pers. obs.). Predation events are rare, although the langurs have been seen to be killed by eagles (Fam and Nijman 2011) and dogs (Yang and Lua 1988, Najmuddin et al. 2019b). In Malaysia, additional threats come from human-wildlife interactions when the langurs enter suburban and residential areas to eat garden fruits (Z.H. Lee pers. obs.).

In 2016, an IUCN Species Action Plan for the conservation of \textit{P. femoralis} was developed, and the Raffles’ Banded Langur Working Group was formed with representatives from government agencies, non-governmental organizations, universities, and experts from both countries. The goals of the action plan are threefold: (i) to recover and protect \textit{P. femoralis} in the wild; (ii) to gather key data through ongoing studies; and (iii) to secure the necessary resources and commitments for the long-term conservation of the species (Ang et al. 2016).

In Singapore, two experimental rope bridges were installed by the National Parks Board to facilitate safe crossing of the langurs over roads (Ow et al. 2022). In Malaysia, a rope structure was installed by the Malaysian Nature Society (Johor) in Gunung Panti for primates, including \textit{P. femoralis} (Chong 2020). In 2016, a citizen science program was set up in Singapore where volunteers are trained to collect data on the langurs in the CCNR (Ang et al. 2021b). In Malaysia, the Universiti Sains Malaysia, in collaboration with Malaysian Primatological Society, WWF (Malaysia, and Singapore) and Malaysian Nature Society (Johor), is conducting research on the behavior and ecology of the species and planning for public outreach and stakeholder engagement programs. Studies on the behavior and potential for nature-based tourism activities of this species have also been conducted by the Universiti Tun Hussein Onn Malaysia in Johor in recent years.

In the long term, conservation translocation of individuals of \textit{P. femoralis} between Singapore and Malaysia might need to be considered to restore and maintain the genetic diversity of the populations and increase their genetic adaptive potential. The recognition of \textit{P. femoralis} as
one of the Top 25 Most Endangered Primates can expedite urgent communication and collaboration between stakeholders in Singapore and Malaysia to foster more effective research on and conservation actions to protect this species, its habitat, and the shared natural heritage of the two countries.

ASIA
As is the case for all five species of extant snub-nosed monkeys, the social organization of *Rhinopithecus brelichi* is best described as a large multilevel or modular society composed of several adult males, multi-adult females plus offspring units (OMUs) that feed, forage, rest, and travel together throughout the year. These OMUs collectively form a breeding band that is followed by an all-male unit (AMU) composed of juvenile, subadult, and adult males (Qi et al. 2014, Tan and Bleisch 2016).

Over the past several decades, deforestation and habitat conversion for agriculture, mining, the collection of firewood and medicinal plants, and infrastructure development have significantly altered and severely fragmented the remaining habitat available to the Guizhou Snub-nosed Monkey (Xiang et al. 2009, Guo et al. 2020). Observations of this species in the 1960s and 1980s often reported individuals exploiting forests at an elevation of 500–800 m (Zhou and Deng 2019). Today, individuals are principally found in a narrow forest band between 1400 and 2100 m. Across their range, trees of the genera *Cyclobalanopsis*, *Betula*, *Acer*, *Fagus*, and *Lithocarpus* are the most common (Guo et al. 2018). Guizhou Snub-nosed Monkeys have been reported to feed on 104 plant species (Guo et al. 2018).

A recent study found that only 16.6% (69.6 km²) of the Fanjingshan National Nature Reserve contains habitat suitable for the monkeys (Guo et al. 2020). Observations of this species in the 1960s and 1980s often reported individuals exploiting forests at an elevation of 500–800 m (Zhou and Deng 2019). Today, individuals are principally found in a narrow forest band between 1400 and 2100 m. Across their range, trees of the genera *Cyclobalanopsis*, *Betula*, *Acer*, *Fagus*, and *Lithocarpus* are the most common (Guo et al. 2018). Guizhou Snub-nosed Monkeys have been reported to feed on 104 plant species (Guo et al. 2018).

The Guizhou Snub-nosed Monkey is listed as Endangered on the IUCN Red List of Threatened Species (Long et al. 2020), a Class I protected species under the Chinese Wild Animal Protection Law, and as Critically Endangered on the Red List of China’s Vertebrates (Xiang et al. 2009, Jiang et al. 2016). It was initially regarded as a subspecies of the Golden Snub-nosed Monkey (*Rhinopithecus roxellana*, Quan and Xie 1981). Based on genomic data, however, these two lineages appear to have diverged some 1.6 mya (Zhou et al. 2014). Both *R. brelichi* and *R. roxellana* are considered ‘northern’ species of snub-nosed monkeys (Zhou et al. 2014). A recent study of the mitochondrial DNA D-loop based on over 300 *R. brelichi* fecal samples identified 11 haplotypes (Wang and Zhou 2021). Haplotype diversity in *R. brelichi* was lower than that reported in *R. roxellana* and *R. bieti*. These latter two snub-nosed monkey species have larger populations (Li et al. 2018).
and facilities for the more than 1.4 million tourists that have visited the reserve since 2018 (Guizhou Provincial Government 2021), has impacted Snub-nosed Monkey patterns of ranging and distribution. For example, the construction of an aerial tram in the reserve in 2009, divided the remaining area of suitable habitat into two isolated regions: a northern region of 41.1 km² and a southern region of 28.5 km² (Guo et al. 2020). Extensive field surveys indicate there are no Snub-nosed Monkeys present in the southern region, and a fine-grained analysis of habitat disturbance and forest fragmentation in the northern region found that the area of remaining suitable habitat totals only 27.8 km² (Guo et al. 2020).

Population estimates for the Guizhou Snub-nosed Monkey have varied over the past 35 years, from a low of 90 individuals (Quan and Xie 1981) to a high of 750 (Xiang et al. 2009). A recent study based on direct field observations to calculate the population density of Guizhou Snub-nosed Monkeys in the reserve found that the remaining population totals only between 125 and 336 individuals and appears to represent a single multilevel society.

Guo et al. (2020) outline a set of conservation recommendations designed to expand existing areas of suitable habitat for this last remaining wild population of Guizhou Snub-nosed Monkeys. These include: 1) implementing an aggressive program of the targeted reforesting of fragmented habitat in the northern part of the reserve in order to expand the ability of these monkeys to reach small disconnected patches of forest that contain feeding trees; 2) hiring local villagers to plant deciduous and evergreen broadleaf mixed forest trees throughout the reserve; and 3) given the small size of the Guizhou Snub-nosed Monkey population, moving its conservation status to Critically Endangered on the IUCN Red List. We also suggest a moratorium on expanding tourist infrastructure in the Fanjingshan National Nature Reserve and limiting the number of tourists visiting the reserve each year. In addition, nearby the Fanjingshan National Nature Reserve there is another nature reserve, the Yangxi Provincial Nature Reserve (218 km²), which is largely unexplored. It remains
uncertain whether there are any Guizhou Snub-nosed Monkeys present there.
Hoolock gibbons were first described scientifically by Harlan (1834) under the name *Simia hoolock*. They were subsequently transferred to the genus *Hylobates*, and then assigned to their own distinct subgenus (later elevated to genus), first *Bunopithecus* (later restricted to an extinct Quaternary gibbon from China) (Prouty et al. 1983; Groves 2001) and then *Hoolock* (Mootnick and Groves 2005). Taxonomic variation between different hoolock populations was first recognized by Groves (1967), who identified a major east-west morphological division and described *Hylobates hoolock leuconedys* to distinguish eastern hoolock populations from those in the west, geographically isolated by the Chindwin River. Both subspecies were latterly elevated to full species: the western (*Hoolock hoolock*) and eastern hoolock (*H. leuconedys*) gibbons. Fan et al. (2017) assessed the morphological and genetic characteristics of wild gibbons and museum specimens to evaluate the taxonomic status of the hoolock population in China. The results suggested that hoolocks distributed to the east of the Irrawaddy and Nmai Hka rivers, which were previously assigned to *H. leuconedys*, are morphologically and genetically distinct from those to the west of the rivers, resulting in them now being recognized as a new species: the Gaoligong Hoolock Gibbon or Skywalker Hoolock Gibbon, *Hoolock tianxing* Fan et al. 2017.

Hoolock tianxing was once widely distributed around the west bank of the Salween River, west of Yunnan, China, but >90% of its habitat was lost by 1994 (Fan et al. 2017). In 2009, the population was estimated to be <200 individuals (Fan et al. 2011). In 2017, a second population survey estimated that the total population was less than 150 individuals, made up of 26 family groups and 11 solitary individuals across 17 subpopulations (Zhang et al. 2020). The largest subpopulation has seven groups, and five of the subpopulations only have one group remaining. Although the population remained relatively stable from 2009 to 2017, it is isolated from other populations by distance, villages and roads, and has a low birth rate. For example, the reproductive rates of three mature females were tracked between 2008 and 2020. One of these females produced two offspring in this time (November 2008 and December 2012), whilst the others produced just one (2008 and 2012). *Hoolock tianxing* is listed as Endangered on the IUCN Red List of Threatened Species (Fan et al. 2020).

Agricultural encroachment, commercial logging, habitat fragmentation and isolation, and hunting (for bushmeat and pet trade) are major threats to *H. tianxing*. The population is also threatened by stochastic loss, in which subpopulations are reduced to 1-2 groups with no opportunity for dispersal or gene-flow. Population linking, protection and habitat restoration are urgently needed, and the translocation of non-viable sub-populations may also be required. There is also a hoolock population in Myanmar. While unstudied, it is likely that the population faces similar difficulties to those in China, (i.e., habitat loss and poaching) but there is comparatively less conservation action and law enforcement in Myanmar. As the population in China decreases, the importance of the Myanmar population increases. Therefore, although demand for conservation intervention in Myanmar is high, a...
careful approach is advised to safely navigate the recent political unrest.

The following actions are needed: (1) Raise awareness of this species, especially in China through targeted campaigns; (2) Determine population status in Myanmar through population surveys; (3) Address threats at a local scale through an ethnographic approach; and (4) Investigate possibilities for connecting populated forest fragments and/or translocation of isolated groups/individuals.

The Tapanuli Orangutan, Pongo tapanuliensis, was only formally described in 2017 when it was shown that an isolated orangutan population in the Batang Toru region (which used to be considered the southernmost range of extant Sumatran orangutans, Pongo abelii), south of Lake Toba, is distinct from other Sumatran and Bornean populations (Nater et al. 2017). Through a comparison of cranio-mandibular and dental characters from an orangutan killed during human-orangutan conflict to a comparative sample of adult male orangutans of similar developmental stage, Nater et al. (2017) found consistent differences between the Batang Toru individual and other extant Ponginae. Comparisons of adult male long calls from two Tapanuli males with those of a large sample of Bornean and Sumatran males also revealed a unique mix of long call characteristics. Model-based approaches based on the analyses of 37 orangutan genomes supported the morphological results, revealing that the deepest split in the evolutionary history of extant orangutans occurred around 3.38 million years ago between the Batang Toru population and those to the north of Lake Toba. In comparison, the Bornean Orangutan and Sumatran Orangutan separated much later at about 674 ka. The analyses show that there was some gene flow between the Sumatran and Tapanuli Orangutan species until 10–20 ka. Combined, these analyses supported a new classification of orangutans into three extant species.

Due to high levels of habitat conversion and fragmentation, along with illegal hunting and poaching, the Tapanuli Orangutan is estimated to have experienced a significant population reduction in the past 150 years (Nowak et al. 2017, Meijaard et al. 2021). With a population estimate of 767 individuals (95% confidence intervals: 231–1,597 individuals; Wich et al. 2019), the Tapanuli Orangutan is the least numerous of all great ape species. Its distribution is separated by around 100 km from the closest population of the Sumatran Orangutan to the north. A combination of small population size and geographic isolation is something of particularly high conservation concern. This may lead to inbreeding depression (Hedrick and Kalinowski 2000) and threaten population persistence (Allendorf et al. 2013). For example, in the conflict area of South Tapanuli, only 155 individuals were found (95% confidence interval: 121–187 individuals; Kuswanda et al. 2020). Nater et al. (2017) recorded extensive runs of homozygosity in the genomes of two Tapanuli Orangutan individuals, pointing to the occurrence of recent inbreeding.

The only known population of Tapanuli Orangutans is in the uplands of the Batang Toru Ecosystem, an area of roughly 1,500 km² consisting of three forest blocks, of which 1,023 km² is suitable orangutan habitat (Wich et al. 2016, 2019, Rahman et al. 2019, Kuswanda et al. 2021a). Most of this is ecologically suboptimal upland forest (>500 m asl, up to 1800 m asl), covering the upper watersheds of nine river systems and providing fresh water for over 100,000 people across Tapanuli, which covers 26 sub-districts and 187 villages (Putro et al. 2019). Forest loss data indicate that orangutan habitat below 500 m asl was reduced by 60% between 1985 and 2007 for both the Tapanuli
and the Sumatran Orangutan (Wich et al. 2008, 2011). A recent analysis indicated that the current Tapanuli Orangutan distribution is approximately 2.5% and 5.0% of what it was in the 1890s and 1940s, respectively (Meijaard et al. 2021). It is thought that more Tapanuli Orangutan habitat will be lost as significant areas of forest within its range remain under considerable threat (Wich et al. 2016, 2019, Sloan et al. 2018) from habitat conversion for small-scale agriculture, crop-conflict and related killing, mining exploration and exploitation, a hydroelectric scheme, geothermal development and agricultural plantations. The habitat of the Tapanuli Orangutan consists of 7% conservation forest, 64% protection forest, 4% production forest and the remaining 25% in other use areas/cultivated land (Putro et al. 2019). Orangutan populations are easy to find on land managed by farmers and this poses a high threat to orangutans.

Across the species’ range, the protected areas are not immune from the above threats (Wich et al. 2008, 2011, 2016) and orangutans in these areas are also hunted (Wich et al. 2012). Due to their slow life history, with a generation time of at least 25 years, and an interbirth interval of 8-9 years, orangutans on Sumatra are unable to sustain substantial and continual loss of individuals (Wich et al. 2004, 2009, Marshall et al. 2009, Kuswanda et al. 2021b). Recent studies indicate that the eastern subpopulation may be growing (Kuswanda et al. 2021b). Nevertheless, annual removal rates (killing, translocations, rescues) appear to exceed those needed for maintaining viable populations (Meijaard et al. 2021), while disease risk poses another significant threat (Sherman et al. 2021).

The Tapanuli Orangutan was more widespread until quite recently as indicated by the Meijaard et al. (2021) study, with sightings further south in the lowland peat swamp forests in the Lumut area (Wich et al. 2003) and several nests encountered during a rapid survey in 2010 (G. Fredriksson pers. obs.). The forests in the Lumut area have, however, been almost completely converted to oil-palm plantations in recent years. Observations were also made of a male orangutan in the Adiankoting subdistrict in North Tapanuli, north of the Batang Toru West forest block, during a human conflict situation where the orangutan was shot at with
an air rifle when it was found foraging on Durian fruits (G. Fredriksson pers. obs.). The persistence of viable subpopulations in these areas is not known.

Tapanuli Orangutans have been observed feeding on a number of tree species that have not previously been recorded in orangutan diets. These unique species include Gymnostoma sumatranum from the Casuarinaceae family, and Dacrycarpus imbricatus, Dacrydium beccarrii, Dacrydium comosum, and Podocarpus neriifolius from the Podocarpaceae family. At the Sumatran Orangutan Conservation Programme’s (SOCP) long-term monitoring station in the Batang Toru Ecosystem, 21.9% of all feeding observations recorded between 2011 and 2015 were represented by five conifer species (Araucariaceae and Podocarpaceae) and one non-conifer evergreen species (Casuarinaceae). Seeds of Agathis borneensis from the Araucariaceae family have also been identified consuming Hevea brasiliensis and Coffea arabica fruits (Kuswanda et al. 2021c). Thus, a significant proportion of the dietary profile of Tapanuli Orangutans is markedly different from that of previously studied orangutan populations. This may indicate that this is a refugee species that has been pushed out of more optimal lowland habitat by past hunting (Meijaard et al. 2021).

Due to the extremely rugged terrain, external threats have been primarily limited to illegal clearing of protected and production forests, hunting and killing during crop conflict, and trade in young orangutans (Wich et al. 2012, 2016, Kuswanda et al. 2021b). In the southwest corner of the Batang Toru Ecosystem, a large gold and silver mine has converted key lowland habitat of the Tapanuli Orangutan and retains controversial mining permits overlapping parts of the remaining Tapanuli Orangutan range. Recent expansion of the mine has led to further deforestation in the area where the Tapanuli Orangutan occurs.

A hydro-electric development has been underway in the Tapanuli Orangutan’s range since 2017 (Laurance et al. 2020, Prasetyo et al. 2021). Opinions about impacts differ significantly, even among orangutan conservation scientists and practitioners. On the one hand, opponents of the dam argue that the dam could impact roughly 100 km² of Tapanuli Orangutan habitat, or nearly 10% of the entire species population (Sloan et al. 2018). The dam would jeopardize the chances of maintaining and restoring habitat corridors between the western and eastern Tapanuli Orangutan ranges and a strict nature reserve with a small population of Tapanuli Orangutans (Wich et al. 2019). If the connectivity between these populations is not restored, it is argued that the long-term survival of the Tapanuli Orangutan will be severely threatened (Wich et al. 2019).

Proponents of the dam, on the other hand, have argued that the dam is a legitimate development program by the Indonesian government needed to meet Sumatra’s clean energy needs. Most of the infrastructure development is carried out on rubber plantations and community agricultural lands that are no longer habitat for orangutans. The hydro-dam company has also implemented various conservation programs, such as the development of arboreal bridges and vegetation corridors, re-vegetation of degraded areas, and the establishment of a special conservation program for the species. They believe that these measures will reduce the total impact of the hydroelectric project and that, in fact, the hydrocompany can make a significant positive contribution to the likelihood of survival of the species (Prasetyo et al. 2021).

In order to safeguard the future of the most endangered great ape species, all possible efforts must now be made to prevent any further degradation of Tapanuli Orangutan habitat, and to reconnect its three habitat fragments to restore genetic exchange. As it currently stands, two of the three habitat fragments do not have viable populations, leaving only one viable but highly threatened population to safeguard the future of the species. Lastly, field management activities need to be established to prevent further hunting and encroachment, with clear and enforced boundary demarcation, and active human-orangutan conflict mitigation efforts must be put in place. The Tapanuli Selatan government is urged to legalize the animal (such
as orangutan) corridor plan that was stated in the Provincial Strategic Area regulations number 2, 2017 and number 5, 2017 and the Tapanuli Selatan district regulation number 63, 2020.

NEOTROPICS
ecological and behavioral studies of groups of C. flaviceps and C. aurita. As with the other marmosets, C. flaviceps eats fruits, flowers, nectar, plant exudates (gums, saps, latex), fungi and animal prey (including frogs, snails, lizards, spiders, and insects) (Ferrari 1988, 1991a, Corrêa et al. 2000, Hilário and Ferrari 2010a). Marmosets also have morphological and behavioral adaptations for gouging tree trunks, branches, and vines of certain species to stimulate the flow of gum, which they eat, forming a notable component of their diet (Coimbra-Filho 1972, Rylands 1984). Nevertheless, C. flaviceps rarely gouges trees in order to stimulate exudate production and feeds primarily on exudates already available (Ferrari 1991b, Hilário and Ferrari 2010a).

Buffy-headed Marmosets live in extended family groups of 3 to 20 individuals (Alves 1986, Ferrari 1991b, Ferrari and Digby 1996, Guimarães 1998, Hilário and Ferrari 2010a), and groups present weak territoriality and occupy large home ranges (33.9 to 138.3 ha) compared to other congeneric species (Ferrari 1991, Guimarães 1998, Hilário 2009). Generally, only a single dominant female breeds, although up to four females have been seen to reproduce simultaneously in one large group (Ferrari 1991, Guimarães 1998, Hilário and Ferrari 2010b). Births often occur twice a year, however, the reproductive peak in the dry season is less pronounced (Ferrari 1991), with some populations even avoiding reproduction in this season (Hilário and Ferrari 2010a).
Callithrix flaviceps and C. aurita are the southernmost marmosets in terms of the natural range of the genus. Callithrix jacchus, C. penicillata and C. geoffroyi have been introduced further south in the Brazilian states of São Paulo, Paraná, Santa Catarina, Rio Grande do Sul and in Argentina (Santos et al. 2005). They occur in the montane Atlantic coastal forest and forests of the inland plateau, at altitudes up to 1,200 m where dry season temperatures can fall close to freezing (Ferrari et al. 1996). They show some level of tolerance and flexibility to habitat disturbance, being sometimes rare in old growth forest with sparse understories (Ferrari 1988, Ferrari and Mendes 1991). There is a natural hybrid zone with C. aurita, in the region of Carangola, Tombos and Caiana municipalities, in south-eastern Minas Gerais (Coimbra-Filho et al. 1993, Cosenza 1993, Mendes 1997a, Cosenza and Melo 1998).

Callithrix flaviceps has a restricted range in an area where the forest is extremely fragmented due to expanding agriculture, cattle ranching, tree plantations (Eucalyptus), urbanization, mining and dam construction (Coimbra-Filho 1986a, 1990, Ferrari and Mendes 1991, Mendes and Melo 2007). Mendes and Melo (2007) surveyed forest fragments in the Zona da Mata of the state of Minas Gerais, and recorded the presence of introduced populations of Callithrix jacchus, C. penicillata, and C. geoffroyi, which they believe are displacing C. flaviceps. They recommended awareness campaigns to reduce the habit of releasing exotic marmosets in the forests surrounding the town of Manhuaçu. Since this study, the presence of invasive congenerics, resulting in mixed groups and hybrid specimens, has unfortunately become common and results in ecological competition and genetic erosion for the native and threatened Callithrix flaviceps (see Malukiewicz et al. 2021). A recent survey in the Caratinga Biological Station/Reserva Particular do Patrimônio Natural (RPPN) Feliciano Miguel Abdala indicated a 90% population decline since 2005, primarily due to a yellow fever outbreak (Possamai et al. 2019). Other subpopulations were highly impacted by this epidemic in Espírito Santo (S.L. Mendes, pers. obs.), and this may be the case throughout the species’ range.

This species has been estimated to have a mean density of 7.1 individuals/km² (range: 3.4 to 18
individuals/km²) in the Augusto Ruschi Biological Reserve, Espírito Santo (Pinto et al. 1993), while Hilário (2009) recorded a density of 15.4 individuals/km². At the Caratinga Biological Station/RPPN Feliciano Miguel Abdala, Minas Gerais, the recorded densities were 40 individuals/km² (Ferrari 1988) and 13 individuals/km² (Almeida-Silva et al. 2005). A recent study of occupancy in the northwest boundary of the species’ range (in Atlantic Forest patches in private reserves and their surroundings in the central region of Minas Gerais), detected healthy, pure-breeding groups in 25 of 145 sites surveyed, ranging from 2–12 individuals, and two hybrid groups (Carmo 2022). Using a conservative approach (with the lowest density reported for the species), we estimate a total population of 4,440, consisting of less than 2,500 mature individuals (Brazil, ICMBio 2018). Considering the highly fragmented landscape in which *C. flaviceps* occurs, it is also unlikely that any subpopulation has more than 250 mature individuals (Melo et al. 2019).

A population reduction of at least 80% over 18 years (three generations) has been inferred based on cumulative and synergistic impacts of the historical habitat loss in the species’ restricted range, the diminished and severely fragmented habitat remnants, ecological competition and genetic erosion caused by the invasion of congeners, and the recent yellow fever outbreak. Thus, *Callithrix flaviceps* was classified as Critically Endangered on the IUCN Red List of Threatened Species (Melo et al. 2021), as it was for the national Brazilian assessment (ICMBio in prep.).

The larger protected areas where the species occurs are the Caparaó National Park, the Augusto Ruschi Biological Reserve, the Rio Doce State Park, and the Pedra Azul State Reserve. It is also present in a series of privately owned reserves, including the Caratinga Biological Station/RPPN Feliciano Miguel Abdala, the RPPN Mata do Sossego, and the Montes Verdes Forest Reserve. It is not clear, however, whether (and to what extent) these areas are free from the invasive and hybrid forms. This highlights the crucial need to develop effective methods to control the invasive congeners and the resulting hybrid populations, as well as implementing recovery strategies for native populations of *C. flaviceps*.

The Mountain Marmosets Conservation Center of the Federal University of Viçosa (CCSS-UFV) was recently created with the specific goal to breed and maintain captive groups of *C. aurita* and *C. flaviceps*, and to set up an ex situ management program to preserve the species’ genetic diversity and support releases in key areas. A group of researchers and managers from several institutions (universities, NGOs, zoos, public agencies) has established a series of tools and methodologies to increase our knowledge of the species, including developing a *Callithrix* occurrence database to identify priority areas for surveying, conserving, and managing populations of these species. These initiatives are part of the Mountain Marmosets Conservation Program (MMCP), which is developing an operational agenda for the effective implementation of the conservation strategies established by the National Action Plan for the Conservation of the Atlantic Forest Primates and the Maned Sloth (Brazil, ICMBio, 2018).

The Ka’apor Capuchin (Cebus kaapori), first described just over 30 years ago, is endemic to the eastern edge of the Brazilian Amazon, in the so-called Centro de Endemismo Belém (Belém Endemism Center), in the north-east of the state of Pará and the north-west of the state of Maranhão (Queiroz 1992). Its range extends from the east of the lower Rio Tocantins to the Rio Grajaú, where it enters the Zona dos Cocais (Queiroz 1992, Ferrari and Queiroz 1994, Ferrari and Souza 1994, Silva and Cerqueira 1998, Carvalho et al. 1999, Cunha et al. 2007). The Extent of Occurrence is 206,081 km² (Butti et al. in prep.). This species is usually observed in tall lowland terra firma forest, generally below 300 m above sea level, and has not been recorded in seasonally inundated or secondary forest (Silva Jr. et al. 2009, 2010, Rylands and Mittermeier 2013). It is generally seen in small groups of up to ten individuals, sometimes accompanying the Endangered Black Saki (Chiropotes satanas) (Ferrari and Lopes 1996, Carvalho et al. 1999). Besides surveys and abundance studies, recent research has provided additional ecological information about the species (Oliveira et al. 2014).

Due to the threats of habitat loss and hunting, and a drastic population reduction, C. kaapori is classified as Critically Endangered on the IUCN Red List of Threatened Species (Fialho et al. 2021), likewise in the national assessment of Brazil (Brazil, MMA 2014, Fialho et al. 2018). Lopes and Ferrari (1993) and Ferrari and Queiroz (1994) concluded that C. kaapori is one of the most threatened of all Amazonian primates. The Ka’apor Capuchin inhabits a densely populated region with the highest level of deforestation and habitat degradation in the entire Brazilian Amazon (Carvalho et al. 1999). More than 70% of the forest has been destroyed, converted to farmland and pasture (Almeida and Vieira 2010). Deforestation continues, and most of the remaining forests are isolated and degraded patches in farmland where this species is also hunted. Habitat loss across the species’ range from 1985 to 2020 was estimated at 32.8% (Butti et al. in prep.). A species distribution model indicates that C. kaapori could lose all of its forests because of climate change and deforestation over the next 30 years (da Silva et al. 2022).

Cebus kaapori occurs in two protected areas: the Lago de Tucuruí Environmental Protection Area of 5,687 km² that allows for sustainable use; and the Gurupi Biological Reserve of 2,712 km² that is under strict protection. In 2015, Gurupi and contiguous indigenous lands were seriously affected by forest fires. The Chico Mendes Institute for Biodiversity Conservation (ICMBio) estimated that 1,330 km² of the Gurupi reserve was impacted (Buss et al. 2017), reducing the available habitat for C. kaapori.

Lopes (1993) recorded three groups over 480 km surveyed in the Gurupi Biological Reserve (0.06 groups/10 km). Carvalho et al. (1999) registered a relative abundance of 0.99 groups/10 km in the Fazenda Cauaxi, in Paragominas. More recently, Buss et al. (2017) found 0.25 groups/10 km in a survey of 320 km, in the Gurupi reserve. These results indicate that the Ka’apor Capuchin is naturally rare; it is hunted and is susceptible to any, even light, disturbance, or degradation of its habitat. Selective logging of fruit trees that form a significant part of the species’ diet is a
considerable threat (Lopes 1993). Its rarity may be related to competition with the sympatric Black-capped Capuchin (*Sapajus apella*) and naturally low densities may reflect the need for large home ranges.

A Population Viability Analysis using Vortex software indicated only three viable populations over the next 100 years (Campos 2009): a complex of Indigenous Territories in the state of Maranhão (Caru, Awá, Alto Turiaçu, Araribóia); Alto Rio Guama, an Indigenous Territory in the state of Pará; and the Gurupi Biological Reserve along the border between the two states.

Ka’apor Capuchins are maintained in only a few zoological institutions, such as São Paulo Zoo (Fundação Parque Zoológico de São Paulo), Rio de Janeiro Zoo (BioParque do Rio de Janeiro) and the National Primate Center (Centro Nacional de Primatas [CENP], linked to the Brazilian Ministry of Health) (Mônica M. Valença-Montenegro - ICMBio/CPB, pers. comm.). Guajá Indians often keep them as pets (Queiroz 1992).

A study on the ecology of *C. kaapori* in the Gurupi Biological Reserve, aiming to generate the first systematic information on home range, habitat use, diet and activity pattern of the species in continuous forest, is being carried out by Tatiane S. Cardoso. Preliminary data indicate large home ranges of approximately 300 ha for a group with 12 individuals, among the largest estimated for the genus *Cebus* (Cardoso 2021).

Strategies to promote the conservation of *C. kaapori* are included in the *Brazilian National Action Plan for the Conservation of the Amazonian Primates* (Brazil, MMA 2017). The Gurupi Biological Reserve is one of the study areas of the project “Primates in Protected Areas of the Brazilian Amazon: assessing the impacts of forest fires over endangered primates,” coordinated by the National Center for Research and Conservation of Brazilian Primates (ICMBio/CPB) and supported by Re:wild. This project aims to evaluate the occurrence and abundance, conservation status and impacts of fires on endangered primate populations in protected areas along the Brazilian Amazon’s Arc of Deforestation, to provide information to support further protection and management actions.

The reproductive biology of *C. aequatorialis* is unknown. In other species of the genus, sexual maturity in females occurs when they are 4–7 years old and one year later in males. However, both sexes only reach adult body size at about 15 years old (Rylands et al. 2013). Considering that successful reproduction usually occurs only when animals have attained adult body size, the generation time is estimated to be about 15–16 years (Moscoso et al. 2021).

The main threats to *C. aequatorialis* are forest loss and fragmentation, which have been particularly severe in western Ecuador. About 70% of the original forest cover in this region has been converted, mainly for agriculture and ranching (Ministerio del Ambiente 2012, Sierra 2013, Gonzalez-Jaramillo 2016, Cervera et al. 2018a). It is estimated that the species distribution has been reduced to less than 1% of its original range in the last few decades (Albuja and Arcos 2007), and different modelling methods have indicated that only 5,000 km² (Campos and Jack 2013) or 8,600 km² (Albuja et al. 2018) of suitable habitat remains. A recent assessment by Tirira (2021b) estimated that the remaining area of native forests for the species in Ecuador is 10,701 km², representing an 83% reduction of its historical area of occurrence and a 75% reduction of its suitable habitat (suitable habitat within the area of occurrence). The author found that only 39% of the remaining area is under protection (national and private protected areas) and, based on current deforestation trends, estimated an additional 7% loss of suitable habitat by 2050.
To date, however, the presence of the species in most of this estimated area has not been confirmed.

Cebus aequatorialis is considered a pest in plantations of corn as well as bananas, plantain, and cacao, and hence is persecuted, poisoned, and hunted. In some areas of mangrove, local people see it as a competitor in crab-hunting and persecute it. Captive animals have been observed in local villages in western Ecuador (Moscoso et al. 2021). The species is also used as a tourist attraction in some areas, such as the western slopes of the Cotopaxi province, where capuchins have been habituated to approach the vicinities of road restaurants to obtain food. The owners of the restaurants give visitors bananas and other fruits to attract the capuchins (F. Alfonso-Cortes and N. Fuentes, pers. obs.).

In Ecuador, *C. aequatorialis* has mostly been reported to occur in public and private protected areas (see below), which are the only sites with sufficient forest to support the species. In disturbed areas, i.e., most localities in Ecuador, the species is elusive, tending to flee upon sighting. In a census of four species of western Ecuadorian primates carried out from October 2016 – March 2017, in 83 localities of 13 provinces, only 13 out of 260 records (5%) were of *C. aequatorialis* (Cervera et al. 2018a). Surveys from previous years evidenced a relatively wide variability in local abundance (Cervera et al. 2018b). In central-western Ecuador, Jack and Campos (2012) estimated densities of 2–22 ind/km² (mean 2.4 ind/km²). In central and southwestern Ecuador, Albuja and Arcos (2007) estimated densities of 3.5 and 3.9 ind/km².

Information about the species’ demography and distribution in western Ecuador has been provided by Albuja and Arcos (2007), Jack and Campos (2012), Campos and Jack (2013) and Cervera et al. (2018a). According to a recent assessment carried out by Tirira (2021b), the habitat of this species is severely fragmented. The largest forest fragment, located between Cordillera Chongón-Colonche and Machalilla National Park, corresponds to 21% of the suitable habitat; the average area for fragments larger than 1 km² (n = 730) is about 13 km². It is predicted that about 8%...
of the species suitable habitat would be lost by 2050 due to climate change (Tirira 2021b).

A recent survey determined two conservation priority areas for the species, covering a total of 129 km² of forest in the Azuay province, in southwestern Ecuador. Connectivity between the two areas is limited, however, and the possibility of mining activities taking place in these areas creates a complex scenario for the species’ viability (Tirira and Gallo-Viracocha 2021). In primate censuses carried out by Proyecto Washu (PW) in a 600-ha forest fragment in the canton Flavio Alfaro of the Manabí province in 2019, C. aequatorialis was encountered three times (Duch-Latorre et al. 2019). In 2020, PW surveyed 41 forest fragments (ranging in size from 10 to 100 ha) in northern and eastern Manabí and recorded the presence of the species in only four fragments (9.7%), with a total of six encounters. The number of individuals in the sightings ranged from 5 to 12 individuals (Rivera et al. 2020). In November 2021, PW and Naturaleza y Conservación Internacional (NCI) carried out a primate survey in the Casaderos Private Reserve, in Loja province; but the species was not found (Vega et al. 2022). Other, smaller, short-term studies have provided information about local abundance and conservation threats (Moscoso-Silva 2013, Solórzano 2014, Cervera et al. 2015), but the species remains poorly studied across most of its potential range.

In Peru, studies on C. aequatorialis are scarce. It is known to occur only in government protected areas that provide a certain degree of protection. However, there is very little information on its status in these protected areas and limited capacity to monitor them. In these areas, Hurtado et al. (2016) reported a group size of 3–12 individuals and an encounter rate of 0.3 ind/km (based on 7 sightings during 112 km of transects). Previously, group sizes of 3–5 individuals were reported in 1980 (Saavedra and Velarde 1980) and 1994 (Encarnación and Cook 1998). Improving forest connectivity along Ecuador and Peru’s border is imperative to maintain the species in both countries (Hurtado et al. 2016). In 2019, a bi-national collaborative project led by the Universidad San Francisco de Quito, in Ecuador, and Fundación Yunkawasi, in Perú, was initiated to address these research and management priorities. Although several project activities that were planned for 2020 and 2021 were not carried out because of the COVID-19 pandemic, local field assistants were able to intermittently monitor two groups of the species in the fragmented Ecuadorian forests of La Libertad parish, in the El Oro province, close to the Peruvian border. Data from these monitoring efforts are being analyzed and will be published in 2022 (de la Torre et al. in prep.). The activities of this bi-national project are expected to resume in 2022.

The species has been reported to occur in various public and private protected areas. In Ecuador (Cervera et al. 2018b) these are: Chocó Andino de Pichincha, Parque Nacional Machalilla, Reserva Ecológica Los Ilinizas, Reserva Ecológica Mache-Chindul, Reserva Ecológica Manglares Churute, Refugio de Vida Silvestre Manglares Estuario Río Muisne, Refugio de Vida Silvestre Marino y Costera Pacoche, Área importante para las Aves Tito Santos, Bosque Protector Puyango, Bosque Protector Bellavista, Bosque Protector Buenaventura, Bosque Protector Cambugán, Bosque Protector Cerro de Hayas, Bosque Protector Cerro Blanco, Bosque Protector Jama-Coaque, Bosque Protector Yaku Sinchi,
Bosque Protector Jaunche, Bosque Protector La Hesperia, Bosque Protector La Otona, Bosque Protector Lalo Loor, Bosque Protector Maquipucuna, Bosque Protector Mashpi, Bosque Protector Mindo- Nambillo, Bosque Protector Rio Guajalito. In Peru, it is reported from Cerros de Amotape National Park, Angostura Faical Regional Conservation Area, and Tumbes National Reserve. Finally, it is also reported from Bosques de Pes, a bi-national reserve of Ecuador and Peru.

Conservación, Pontificia Universidad Católica del Ecuador and Ministerio del Ambiente del Ecuador.

Groves’ Titi Monkey, *Plecturocebus grovesi*, occurs in the southern Brazilian Amazon and its ecotonal zone with the Brazilian Cerrado. It is a member of the subfamily Callicebinae, the most diverse group of Amazonian primates.

Titi monkeys of the genus *Plecturocebus* are small (about 1 kg). They are monogamous— the male provides much of the infant care (Spence-Aizenberg et al. 2016), they duet and, when the pair are together, they tend to intertwine their tails. The Amazonian species use all forest strata, but forage and travel mostly in the dense understory (0.5 to 10 m). They sometimes go to the ground at times of fruit scarcity (Souza-Alves et al. 2019). Small fruits (whole fruits, pulp, aril, and seeds) and insects make up the bulk of their diet (Bicca-Marques and Heymann 2013). *Plecturocebus grovesi* has yet to studied in the wild.

The range of Groves’ Titi is delimited by the rios Juruena and Arinos in the west and the Rio Teles-Pires in the east. To the north, the range reaches the Juruena National Park, while the southernmost record is approximately 10°S. It is probable that the Amazon forest – Cerrado ecotone – marks the limit to its range in the south (about 13°S). More surveys, however, are needed to confirm this (Boubli et al. 2019).

Boubli et al. (2019) estimated that, to date, 42% of its forest habitat has been lost (excluding savannas), corresponding to 39% of the species’ total distribution (forest and savannas). In addition, they forecast further habitat loss over the next 24 years, which will amount to 50% under an optimistic “governance” scenario or to 86% under a “business-as-usual” scenario. The latter is most likely, given the current process of protected area downgrading, downsizing, and degazettement (PADDD) in the Brazilian Amazon and the planned complex of hydroelectric dams for this region (Bernard et al. 2014, Ferreira et al. 2014, Pack et al. 2016, Fernandes et al. 2017, UHE Teles-Pires 2018). Based on these studies, and other evidence, Groves’ Titi was classified as Critically Endangered on the IUCN Red List of Threatened Species (Boubli et al. 2020). This was substantiated by evidence that a future population reduction of at least 80% is suspected to take place over the next three generations (c. 24 years) (Veiga et al. 2011, Defler and García 2012, Boubli et al. 2019, 2020). The species was assessed as Endangered in the Brazilian national assessment, using the same criterion, but adopting the “governance” scenario as more probable, thus projecting a population reduction of at least 50% in the next three generations (Brazil, ICMBio in prep.).

Habitat destruction and fragmentation is widespread in the species’ range. Its distribution is entirely within the Amazon’s arc of deforestation, the fast-advancing agribusiness frontier of Brazil. This region contains the largest tropical ecotone in the world, where the megadiverse Amazon forests meet tropical savanna, the Brazilian Cerrado, the latter one of the most threatened biodiversity hotspots. Habitat restoration in the southwestern Amazon might be extremely difficult and costly in the following decades, due to the savannization of forests associated with longer droughts and higher temperatures.
Members of the Mato Grosso state legislature are trying to pass the ordinance law PL-337/2022 which will withdraw Mato Grosso state from the Legal Amazon umbrella; all Brazilian States within the Legal Amazon status are obliged by law to preserve 80% of their forest cover. If this new ordinance is approved, deforestation will quickly escalate to a level that will put at risk many southern Amazonian species including the already Critically Endangered Groves’ Titi Monkey.

Forest loss must be mitigated or avoided by the creation of private and governmental reserves, the enforcement of the law to protect forest set-asides (‘Legal Reserves’), and the replacement of large areas of chemical-dependent monocultures of commodity crops by more sustainable models of land use, such as agroforests and agroecological food production. Forest degradation must also be avoided by the prevention of fires and logging, which has recently been stimulated by land-grabbers incited by the lack of enforcement. The geographic range of Groves’ Titi Monkeys encompasses nine protected areas in Mato Grosso, most of them located in the north portion of the species distribution, but with only one record to date for Groves’ Titi Monkeys in one of them. These protected areas range from indigenous lands (Kaiaby, Batelhão, Apiaká-Kayabi and Apiaká do Pontal e Isolados), to national parks (Parque Nacional do Juruena), state reserves (Reserva Ecológica Apiacás) and privately-owned, sustainable-use reserves (RPPN Reserva Ecológica América Amazônia, RPPN Reserva Ecológica Verde Amazônia). There are no protected areas in the central and southern portions of the species distribution.

The inclusion of *Plecturocebus grovesi* in the *National Action Plan for the Conservation of the Amazonian Primates* (Brazil/ICMBio 2017) – the Brazilian public policy to establish conservation strategies for threatened species – will take place the moment the species is formally recognized as under extinction risk and included in the National Official List of Threatened Species (expected to occur in 2022 or 2023). We suggest that Groves’ Titi Monkey be adopted as the flagship species for Mato Grosso – the species is endemic to this state, it is charismatic, and it is now listed here as one of the World’s 25 Most Endangered Primates.
We can use the species to raise local awareness in order to mitigate threats to the forests where the titi still struggles to survive in the Brazilian epicenter of agribusiness.
Alouatta guariba is endemic to the Atlantic Forest in eastern Brazil and northeastern Argentina. In the south, its range is limited by the Camaquã river basin in the state of Rio Grande do Sul (Printes et al. 2001) and, in the past, to the north by the Rio Paraguacu in the state of Bahia (Gregorin 2006). The western boundary is marked by the limits of the Atlantic Forest. In Argentina, the species only occurs in the province of Misiones (Agostini et al. 2014), while in Brazil it is present in the states of Rio Grande do Sul, Santa Catarina, Paraná, São Paulo, Rio de Janeiro, Minas Gerais, Espírito Santo, and Bahia (Bicca-Marques et al. 2018, Neves et al. 2018). Although somewhat uncertain, there are currently two subspecies recognized: the Southern Brown Howler, A. guariba clamitans Cabrera, 1940, and the Northern Brown Howler, Alouatta g. guariba, north of the rios Jequitinhonha or Doce (Rylands et al. 2000, Glander 2013).

The Brown Howler is a folivore-frugivore, including more or less fruit in its diet according to seasonal availability (Neville et al. 1988, Chaves and Bicca-Marques 2013, 2016, Chaves et al. 2018). As such, Brown Howlers are important seed dispersers for numerous plant species (Chaves et al. 2018). Home range size varies between study sites but averages 13 ha (Fortes et al. 2015). Ranges of 15 groups studied varied from 1.8 to 33 ha (Miranda and Passos 2011). Day range varies from 50 m to 1,677 m (Fortes et al. 2015). Groups average 4 to 6 individuals but can be as large as 13 (Jardim 2005, Miranda and Passos 2005, Ingberman et al. 2009). Uni-male, uni-female, and multimale-multifemale groups have been reported (Glander 2013). The size of an adult male is 50–60 cm (head-body) and 52–67 cm (tail), while an adult female is 44–54 cm (head-body) and 48–57 cm (tail). Adult males weigh 5.3–7.2 kg and adult females weigh 4.1–5 kg (Glander 2013). Longevity is estimated at 15–20 years (Strier 2004). Females reach sexual maturity at between three and six years and males at five years (Strier et al. 2001), the gestation period is approximately 190 days (Steinmetz 2000, Jardim, 2005). Females have singletons, with an interbirth interval of 9–22 months (Strier et al. 2001).

As for all the Atlantic Forest primates, the Brown Howler has suffered extensive habitat loss since the European arrival in Brazil more than five centuries ago. The principal economic cycles during colonization broadly devastated the forest cover in this region, which today concentrates around 70% of the Brazilian population (about 150 million people), as well as the principal capital cities, with corresponding industrial activity and urbanization (Scarano and Ceotto 2015). In Brazil, the Atlantic Forest has been reduced to 11.7% of its original coverage (Ribeiro et al. 2009). The remaining forest is immensely fragmented into hundreds of thousands of patches, the great majority of which are 50 ha or less (Ribeiro et al. 2009), hence unsuitable to support viable Brown Howler Monkey populations in the long term. Being one of the largest primates in the Atlantic Forest, the species has been extensively hunted, and also suffers to some extent from the pet trade.
Disease epidemics are an additional and very serious threat. Howlers are highly susceptible to yellow fever, and two recent outbreaks (2008/2009, 2016/2021), have severely affected their numbers throughout the Atlantic Forest (Holzmann et al. 2010, Almeida et al. 2012, Bicca-Marques et al. 2017, Silva et al. 2020, Andrade et al. 2021). Due to misinformation and the dissemination of the fear that humans could be infected directly through contact or proximity with monkeys, howlers were persecuted, with many injured and killed during the outbreaks (Bicca-Marques and Freitas 2010, Bicca-Marques et al. 2017, Bicca-Marques 2018). In the next few decades, pathogen exposure could act synergistically with other threats such as habitat loss, putting populations at high extinction risk (Bicca-Marques et al. 2020).

In the south, Brown Howlers (Alouatta guariba clamitans) occur in lowland forests along Brazil’s coast as well as in higher elevation sub-montane and montane forests and seasonal semi-deciduous forests inland (Bicca-Marques et al. 2018). In southern Brazil and northeast Argentina, they also occupy a transition of mixed Upper Paraná Atlantic Forest and Araucaria Moist Forest (Miranda and Passos 2005, Agostini et al. 2014). Aguiar et al. (2007) recorded the species in periodically flooded and semi-deciduous forests in the Rio Paraná floodplains.

The primary threats are widespread forest loss and fragmentation throughout the subspecies’ range due to logging, agriculture, and cattle-ranching (Bicca-Marques 2018). The most common causes of death and injury of Brown Howlers in urban and peri-urban (and even, rural) regions of southern Brazil are electrocution on power lines (37%), dog attacks (34%), vehicle collisions (17%), and human mistreatments (12%) (Chaves et al. 2022).

The design and implementation of conservation strategies for the Southern Brown Howlers in urban and peri-urban regions (e.g., establishment of urban protected areas/biological corridors, installation of wildlife crossings, and insulating of power lines) are crucial for the long-term survival of these animals (Jerusalinsky et al. 2010, Printes et al. 2010, Alfaya et al. 2020, Chaves et al. 2022). Although some local population census data are available, the total remaining population is unknown but certainly declining. In Argentina, the
situation is even worse, and only few populations persist with no more than 20–50 adult individuals (Agostini et al. 2014, Moreno et al. 2015).

The Southern Brown Howler is listed as Vulnerable on the Brazilian list of threatened fauna (Brazil, MMA 2014, Bicca-Marques et al. 2018) and as Critically Endangered on the Argentinian Red list of mammals (Agostini et al. 2019). On the IUCN Red List of Threatened Species, it is currently categorized as Vulnerable (Jerusalinsky et al. 2021), but it may be a candidate for the Endangered category after the 2016–2021 yellow fever outbreak (Bicca-Marques et al. 2017).

Recently a National Conservation Plan for the Primates of Argentina was officially recognized by the government. One of its specific objectives includes, “Evaluating and reducing the impacts of yellow fever on primates in Argentina.” Evaluation of the recovery of A. g. clamitans populations through an ex situ conservation program is given high priority – analyzing the possibility of starting a program of reproduction and reintroduction and/or translocation of specimens with the coordination and guidance of IUCN experts.

The Northern Brown Howler Monkey (Alouatta guariba guariba) inhabits lowland, submontane, and montane Brazilian Atlantic Forest. It has a considerably more restricted range than A. g. clamitans and is classified as Critically Endangered both on the Brazilian list of threatened fauna (Brazil MMA 2014, Neves et al. 2018) and the IUCN Red List of Threatened Species (Neves et al. 2021). It has been listed as one of the world’s 25 most threatened primates since 2012 (Neves et al. 2017, Buss et al. 2019). Adding the locations in the lower reaches of the Jequitinhonha basin reported by Rylands et al. (1988) and the small populations of A. g. guariba discovered in the last decade, the total population is unlikely to sum more than 250 mature individuals, and no subpopulation is believed to have more than 50 mature individuals (Neves et al. 2017, 2018). Overall, the main threats to the wild populations of this subspecies are habitat fragmentation, hunting, and the very small sizes of the scattered populations (Neves et al. 2021) and, like the southern subspecies, probably risk of electrocution, vehicle collision, and dog attack in the urban and peri-urban areas they inhabit (Chaves et al. 2022). Finally, the potential impact of COVID-19 and other associated infectious diseases on the survival of both Brown Howler subspecies is unknown, but it cannot be discounted. Further investigations on the topic are crucial.

There are protected areas in the Northern Brown Howler’s range in the state of Bahia and north-eastern Minas Gerais, all created since 1980. Nevertheless, the only strictly protected area where the species has been confirmed is the Mata Escura Biological Reserve (51,046 ha), just north of the middle Rio Jequitinhonha (Melo 2004, 2005).

The two subspecies of Alouatta guariba are included in the Brazilian National Action Plan for Conservation of the Atlantic Rainforest Primates and Maned Sloth (Brazil MMA 2018), and the southern subspecies also in the Primate Conservation Action Plan of Argentina (Argentina, MADS 2021). These plans provide measures to identify important areas for conservation in order to (a) restore, maintain and increase habitat and its connectivity, (b) mitigate the impact of roads and power lines, and (c) assess and mitigate the impact of epizootics on the species.

The National Center for Research and Conservation of Brazilian Primates (ICMBio/CPB) is planning to establish the “Population Management Program for Alouatta guariba” during 2022, as part of the Brazilian action plan and following the new national official guidelines (Brazil ICMBio 2021). The main aim of this program is to promote population restoration, to counteract recent population declines and suspected local extinctions following the Yellow Fever outbreaks. This program may result in outcomes contributing to the restoration of the population in Misiones Province, Argentina, now reduced to less than 100 individuals.

Brown-headed Spider Monkeys are found in Central and South America, from southeast Panama to Ecuador, west of the Andes along the Chocó Ecoregion (Konstant and Rylands 2013). They occur mostly in evergreen humid tropical and subtropical forests (Tirira 2017), living in groups of up to 35 individuals with fission-fusion dynamics (Eisenberg 1976, Link et al. 2009), forming subgroups ranging from two to ten individuals when they are searching for food (Gavilanez 2006, Estévez-Noboa 2009, Moscoso 2010, Cueva and Pozo-Rivera 2010). The species inhabits mainly large continuous forest patches in primary or secondary forest (Defler 2004, Tirira 2017), although there is a population inhabiting fragmented landscapes in Ecuador (Cervera and Griffith 2016). Its presence seems to be determined by its habitat requirements, such as continuous canopy cover and high abundance of large and tall trees (Tirira et al. 2011). It prefers the highest levels of the canopy but can also be observed at mid-levels, and occasionally in the understory (Tirira 2017).

The diets of Brown-headed Spider Monkeys consist mainly of ripe fruits (70–90% of its diet) (van Roosmalen and Klein 1988, Konstant and Rylands 2013). Their preferred fruit is generally hard with large pits, including those of various palms, although it also eats soft, small, and multi-seeded fruits (Morelos-Juárez et al. 2015, Fuentes et al. 2018). They also eat fresh leaves, seeds, aerial roots, and some invertebrates, such as insects. They eat flowers and shoots to a lesser degree (Konstant and Rylands 2013, Morelos-Juárez et al. 2015, Alfonso-Cortes et al. 2022). As is true for the genus, Brown-headed Spider Monkeys are effective seed dispersers (Morelos-Juárez et al. 2018a) and key for the maintenance of high levels of tree diversity in Chocóan forests (Calle-Rendón et al. 2016).

Brown-headed Spider Monkeys can travel up to three km in a day (Morelos-Juárez et al. 2018a). They travel through the canopy by quadrumanous and prehensile-tailed scrambling and brachiation but may also run on all fours along thick branches. Females becomes sexually mature at four to five years old, but usually do not give birth before seven or eight years of age. The gestation period is 226 to 232 days with females normally giving birth to a single offspring every 2–4 years, after which the youngster clings to its mother’s underside for the first few months (Eisenberg 1973).

Defler (2004) suggested that Ateles fusciceps should be considered a subspecies of Geoffroy’s Spider Monkey (Ateles geoffroyi) following Collins and Dubach (2000). However, the taxonomic status of both species was further reviewed, and the evidence suggests that they are valid, distinct species (Rylands et al. 2006, Morales-Jiménez et al. 2015). Preliminary genetic analyses from samples from the south of Colombia and the north of Ecuador show two
different monophyletic clades (Morales-Jiménez et al. 2015), and two subspecies are recognized.

The nominate subspecies inhabits the Pacific Coast of Ecuador and possibly southern Colombia, in an altitudinal range of 20 to 2,300 m above sea level, but usually below 1,200 m (Tirira 2017, 2021a). In Ecuador, its range includes the northwestern Andes (Esmeraldas Province), extending to the northwest of Pichincha and Manabí provinces, and to the western borders of Imbabura and Carchi provinces (Tirira 2004, Cervera and Griffith 2016, Morelos-Juárez et al. 2018b). Its presence in Colombia is uncertain, but it may be present south of the Río Mira, in Nariño Department, southwestern Colombia (Defler 2004).

Population density estimates in the buffer areas of the Cotacachi-Cayapas National Park and the Awa Ethnic Reserve were 0.2–13.2 individuals/km² (Madden and Albuja V. 1989, Gavilanez 2006, Moscoso 2010, Cueva and Pozo-Rivera 2010, Albuquerque 2014, Urgilés-Verdugo and Gallo-Viracocha 2016, Morelos-Juárez et al. 2018a). In 2010, a population size of 104 individuals was calculated in an area of 18 km² located in areas close to the Cotacachi-Cayapas National Park (Moscoso 2010).

Due to its restricted range and the small size of the natural populations, Ateles fusciceps fusciceps is classified as Critically Endangered on the IUCN Red List of Threatened Species (Moscoso et al. 2021) and in The Red List of Mammals of Ecuador (Tirira 2021b). Extensive deforestation, the illegal pet trade, and hunting are the main threats for the species in Ecuador (Tirira et al. 2011). For example, the loss of humid tropical and subtropical rainforest in western Ecuador has surpassed 80% of its original area (Ecuador, MAE 2012). Recent assessments indicate that the native remaining forest for the species is from 7,231 to 8,812 km² (Tirira 2021b, Gallo-Viracocha et al. in prep.). This is a reduction of approximately 64% of its suitable habitat (only 34% of the remaining forest is under protection). By 2050, the loss of the suitable habitat may reach 73% (Tirira 2021a).

The Ecuadorian Brown-headed Spider Monkey has been reported as extirpated in several locations across its historical and current range,
including the type locality (Hacienda Chinipamba, west of Ibarra, Intag Valley, Imbabura Province), the whole central coast of Ecuador, and the surroundings of the ríos Cayapas, San Miguel, Ónzole and Santiago, in the Esmeraldas Province (Tirira 2004). A survey conducted between 2008 and 2009, found a solitary male of the Ecuadorian Brown-headed Spider Monkey living with a group of Howler Monkeys (*Alouatta palliata*), in the area of Los Bancos, Pichincha Province (Moscoso 2010, Moscoso et al. 2019).

In the province of Manabí, the subspecies remains in several remnant forests of the Flavio Alfaro, El Carmen, and Chone cantons (Cervera and Griffith 2016). Fifty-eight individuals were recorded in this area in at least 22 forest fragments (each ranging in size from 1 to 1,000 ha), with population densities ranging from 7–22 individuals/km² (Alfonso-Cortes et al. 2022).

Despite the high deforestation rates that the Ecuadorian Brown-headed Spider Monkey is facing, and its extirpation in some areas, remaining suitable habitat shows low fragmentation, with 82% of the available habitat in a single large fragment. The average size of fragments larger than 1 km² (*n* = 143) barely reaches 49 km² (Tirira 2021a). The survival of the species in the future will also depend on the socio-economic situation of local human communities (Mosandl et al. 2008, Pardo 2010).

The most important area for the conservation of the Ecuadorian Brown-headed Spider Monkey is concentrated in the Andean slopes of the Esmeraldas Province (Cotacachi-Cayapas National Park and neighboring areas), and adjacent regions of Imbabura Province (Tirira et al. 2015, Tirira 2021a). The buffer zone of this national park has three small protected areas – El Pambilar Wildlife Reserve and Río Canandé and Tesoro Escondido private protected forests – mainly along the western border. Including some surrounding unprotected forests, this is the area that is harboring the largest subpopulation of this subspecies in Ecuador (Peck et al. 2011, Tirira 2021a).

Another important forest where the species is thought to be present is the Awa Ethnic Forest Reserve, north of the Río Mira and close to the Colombian border (Tirira et al. 2011, Morelos-Juárez et al. 2018a). However, occasional interviews with Awa elders and rapid biodiversity surveys conducted by the Ecuadorian NGO Fundación Ecominga in neighboring areas to the Awa Ethnic Forest Reserve, show that large mammals, including primates, have been critically diminished or probably extirpated.

Conservation actions for the conservation of this subspecies began with the PRIMENET project in 2005. This initiative performed research and education activities focused on the primate species of northwestern Ecuador and led to training courses for local guides to create groups of parabiologists in the communities (Peck et al. 2011).

Since 2012, Proyecto Washu/Fundación Naturaleza y Arte has been working in priority sites for the species, involving community-led development, scientific research, environmental education, and ex situ conservation activities. To address the drivers of habitat loss, the project has implemented a Sustainable Matrix Model (SMM) in the buffer zones of private and state reserves in Esmeraldas Province, which integrates the concepts of sustainable development, land sharing (Butsic and Kuemmerle 2015), and agroecological matrices (Perfecto and Vandermeer 2010). These efforts have resulted in 539 ha of the territory being protected by 18 farmer families through conservation agreements that improve their livelihoods (Abondano et al. in press).

At the end of 2018, the Action Plan for Ecuadorian Primate Species Conservation was published and approved as a national guideline by the Environmental Ministry of Ecuador (Tirira et al. 2018). It established a series of conservation activities to implement in the next decade, mostly related to environmental policies, in situ and ex situ management, scientific research, environmental education, and control of illegal wildlife trade and hunting.

The Colombian Black Spider Money, *Ateles fusciceps rufiventris*, was assessed as Critically Endangered in a previous iteration of the IUCN Red List of Threatened Species (Cuaron et al. 2008, Tirira et al. 2017), but was recently
reassessed as Vulnerable (Link et al. 2021). It remains as Critically Endangered in Panama (the Panamanian List of Endangered Species; Méndez-Carvajal 2019) and was assessed as Endangered in the Libro Rojo de los Mamíferos de Colombia (Defler et al. 2006). The reasons for its threatened status are habitat loss and hunting (Méndez-Carvajal 2019; Link et al. 2021).

It is restricted to eastern Panama and western Colombia, in an altitudinal range from sea level to 2000–2500 m on the slopes of the Cordillera Occidental of the Andes (Defler 2004). In Panama, its range extends from Lago Bayano through the Panamanian Darien, and includes southeast Panama Province, northern San Blas, and the central and southern areas of the Darien (Méndez-Carvajal 2019). This subspecies occurs in the Darien National Park and Chucantí Private Nature Reserve, in the Maje Mountains (Méndez-Carvajal 2012, Méndez-Carvajal et al. 2021). In Colombia, this subspecies is present in lowland and the sub-montane forest (Defler 2004) in the Urabá region, in northwestern Antioquia, north through Córdoba, Sucre, and northern Bolívar departments (north distributional limit on the south bank of the Canal del Dique, Cartagena); west of the Río Cauca to the coast; east to the lower Río Cauca, along the west bank to south-central Antioquia; and south to the Cordillera Occidental of the Andes, in southwestern Colombia, except La Serranía del Baudó, Chocó Department; the southernmost record is in Barbacoas, Nariño Department (Defler 2004, Morales-Jiménez 2005, Konstant and Rylands 2013).

In Colombia, this subspecies has been extirpated from the northern part of its range (the departments of Bolívar, Sucre, and Córdoba) due to habitat destruction and hunting (Miller et al. 2004, Correa-Ayram et al. 2020). In Panama, the Darien forest has been severely fragmented through both legal and illegal deforestation (Méndez-Carvajal et al. 2021). There is ongoing pressure from the Panamanian and Colombian governments to complete the Pan-American Highway through the Darien forest, the so-called Darien gap, and there are illegal oil palm plantations in the Alto Darien Protected Forest in Chupanuno, Boca de Cupe, near the buffer area of the Darien National Park (Méndez-Carvajal et al. 2021).

vulnerable to habitat loss, fragmentation, and human presence than other Mesoamerican primates such as *Alouatta*, *Saimiri*, and *Cebus* (Méndez-Carvajal 2013, Solano-Rojas 2018, Mansell and McKinney 2021). This species has one of the largest distributions of the Mesoamerican primates, and its populations are threatened by high rates of deforestation, habitat loss, livestock farming, and hunting (Méndez-Carvajal et al. 2019, Cortés-Ortiz et al. 2021).

Due to their high degree of fission-fusion dynamics, surveying populations of Geoffroy’s Spider Monkey is inherently difficult because subgroups change in size and membership throughout the day. The situation is further complicated by the diversity of landcover types that these spider monkeys occur in, limiting the use of a single method for all sites. As such, a wide range of methods have been employed to locate populations and determine their size, including line-transect surveys (Serio-Silva et al. 2006), camera trapping (Méndez-Carvajal 2014), and the use of drones (Spaan et al. 2019). Although they provide valuable information on the species’ presence in an area, population density estimates obtained from different survey methods cannot be compared. Large gaps remain in our understanding of the distribution and numbers of Geoffroy’s Spider Monkeys across their geographic range, hampering the identification of priority areas for their conservation. Funds dedicated to improving survey methods, training in survey techniques,
and the interchange of expertise are urgently needed to fill these gaps.

The Azuero Spider Monkey, A. g. azuerensis, was studied for the first time in the regions of La Vaca and Coto in Panama (Carpenter 1935). Its range and population size have been assessed by the NGO Fundación Pro-Conservación de los Primates Panameños (FCPP), which has been monitoring its populations since 2001. It has been extirpated in Chiriqui Province and western and northern Veraguas province, and appears to be present only in the Azuero Peninsula – southwest of Veraguas Province and the provinces of Herrera and Los Santos. More precisely, it is found in the southern areas near the Cerro Hoya National Park, and in the fragmented landscape between Punta Duarte, La Barra, Guanico, Quema, La Tronosa Forest Reserve, La Miel, and Pedasi. Only ten subgroups and five complete groups have been detected, with a mean of 3.8 individuals/subgroup (SE ±0.6, range 2–7) and a mean of 12.5 individuals/group (SE ±3.7, range 10–22). Their density in fragmented habitats is estimated at 1.4 individuals/km² (Méndez-Carvajal 2019), with an approximate total population of <150 individuals (Méndez-Carvajal and Ruiz-Bernard 2009, Méndez-Carvajal 2013). Conservation measures led by FCPP involve community volunteers from Azuero, and include environmental education, the creation of an educational guide for the primates of Azuero, primate surveys, and biodiversity monitoring in the Azuero Peninsula (Méndez-Carvajal et al. 2013).

The Black-handed Spider Monkey, A. g. frontatus, ranges from northern Nicaragua to northwestern Costa Rica. In Costa Rica, they are found in the Santa Rosa, Rincón de la Vieja, and Palo Verde national parks and the Lomas Barbudal Biological Reserve (Matamoros and Seal 1997). There are some reports in the Murciélago communities in Costa Rica (Sánchez-Porras et al. 2018), Caño Negro National Wildlife Refuge (Ó. M. Chaves, pers. obs.), and the basins of the ríos Princapolca, Tuma and Ulice (Sánchez-Porras et al. 2021). It has also been recorded in Metagalpa and the Nicaraguan highlands (Allen 1914, Solano et al. 2020a).
The Nicaraguan Spider Monkey, *A. g. geoffroyi*, was described from San Juan del Norte, Martina Bay, southeastern Nicaragua (Kellogg and Goldman 1944). Based on phenotypical characteristics, it could be present in Los Chiles, El Concho, Upala, and Las Delicias in Costa Rica, but further molecular analysis is needed (Morales-Jiménez et al. 2015, Williams-Guillén et al. 2020, Sánchez-Porras et al. 2021).

Philip Sclater described the Hooded Spider Monkey, *A. g. grisescens*, in a manuscript catalogue of the mammals in the London Zoological Gardens that he wrote in 1865. Gray (1866) quoted Sclater’s diagnosis of the ‘Grizzled Spider Monkey’: “Fur moderately long, black, with many silvery-white hairs interspersed; tail black, underside greyish; hair of the forehead moderately long; thumb none.” (p.732). He attributed the authorship to Sclater. The type specimen is preserved in the British Museum of Natural History, London (Gray 1866, Napier 1976). The type locality is unknown. Kellogg and Goldman (1944) suggested it might hail from the Río Tuyra basin, Panama, probably extending southeastward through the Serranía del Sapo in extreme southeastern Panama and the Cordillera de Baudó of northwestern Colombia. Hernández-Camacho and Cooper (1976) indicated that *Ateles g. grisescens* occurs in Colombia: “[In Colombia, it] is known only from the vicinity of Juradó very near the Panamanian border on the Pacific coast. It is undoubtedly restricted by the Baudó mountains to a narrow coastal strip that may extend as far south as Cabo Corrientes.” (p.66). Méndez-Carvajal and Cortés-Ortiz (2020) confirmed that it had never been seen in the wild. In 2021, the FCPP team located a group of 16 spider monkeys in Homenaje, between Ipetí-Maje and the Chucanti Private Natural Reserve on the Pacific side of eastern Panama, which Méndez-Carvajal (2021) believes could be *A. g. grisescens*. It is largely black, with a fringe of whitish hairs on the chin and cheeks. FCPP and the Grupo de Investigación de Primatología from Universidad de Panamá (GIP-UP) are carrying out a genetic study to confirm the identity of these spider monkeys. Conservation proposals and measures are underway together with Panama’s Environment Ministry, including the possibility of creating a protected area in the Serranía del Maje, alongside other forests in the region where the subspecies is believed to occur (Méndez-Carvajal 2021).

The Ornate Spider Monkey, *A. g. ornatus*, also known as the Panamanian Spider Monkey, occurs in Costa Rica and Panama. In Costa Rica, it is known to be in the Osa Peninsula, Carara Biological Reserve, and Corcovado National Park (Matamoros and Seal 1997). There is an introduced population of about 15 individuals on Nancital Island, in the Isla Negritos Biological Reserve, Golfo de Nicoya and Puntarenas, Costa Rica (Chaves et al. 2022). In Panama, this species occurs on the northern side of the Caribbean coast, Bocas del Toro, the northern coast of Veraguas Province. Although the species is also found in the Coclé and north Colón provinces, it is rarer due to Ngobe indigenous hunting and deforestation from mining (Méndez-Carvajal et al. 2019). It is present in the following reserves in Panama: Palo Seco Protected Forest, La Amistad International Park, the national parks of Santa Fe, Omar Torrijos, Chagres, Portobelo, and San Lorenzo, and the San Blas Mountain Range and some areas near the northern of Darien province. There is an introduced population of around 20 individuals on Barro Colorado Island in the Panama Canal watershed (Milton and Hopkins 2006).

The Mexican Spider Monkey, *A. g. vellerosus*, is present in Mexico, Belize, Guatemala, Honduras, and El Salvador (Cortés-Ortiz et al. 2021). In Mexico, the subspecies occurs in the states of Veracruz, Oaxaca, Chiapas, Tabasco, Campeche, Quintana Roo, and Yucatán. The population density of *A. g. vellerosus* is between 2.9 and 9.3 individuals/km² in Montes Azules Biosphere Reserve in Marqués Comillas ejido, Chiapas, Mexico (Chaves et al. 2011). Population densities have been recorded as being between 2.14 to 40.8 ind/km² in the Cañón del Sumidero National Park and Selva El Ocote Biosphere Reserve in Chiapas (Pozo-Montuy et al. 2016) and between 41.5 and 122.7 ind/km² in the Areas Voluntarily Dedicated to Conservation (ADVC) Cerro Chango and Soledad Vista Hermosa in Chinantla, Oaxaca (Pozo-Montuy et al. 2016, Pozo-Montuy and Pinacho-Guendulain 2021). There are other, difficult-to-access regions, where encounter rates range between 0.5 and 1 individuals/
km (in the El Triunfo, La Sepultura, and La Encrucijada Biosphere Reserves in Chiapas and in the Yum Balam Flora and Fauna Protection Area in Quintana Roo; Pozo-Montuy et al. 2018, Pinacho-Guendulain and Pozo-Montuy in press). The subspecies is believed to have been extirpated in the Pantanos de Centla Biosphere Reserve (Pozo-Montuy et al. 2021), but is found in the Calakmul Biosphere Reserve, Bala’an K’aax and Otoch Ma’ax Yetel Kooh Fauna and Flora Protected Areas and in human-modified landscapes throughout the Yucatán Peninsula (Spaan et al. 2020).

In Guatemala it occurs in Petén, Alta Verapaz, Izabal, Sololá, Huehuetenango in Guatemala (Ponce-Santizo et al. 2009) and in Belize in the Runaway Creek Nature Reserve (Hartwell et al. 2021). In El Salvador, its presence has been registered in Chaguantique, Normandía, El Nacascolo and El Terço (Usulután Department) and Montecristo, Cerro el Mono and Conchagua in (Rodríguez-Menjivar 2007). New records have been obtained of spider monkeys at the Laguna Olomega and in Cerro El Caballito, Jucuarán, also in El Salvador (Pineda-Peraza et al. 2017; Pineda-Peraza et al. 2020). The phylogenetic study by Morales-Jiménez et al. (2015) using mtDNA failed to identify the subspecies for El Salvador. It seems to form a separate clade from Ateles Geoffroyi vellerosus.

The Maya Biosphere Reserve (MBR) in the north of Guatemala, covering 2.2 million ha, is the largest and most important protected habitat for the subspecies (68.6% of its original forests). Conservation actions are maintained by several organizations to preserve this important forest block in Guatemala (Ponce-Santizo et al. 2009, Rosales-Meda et al. 2020). In Honduras, A. g. vellerosus is in several protected areas, mainly those in the northern part of the country in the departments of Atlántida, Colon, Olancho and Gracias a Dios (Hines 2005, Zambrano 2008, Guillén and Guillén 2013, Espinal et al. 2016). There are no data on population densities for Honduras. Hines (2005) reported a mean subgroup size of 6.93 ± 4.53 individuals in Pico Bonito National Park.

Ateles g. vellerosus is threatened by habitat loss due to forest fires, subsistence farming and industrial agricultural (e.g., oil palm plantations) and infrastructure development (e.g., road and rail construction), and the primate pet trade. It is hunted for food by indigenous people at Marquéz de Comillas, Chiapas (O.M. Chaves pers. comm.). Conservation activities on its behalf include environmental education, community science and awareness campaigns, human-wildlife conflict mitigation and the improvement of survey methods (Spaan et al. 2019). Some educational materials are available (<www.cobius.org>). These activities have been implemented by the NGOs ConMonoMaya, Conservación de la Biodiversidad del Usumacinta A.C., and Miku Conservación A.C. in Mexico and Asociación Territorios Vivos El Salvador (ATVES) in El Salvador. Additionally, community monitoring with the involvement of more than 200 local people has been carried out throughout southeast Mexico by Conservación de la Biodiversidad del Usumacinta (COBIUS AC).

OTHER SPECIES CONSIDERED

MADAGASCAR – AYE-AYE

Daubentonia madagascariensis (Gmelin, 1788)

Madagascar

(2016, 2018)

The Aye-aye (*Daubentonia madagascariensis*) is the only extant species in the family Daubentoniidae (Simpson 1945). Aye-ayes have the widest distribution of any Malagasy primate – they are absent only from southwest of the island (Sterling and McCreless 2006). Their ecological flexibility means they can persist in different forest types, such as moist evergreen and dry deciduous forests, and of varying quality, including primary, disturbed, and heavily degraded habitats (Ancrenaz et al. 1994, Randimbiharinirina et al. 2018, Sefczek et al. 2020a). Nevertheless, their huge individual home ranges (Sefczek et al. 2020b) and presumed low population densities make them susceptible to continued anthropogenic disturbance (Perry et al. 2012), i.e., forest degradation and fragmentation, slash-and-burn agriculture, and hunting associated with local superstitions (Randimbihabinirina et al. 2021).

MADAGASCAR – LAKE ALAOTRA GENTLE LEMUR

Hapalemur alaotrensis Rumpler, 1975

Madagascar

Lena M. Reibelt, Herizo T. Andrianandrasana, Richard Lewis, Fidy Ralainasolo, Jonah Ratsimbazafy, Lucile Mialisoa Raveloarimalala and Patrick O. Waebaer

The Critically Endangered Lake Alaotra Gentle Lemur (*Hapalemur alaotrensis*) is restricted to the wetlands fringing Lake Alaotra, a Ramsar Site and protected area in north-eastern Madagascar. This limited geographical range and ever-increasing pressures have brought the “bandro” close to extinction. The first published census estimated some 7,500–11,000 individuals (Mutschler and...
Feistner 1995) but the population has since declined with only an estimated 2,500 individuals in 2005 (Ralainasolo et al. 2006). Subpopulations are isolated due to a high degree of habitat fragmentation and the permanent conversion of marshes for agricultural production. A case in point is the priority conservation zone “Park Bandro” (Ratsimbazafy et al. 2013, Raveloarimalala and Reibelt 2016), where more than half of the area was lost due to a fire in 2021. Very few lemurs have been spotted since. The principal threats to Hapalemur alaotrensis remain habitat loss, habitat degradation, and hunting, which are exacerbated with extended droughts that result in an increased need for people to take water from the lake and marsh system (Ralainasolo et al. 2006, Copsey et al. 2009a, 2009b, Guillera-Arroita et al. 2010). Conservation and management of the Alaotra Protected Area (IUCN category V) is challenging for many reasons but primarily due to overstretched resources which are insufficient to fund the running of this vast protected area. In close partnership with the authorities, Durrell Wildlife Conservation Trust and Madagascar Wildlife Conservation implement community-based projects around the lake, focusing on supporting the local resource-management associations, participatory ecological monitoring, and environmental education (Andrianandrasana et al. 2005, Rendigs et al. 2015, Waebert et al. 2018). For more information on the biology, ecology, and conservation efforts on behalf of Hapalemur alaotrensis see Reibelt et al. (2017, 2019). Since the onset of COVID-19 in early 2020, eco-tourism has become obsolete, putting further strain on the monitoring and patrolling of the vast conservation area.

The Golden-Crowned Sifaka (*Propithecus tattersalli*) is Critically Endangered and endemic to forest patches encompassed by the Loky and Manambato rivers in northeastern Madagascar (Vargas et al. 2002). Surveys conducted in 2006–2008 suggested a population of about 18,000 (estimated range of 11,000-26,000) (Quéméré et al. 2010). A more recent study estimated that 10,222-12,631 sifakas remain and found fewer sifakas in all four forest patches surveyed in 2006–2008 (B. Semel et al. in review a). Genetic studies suggest a small effective population size of 430–795 and a significant population decline since the mid-Holocene transition about 4,200 years ago (Quéméré et al. 2012, Salmona et al. 2017). Surprisingly, staff at Fanamby – the Malagasy NGO, that manages the Loky-Manambato Protected Area – recently confirmed the presence of several groups of sifakas in the Andrafiamena Andavakoera Protected Area, about 50 km to the west of the closest known populations, therefore extending their known distribution. Threats include habitat loss due to slash-and-burn agriculture and grassland fires, mining, and potentially hunting, all of which are likely to be exacerbated by improvements to the national road that bisects their range (Anania et al. 2018, M. Semel et al. in review b).

Perrier’s Sifaka (*Propithecus perrieri*) is Critically Endangered (Ranaivoinisa et al. 2006). The species has a very restricted home range in northern Madagascar that includes the Analamerana Special Reserve and Andrafiamena-Andavakoera Protected Area (Petter et al. 1977). It has been estimated that only 100 to 2,000 individuals remain in the wild, with an effective population unlikely to exceed 230 (Bank et al. 2007). This species can be found in semi-evergreen forest. Perrier’s Sifaka is threatened by hunting, selective logging, habitat destruction to make way for agriculture, heavy fires set to increase pasture for livestock, and charcoal production (Schwitzer et al. 2006). More recently, mining has come to be an important threat to this species.

AFRICA – KIPUNJI

Rungwecebus kipunji (Ehardt, Butynski, Jones & Davenport, 2005)

Tanzania

Tim R.B. Davenport

The kipunji (*Rungwecebus kipunji*) was included in *Primates in Peril: The World’s 25 Most Endangered Primates 2018–2020* (Davenport 2019), based on its small global population, narrow range and threats. After a decade and a half of conservation in their forest habitat, Davenport et al. (2022) reassessed the population size, demography, and distribution of *R. kipunji* across Tanzania’s Southern Highlands, employing the identical sweep census methods as of 2007 (Davenport et al. 2008). A habituated group was also monitored daily over the same period. A total of 1,866 individuals in 59 groups ($\mu = 31.63\pm SE 1.2$) were recorded in Livingstone Forest (in Kitulo National Park), Mt Rungwe Nature Reserve, and Madehani Village Forest. This corresponded to a 65% increase in individuals, a 59% increase in group numbers, and a 19% increase in Area of Occupancy since the previous census. The ratio of subadults/juveniles to adult females, a proxy for survival, was good (1.77), but higher in Livingstone (2.61) than Mt Rungwe (1.11). A 121% increase in group size was recorded in the habituated group. Signs of human activity fell by 81%, with a 100% and 98% reduction in the number of charcoal pits and timber felling in Mt Rungwe. Whilst the total remains low by global standards, both temporal and spatial data demonstrated that long-term holistic conservation had led to a significant increase in the numbers of *R. kipunji* (Davenport et al. 2022).

AFRICA – WHITE-THIGHED COLOBUS

Colobus vellerosus (I. Geoffroy Saint-Hilaire, 1834)

Benin, Côte d’Ivoire, Ghana, Togo
(2016, 2018)

Reiko Matsuda Goodwin

The White-thighed Colobus (*Colobus vellerosus*) is a Critically Endangered species. Unregulated hunting and destruction, degradation, and fragmentation of its habitats throughout its range have reduced the species’ population by more than 80% in the past three decades (Matsuda Goodwin et al. 2020). In the absence of hunting, *C. vellerosus* can thrive in a variety of habitats, from lowland rainforests to savannah-forest mosaics, and from high forests to moderately disturbed forests (Wong...
and Sicotte 2007, Oates 2011). This species used to be widely distributed from the area between the Sassandra-Bandama rivers in Côte d’Ivoire to southwestern Nigeria, traversing Ghana and Togo, but it has probably been extirpated from Nigeria. It is now distributed in extremely fragmented ranges, occurring only in a few protected areas and community forests in the remaining range countries. Although a lack of systematic surveys precludes us from making a precise estimate, less than 1,500 individuals probably remain in the habitat countries. The two strongholds of this species are the Boabeng-Fiema Monkey Sanctuary (BFMS) in Ghana and Comoé National Park in Côte d’Ivoire. Deforestation, hunting, and mining continue to negatively influence the long-term survival of the species. Additionally, climate change would exacerbate the rate of contraction and fragmentation of the suitable habitat of this species and many other forest-living primates (Korstjens et al. 2010, Stewart et al. 2020). Robust conservation measures and range-wide systematic surveys are urgently needed to protect this species.

AFRICA – CROSS RIVER GORILLA

Gorilla gorilla diehli Matschie, 1904

Cameroon, Nigeria

Inaoyom Imong, Andrew Dunn and Richard Bergl

The Cross River Gorilla (Gorilla gorilla diehli) is endemic to the hilly rainforest region along the Nigeria-Cameroon border and Critically Endangered (Bergl et al. 2016). The population is small and fragmented, estimated to number fewer than 300 individuals (Dunn et al. 2014) concentrated in about 15 small hilly areas interspersed among large areas of unoccupied but suitable habitat (Imong et al. 2014) across a landscape of approximately 12,000 km² spanning the Afi Mountain Wildlife Sanctuary in the west to the Kagwene Gorilla Sanctuary in the east, with an isolated outlying locality in the Tofala Hills (Dunn et al. 2014), of which approximately 8,000 km² is tropical forest (Bergl et al. 2012). The population is threatened by hunting and habitat loss from agriculture, illegal logging, and road construction. Although hunting of Cross River Gorillas has declined very considerably over the last two decades, they are still occasionally killed by hunters as snare by-catch. While much of the species’ population lives in protected areas, a number of subpopulations exist on community land with no formal protection (Dunn et al. 2014). Insecurity resulting from the ongoing political and armed conflict in the Southwest and Northwest regions of Cameroon prevents the implementation of conservation activities in the Cameroon side of the landscape. The presence of refugees in and around key habitat areas in Nigeria are an additional threat to this population.

AFRICA – WESTERN CHIMPANZEE
Pan troglodytes verus Schwarz, 1934
Côte d’Ivoire, Ghana, Guine, Guinea-Bissau, Liberia, Mali, Senegal, Sierra Leone (2018)

Information summarized by the editors from the IUCN Red List (Humle et al. 2016)

The Western Chimpanzee (Pan troglodytes verus) is Critically Endangered due to high levels of poaching and habitat loss and degradation. It is suspected that the population has declined at an average annual rate of 6.53% between 1990 and 2014, with a total population of 18,000 to 56,000 remaining in the wild (Sop et al. in prep., cited in Humle et al. 2016). The population is considered almost certainly extinct in Benin, Burkina Faso, and Togo (Ginn et al. 2013, Campbell and Houngbedji 2015) and has seen a decline of 90% in its population in Côte d’Ivoire (Campbell et al. 2008). Although it can be found in several protected areas, most of the population is found in areas that remain unprotected. Conservation actions and research gaps are detailed in the IUCN Red List profile (Humle et al. 2016).

ASIA – JAVAN SURILI
Presbytis comata Desmarest, 1822
Indonesia (Java)
Never included on the Top 25 List

Arif Setiawan and Vincent Nijman

The Javan Surili (Presbytis comata) is listed as Endangered on the IUCN Red List of Threatened Species and is endemic to the western part of the island of Java (Nijman 1997, Nijman and Setiawan 2020), an area it shares with some 70 million humans, who are living at a population density of over 1,500 people per km². With the Javan Surili confined to forest, there is considerable pressure on the remaining areas where the species is still found, and the cumulative effect of small amounts of forest loss is a clear impediment to its survival (Supartono et al. 2016). With the recognition by IUCN of the Rekrekan (P. fredericae) from central Java as a distinct species (formerly considered P. comata), there is considerable confusion about the exact distribution of two species, as individuals from the intervening area show morphological affinities of them both. Further research (morphological, behavioral and molecular) is urgently needed to clarify their taxonomic arrangement and also their range distribution. The surili is largely known from well-trodden volcanoes where it is found mostly in the lower montane or montane zone (up to 2,500 m asl) but where lowland forest remains it can occur down to sea-level. It is found in a number of protected areas, including the Ujung Kulon, Gunung Halimun-Salak, and Gunung Gede-Pangrango national parks. The total population of Presbytis comata in Ujung Kulon, Rawa Danau, Mts Halimun-Salak, Mt Gede-Pangrango, Kawah Kamojang, Mt Patuha, Ciremay-Kuningan-Pemabarisan is estimated at 7,500–10,200 individuals. Potentially sizeable populations, such as at Sanggabuana, Masigit-Kareumbi, Mt Tangkuban Perahu-Burangrang, and Cibanteng-Cikepuh (Supriatna et al. 1994) were last surveyed more than two decades ago and therefore need renewed attention. Densities differ somewhat by altitude, from 0.4-2.4 groups/km² in the lowlands below 1,000 m asl to 0.1-5.8 groups/km² in montane forests. Group sizes are negatively correlated with altitude – in the lowlands averaging around eight individuals and in the mountains around six individuals (Nijman 2017).

ASIA – BORNEAN BANDED LANGUR

Presbytis chrysomelas Müller, 1838

Brunei Darussalam, Indonesia (Kalimantan), Malaysia (Sarawak)

Never included on the Top 25 List

Andie Ang, Chien Lee, Erik Meijaard, Vincent Nijman and Noel Rowe

The Bornean Banded Langur or Cross-marked Langur (*Presbytis chrysomelas*) is endemic to the northwestern corner of Borneo and is Critically Endangered (Nijman et al. 2020). Two subspecies are recognized: *P. c. chrysomelas* and *P. c. cruciger*. In the past it could be found in protected areas such as the Tanjung Datu, Maludam, Similajau and Niah national parks, and the Lanjak Entimau and Samunsam wildlife sanctuaries, all in Sarawak, and the Danau Sentarum Wildlife Sanctuary in West Kalimantan (Groves 2013, Phillipps and Phillipps 2018). However, the most recent records of their occurrence in all but the first two parks date back more than a decade. While Nijman et al. (2008) conservatively estimated that 200–500 individuals remained, more recent research suggests this might have been an underestimate. However, their habitat is declining, partially because of cash crop plantations and forest fires. Hunting is a continuing threat in their habitat, and even in the protected areas.

ASIA – NATUNA ISLAND SURILI

Presbytis natunae (Thomas & Hartet, 1894)

Indonesia (Sumatra)

(2002)

Arif Setiawan and Vincent Nijman

The Natuna Island Surili (*Presbytis natunae*) is confined to Bunguran, the largest island in the Natuna archipelago, halfway between northwestern Borneo and the Thai-Malay Peninsula. The species has been the subject of very few studies; in 86 years only four field surveys were conducted (Indrawan and Rangkuti 2001, Lammertink et al. 2003, Firman Aldi 2007 [unpubl. report], Handayani et al. 2021). In 2001, Lammertink et al. (2003) conducted the first systematic population survey which found that the species had a preference for primary lowland forest and avoided logged forest. There were 2.3 groups per km², and groups comprised only three to four individuals on average, probably because of reduced predator pressure on the island. The population was estimated at 4,500-12,500 individuals. Setiandari (2018) obtained data on the status of the Natuna Island Surili from 30 informants, who noted a steady decline in numbers and identified poaching, deforestation, an increase in human population size, and a lack of effective conservation management as the main reasons for this apparent decline.
In 2020, research suggested that the total remaining habitat for the Natuna Island Surili is about 48,274 ha or 29.83% of the island (K. Latifiana, K. Putri Handayani and E. Yuni Agustin), with forest cover having declined by 17.93% from 2001 to 2020. The species is found in a wide range of habitats, from lowland and montane forest to heath forest, mixed forest gardens and rubber plantations. While a substantial part of the island is still forested, more and more is affected by logging, fragmentation and conversion to other land uses, and the largest area of relatively untouched forest is found on Mt Bedung. Conflict with humans is greatest near the coast where most of the villages are situated. There are no forest areas that are formally protected on Bunguran. Populations are likely to be experiencing continued decline due to habitat loss and capture for pets. Data are lacking for strengthening conservation measures.

ASIA – EAST SUMATRAN BANDED LANGUR
Presbytis percura Lyon, 1908
Indonesia (Sumatra)
Never included on the Top 25 List
Rizaldi and Andie Ang
Presbytis percura is found in just a few isolated and unprotected lowland areas in Riau Province, Sumatra, and faces extinction in the wild due to forest loss on a large scale (Rizaldi et al. 2019, Ang et al. 2020). Riau experienced the highest rate of deforestation in Sumatra, and 63% of the natural forest was lost between 1985 and 2008 (Uryu et al. 2010). Additionally, forest fires linked to the ENSO events, and open burning of forest land for agricultural purposes destroy millions of hectares of land in Indonesia every year, and Riau is often one of the worst impacted areas, owing in part to its high concentration of peatland (World Bank 2016). A preliminary survey in 2018 found P. percura only in rubber plantations, subsisting on rubber leaves and seeds (Rizaldi et al. 2019). The scattered forest remnants and agroforests where P. percura were found might no longer remain without conservation action on the ground. Individuals of this species are also killed by local communities when they feed on fruit crops of such as rambutans and durians. Manpower and financial support are urgently needed for the research and protection of not only this species, but also other poorly studied langurs (P. bicolor and P. siamensis cana) and their remaining habitats in Riau Province in Sumatra.

The Tonkin Snub-nosed Monkey, *Rhinopithecus avunculus*, is a Critically Endangered species endemic to Vietnam (Quyet et al. 2020). It is now confined to only two areas of the far northwest (Nadler et al. 2003, Nadler and Brockman 2014). Its distribution has been drastically reduced in recent decades due to massive deforestation and intensive hunting. As a result, the population has become severely fragmented. The species was thought to be extinct until its rediscovery near the town of Na Hang, Tuyen Quang Province in 1989. Conservation activities there were unsuccessful, and it is most likely now extirpated. A population of 20 to 40 individuals was estimated for the Cham Chu Nature Reserve, Tuyen Quang Province in 1992, but subsequent surveys provided no sightings, and the population is also most likely extirpated. In 2001, a population was discovered in Khau Ca, close to Du Gia Nature Reserve, Ha Giang Province. A census in 2015 confirmed 125–130 individuals. The area was subsequently declared as the Tonkin Snub-nosed Monkey Species/Habitat Conservation Area. Based on recent surveys the population is estimated to comprise about 160 individuals. During a survey in March 2022, two groups were observed, one group with 84 and another with 11 individuals. It is the only population that is not immediately threatened. In 2007, a population of about 20 Tonkin Snub-nosed Monkeys was discovered in Tung Vai, Ha Giang Province, close to the border with China (Le Khac Quyet and Covert 2010). This population is threatened by hunting and habitat loss and through intensive cardamom cultivation, besides other human activities. The total population of the Tonkin Snub-nosed Monkey is currently believed to be fewer than 200 individuals.

The Golden Langur (*Trachypithecus geei*) is endemic to India and Bhutan. Its range in India covers more than 2,500 km² and in Bhutan 4,782 km². Wet evergreen and tropical semi-evergreen forests are its primary habitats in India. In Bhutan, it is found in both warm broadleaf and tropical forests. The Assamese Macaque, Rhesus Macaque and Bengal Slow Loris are its cohabitants in these forests. It spends 99% of its active time in trees and primarily exploits the top and middle strata of the forest. It lives in diverse social settings, including uni-male:multi-female, bi-male:multi-female and multi-male:multi-female groups, besides all male bands and lone males. Annually, Golden Langurs spend 12.8–33% of time in feeding, 40–63.1% in resting, 6.3–19% in locomotion, 5–11.5% in monitoring, 2–3.7% in playing and 0.3–6% in grooming. They eat green leaves, their staple food, and other food items from more than 200 plant species. They spend their nights in tall trees of a few selected species. Leopard, wild dogs and python are the prominent predators. Domestic and feral dogs attack Golden Langurs in fringe villages. It is categorized as Endangered on the IUCN Red List of Threatened Species (Das et al. 2020), and is listed as a Schedule-I species in the Wildlife (Protection) Act of India, 1972,
and the Forest and Nature Conservation Act of Bhutan, 1995. It is an Appendix-I species in CITES. Along with habitat loss, habitat fragmentation and shrinkage, recent hybridization between Golden Langurs and Capped Langurs (Trachypithecus pileatus) across the suspension bridges constructed over the Chamkhar River has emerged as the severest threat (Wangchuk et al. 2003). Electrocution, roadkill, and dog predation are also serious threats. Conservation challenges are likely to increase in the coming years despite current conservation initiatives. More effective landscape conservation and management, such as reforestation and corridors (both forested and artificial), are vital for the survival of this species (Ghosh 2009, Chetry et al. 2010).

NEOTROPICS – BUFFY-TUFTED-EAR MARMOSET
Callithrix aurita (É. Geoffroy in Humboldt, 1812)

Brazil (Rio de Janeiro, São Paulo, Minas Gerais) (2018)

Rodrigo Salles de Carvalho, Fabiano R. de Melo, Mônica Mafra Valença-Montenegro, Claudia Igayara-Souza, Marco Port-Carvalho and Leandro Jerusalinsky

The Buffy-tufted-ear Marmoset (Callithrix aurita) is endemic to the montane Atlantic Forest of southeastern Brazil, in the southern part of the state of Minas Gerais, the state of Rio de Janeiro, and the east and northeast of the state of São Paulo. The historically widespread destruction of forests in its range has resulted in extremely reduced and severely fragmented remnant habitats, with diminished and isolated populations (Melo et al. 2018, 2021). Even as these factors persist as a major threat to the species, the anthropogenic introduction of congeneric species has led to invasive populations and ecological competition, and genetic erosion is now an alarming threat to the survival of this species (Carvalho et al. 2018, 2019, Malukiewicz et al. 2021). Although yet to be confirmed, it is suspected that a recent yellow fever outbreak has also impacted the species’ populations. The cumulative and synergistic effects of these threats led to the species being categorized as Critically Endangered on the IUCN Red List of Threatened Species (Melo et al. 2021). Since 2014, the Mountain Marmosets Conservation Program (MMCP) has been developing measures for the implementation of conservation strategies, as established by the National Action Plan for the Conservation of the Atlantic Forest Primates and the Maned Sloth (Brazil, ICMBio 2018). They include research and management in small fragments as well as important protected areas where the species occurs (the Serra dos Órgãos, Itaiaia, and Serra da Bocaina national parks) and an ex situ management program coordinated by the Brazilian Association of Zoos and Aquaria (AZAB) and the National Center for Research and Conservation of Brazilian Primates (ICMBio/CPB), involving the Guarulhos Zoo and the Mountain Marmosets Conservation Center at the Federal University of Viçosa (CCSS-UFV) in Minas Gerais, Brazil.

NEOTROPICS – PIED TAMARIN
Saguinus bicolor Spix, 1823

Brazil (Amazonas) (2018)

Marcelo Gordo, Diogo Lagroteria, Renata Azevedo and Leandro Jerusalinsky

The Pied Tamarin is a small callitrichid (450–550g; 66–74cm) endemic to the Central Amazon, in the vicinity of Manaus, Brazil (Gordo et al. 2017). Groups are extremely territorial, and range from 2 to 13 individuals. Population densities are low throughout their range (1–2 groups/km²) (Gordo 2012, Gordo et al. 2017). Recent research estimates its geographic distribution at about 8,000 km², from Itacoatiara, Rio Urubu to the Rio Cuieiras, north of Manaus (Lagroteria and Gordo, in prep.). Expansion of the city of Manaus and the increasing occupation of rural areas has caused a severe loss and fragmentation of its habitat. Adding to habitat loss, are roadkill, electrical shocks, and predation by dogs (Gordo et al. 2013, 2021), and its already tiny range is contracting, giving way to the invasive *Saguinus midas* with evidence of hybridization (Gordo et al. 2017). *Saguinus bicolor* is classified as Critically Endangered on the IUCN Red List of Threatened Species (Gordo et al. 2021) and the Brazilian Official National List of Threatened Species (Brazil, MMA 2014, Vidal et al. 2018) due to a projected population reduction of 80% or more in the next 18 years (three generations) resulting from the threats described above. More studies are needed on the interactions between the two tamarins. Strategies for the species’ conservation were established in the National Action Plan for the Conservation of the Pied Tamarin, including as goals: a) reduction of habitat loss; b) creation of protected areas, and the maintenance and adequate management of those already existing; c) maintenance and expansion of habitat connectivity both in urban and rural areas; d) reduction of the loss of individuals due to electrocution, roadkill, and attacks by domestic animals; e) restoration of areas to improve habitat quality; f) an understanding of the distribution of *Saguinus bicolor* and its potential relationship with *Saguinus midas*; g) strengthening environmental education for the conservation of the species; and h) promotion of adequate population management for the species’ conservation (Jerusalinsky et al. 2017, Brazil, ICMBio 2018). The Brazilian Association of Zoos and Aquaria (AZAB) and the National Center for Research and Conservation of Brazilian Primates (ICMBio/CPB) are coordinating an ex situ management program.

NEOTROPICS – OLALLA BROTHERS’ TITI MONKEY

Plecturocebus olallae Lönnberg, 1939

Bolivia

(2018)

Jesus Martinez and Robert Wallace

The Olalla Brothers’ Titi Monkey (Plecturocebus olallae) is endemic to Bolivia and Critically Endangered (Martinez and Wallace 2021a). Its range is restricted to an area of naturally fragmented forests, and the latest assessment reported a population of 2,855 individuals in an area of 383.4 km² (Martinez and Wallace 2021b). Although this represents some increase in both abundance and distribution (previously 2,000 individuals across 267 km²), the high forest fragmentation levels in the region – less than half of the range is suitable forest (Wallace et al. 2013) – is an important spatial limitation for these primates. The improvement of a major road will promote new human settlements and potentially increase intensive agriculture and livestock management in the area, which, together, represent the main risks for P. olallae populations (Martinez and Wallace 2021a, 2021b). Two municipal protected areas, Rhukanhuka and Pampas del Yacuma, include most of the range of P. olallae (70%) and research and outreach there are important to raise awareness with local people about these endemic primates (Martinez et al. 2015). Current work is focused on consolidating the management of these conservation areas to minimize the impacts of the threats to P. olallae populations, and to develop monitoring programs for these range-restricted primates.

NEOTROPICS – CAATINGA TITI MONKEY

Callicebus barbarabrownae Hershkovitz 1990

Brazil (Bahia, Sergipe)

(2010)

André C. Alonso, Hamilton F. Barreto, Eduardo Marques, Mônica M. Valença-Montenegro, Raone Beltrão-Mendes, Sidney Gouveia, Stephen F. Ferrari and Leandro Jerusalinsky

The Caatinga (or Blond) Titi Monkey (Callicebus barbarabrownae) is the only endemic primate of the Caatinga (dry forest and xerophilic scrub) in northeastern Brazil, occurring in the states of Bahia and Sergipe (Printes et al. 2018, 2021). As for all titi monkeys, it lives in small family groups, with a monogamous reproductive couple and its offspring, occupying a territory of 20–30 ha defended daily by duet vocalizations. The species’ range has suffered widespread deforestation resulting in habitat reduction and fragmentation, with scarce, diminished, and isolated remnant populations exposed to synergistic genetic and demographic risks. Cattle ranching, agriculture, and continuing urbanization are the main threats, besides rapid infrastructure development facilitated by an extensive network of highways and power lines (Printes et al. 2018, 2021). The extent of hunting needs investigation, although it is probably moderate due to their small size, and few individuals are kept as pets (Printes et al. 2013, 2018, 2021). The combination of these threats, however, has resulted in the species being
assessed as Critically Endangered (Brazil, MMA 2014, Printes et al. 2018, 2021). A new survey method using standardized vocalization playbacks suggests that the species abundance may be higher than previously thought (Coelho et al. 2020). Also, a recent reassessment of the species distribution, ten years after its first evaluation (Estrela et al. 2011, Printes et al. 2011), revealed more areas and individuals than were previously known (Alonso et al. 2022). On the other hand, species distribution modelling combined with population viability analysis under different climate change scenarios and simulated forest loss, predicted a reduction of one-third of the currently suitable area for *C. barbarabrownae* (Barreto et al. 2022). These models also indicate that viable populations in large forest remnants represent only a quarter of all known populations, with a decline in climatic suitability, and that smaller populations may be extirpated regardless of the level of forest recovery (Barreto et al. 2022). This situation highlights the need to effectively implement the *National Action Plan for the Conservation of the Northeastern Primates* (Brazil, ICMBio 2018).

NEOTROPICS – WHITE-CHEEKED SPIDER MONKEY

Ateles marginatus (É. Geoffroy Saint-Hilaire, 1809)

Brazil (Mato Grosso, Pará)

Never included on the Top 25 List

Gustavo R. Canale, André L. Ravetta, Gerson Buss and Leandro Jerusalinsky

The White-cheeked Spider Monkey (*Ateles marginatus*) is endemic to the eastern Brazilian Amazon, south of the Rio Amazonas, with its southernmost populations occupying the transition zone with the Brazilian Cerrado, between the right bank of the Rio Tapajós and its tributary, the Rio Teles Pires, and the left bank of the Rio Xingu (Ravetta et al. 2018, Lazari et al. 2020, Lima-Silva et al. 2022). Most of its Extent of Occurrence lies in the Amazonian ‘arc of deforestation’, where forest loss is at the highest rates of the entire tropics (Garcia et al. 2019, Lazari et al. 2020). The species is categorized as Endangered on the IUCN Red List of Threatened Species (Ravetta et al. 2021) due to suspected population reduction upwards of 50% over the last 45 years (three generations), which is due to habitat declines and hunting in protected and unprotected areas (Brazil, MMA 2014, Ravetta et al. 2018, 2021). Its range is cut by major highways – the Transamazônica (BR 230) and Cuiabá-Santarém (BR 163) – and a new railway (Ferrogrão) is projected to cross the species range accelerating the deforestation and
promoting the expansion of soybean plantations, cattle ranching, and urbanization. The construction plans for the Tapajós Hydroelectric Complex, which includes a number of dams in the range of *Ateles marginatus* (Ravetta 2008, Buss et al. 2017), might lead to the isolation of populations inhabiting riparian forests. Moreover, highways and human settlement expansion facilitate hunting, which is likely to have already extirpated the species in parts of its range (Ravetta and Ferrari 2009). Late maturation (4–5 years of age) and long inter-birth intervals (up to 30 months) make it difficult for this species to recover from hunting and other threats. The savannization of the Amazonian forests due to climate change is predicted to be sooner and more intense in the region occupied by the White-cheeked Spider Monkeys, one of the least-studied species of the genus. Species conservation strategies, as outlined by the National Action Plan for the Conservation of the Amazonian Primates, include the following goals: a) improve territorial planning; b) mitigate and compensate the impacts of development projects; c) reduce hunting pressure; d) assess and mitigate the impacts of epizootics; and e) minimize the effects of climate change (Brazil, ICMBio 2017). As part of the implementation of this plan, the Brazilian Association of Zoos and Aquaria (AZAB) and the National Center for Research and Conservation of Brazilian Primates (ICMBio/CPB) are coordinating an ex situ management program.

NEOTROPICS – PERUVIAN YELLOW-TAILED WOOLLY MONKEY

Lagothrix flavicauda (Humboldt, 1812)

Peru

Sam Shanee

The Yellow-tailed Woolly Monkey, *Lagothrix flavicauda*, is endemic to Peru and Critically Endangered (Shanee et al. 2021). It is found largely in the northern Peruvian departments of Amazonas and San Martin, but also in small areas of neighboring departments, as well as in a newly discovered isolated population in the department of Junin (Shanee 2011, Aquino et al. 2016a, 2016b, McHugh et al. 2019). It has suffered massive habitat loss and fragmentation throughout almost all of its range in the last decades, leaving many populations isolated (Shanee 2016, Shanee et al. 2021). The species is also
hunted for the illegal pet trade and for food throughout its range, and it is generally difficult to find near human settlements (Shanee, N. 2012). It was thought to be extinct until its rediscovery in the 1970’s (Mittermeier et al. 1975). There are no precise estimates regarding the number of individuals remaining, but the species is declining rapidly across its range, with an estimated population reduction of 93% since the early 1980s (Shanee, N. and Shanee 2014). A number of conservation initiatives now exist for the species, including the creation of new state protected areas, and rapid growth in private and communal reserves (Shanee et al. 2017, 2018). In one community area, in Yambrasbamba, Amazonas, community-based conservation efforts have resulted in a significant increase in the population of Yellow-tailed Woolly Monkeys there (Shanee and Shanee 2015).

AFFILIATIONS

EDITORS

Mittermeier, Russell A.
Re:wild
Austin, TX, USA

Reuter, Kim E.
Lemur Love
San Diego, CA, USA

Rylands, Anthony B.
Re:wild
Austin, TX, USA

Jerusalinsky, Leandro
Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros
Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio/CPB)
Cabedelo, PB, Brazil

Schwitzer, Christoph
Dublin Zoo
Dublin, Ireland

Strier, Karen B.
Department of Anthropology
University of Wisconsin-Madison
Madison, WI, USA

Ratsimbazafy, Jonah
Groupe d'étude et de recherche sur les primates (Gerp)
Antananarivo, Madagascar

Humle, Tatyana
Durrell Institute of Conservation and Ecology
School of Anthropology and Conservation
University of Kent
Canterbury, Kent, UK

CONTRIBUTORS

Abwe, Ekwoge
Ebo Forest Research Project
San Diego Zoo Wildlife Alliance
Cameroon

Alfonso-Cortes, Felipe
Grupo de Estudio de Primates del Ecuador (GEPE)
Proyecto Washu
Fundación Naturaleza y Arte
Ecuador

Alonso, André C.
Independent Researcher
Cabedelo, PB, Brazil

Alzamora, Mónica
Fundación Yunkawasi
Lima, Peru

Andriajaona, Aubin
Montane des Français
Madagascar Biodiversity Partnership
Madagascar

Andrianandrasana, Herizo T.
Durrell Wildlife Conservation Trust
Antananarivo, Madagascar

Andrianarimisa, Aristide
Zoology and Animal Biodiversity
University of Antananarivo
Antananarivo, Madagascar

Ang, Andie
Mandai Nature
Singapore

Assis Jardim, Márcia M.
Museu de Ciências Naturais do Rio Grande do Sul
Secretaria do Meio Ambiente e Infraestrutura
Porto Alegre, RS, Brazil

Azevedo, Renata B.
Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros
Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio/CPB)
Cabedelo, PB, Brazil

Bailey, Carolyn A.
Omaha's Henry Doorly Zoo and Aquarium
Omaha, NE, USA

Barreto, Hamilton F.
Programa de Pós-graduação em Ecologia e Conservação
Universidade Federal de Sergipe
São Cristóvão, SE, Brazil

Beltrão-Mendes, Raone
Programa de Pós-graduação em Ecologia e Conservação
Universidade Federal de Sergipe
São Cristóvão, SE, Brazil

Bergl, Richard
North Carolina Zoological Park
Asheboro, North Carolina, USA

Bezara Hortensia, Hosnah
Parc Andrafiamena Andavakoera
Madagascar
Bicca-Marques, Júlio César
Laboratório de Primatologia
Escola de Ciências da Saúde e da Vida
Pontifícia Universidade Católica do Rio Grande do Sul,
Porto Alegre, RS, Brazil

Boubli, Jean P.
School of Science, Engineering and the Environment
University of Salford
Salford, UK

Buss, Gerson
Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros
Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio/CPB)
Cabedelo, PB, Brazil

Butynski, Thomas M.
Eastern Africa Primate Diversity and Conservation Program
Nanyuki, Kenya

Canale, Gustavo Rodrigues
Centre of Biodiversity Studies of the Southern Amazon (NEBAM)
Federal University of Mato Grosso (UFMT)
Sinop, MT, Brazil

Cardoso, Tatiane dos Santos
Museu Paraense Emilio Goeldi
Belém, PA, Brazil.

Carvalho, Rodrigo Salles
Programa de Educação Ambiental - PREA
Juiz de Fora, MG, Brazil

Cervera, Laura
Grupo de Estudio de Primates del Ecuador (GEPE)
Asociación Ecuatoriana de Mastozoología AEM
Quito, Ecuador

Chaves, Óscar M.
Universidad de Costa Rica (UCR)
San José, Costa Rica

Cheyne, Susan M.
Oxford Brookes University
Oxford, UK, and
Borneo Nature Foundation
Central Kalimantan, Indonesia

Chikhi, Lounès
Laboratoire Évolution and Diversité Biologique - UMR5174
French National Centre for Scientific Research - IRD – UPS
Toulouse, France, and Instituto Gulbenkian de Ciência,
Oeiras, Portugal

Cornejo, Fanny
Fundación Yunkawasi
Lima, Peru

Cotton, Sam
Bristol Zoological Society
Bristol Zoo Gardens
Bristol, UK

Davenport, Tim R.B.
Re: wild
USA/Tanzania

De Jong, Yvonne A.
Eastern Africa Primate Diversity and Conservation Program
Nanyuki, Kenya

de la Torre, Stella
Grupo de Estudio de Primates del Ecuador (GEPE)
Universidad San Francisco de Quito
Colegio de Ciencias Biológicas y Ambientales Ecuador

Dempsey, Andrea
West African Primate Conservation Action
Zoological Society of Hertfordshire
Broxbourne, UK

Dinsmore, Mary P.
School of Environmental Sustainability
Loyola University Chicago
Chicago, IL, USA

do Carmo, Sarisha Trindade
Centro de Conservação dos Saguis-da-Serra, Vila
Universidade Federal de Viçosa
Viçosa, MG, Brasil

Doumbé, Osiris
Sekakoh Association
Ntui, Cameroon

Dunn, Andrew
Wildlife Conservation Society
Calabar, Nigeria

Dutton, Paul
Independent researcher
Waikato, New Zealand

Epley, Timothy M.
Conservation Science and Wildlife Health
San Diego Zoo Wildlife Alliance
Escondido, CA, USA, and
Department of Anthropology
Portland State University
Portland, OR, USA

Fernanda Solórzano, María
Grupo de Estudio de Primates del Ecuador (GEPE)
Asociación Ecuatoriana de Mastozoología AEM
Quito, Ecuador

Ferrari, Stephen F.
Department of Ecology
Universidade Federal de Sergipe
Aracaju, SE, Brazil
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotang, Chefor</td>
<td>Brandenburg University of Technology</td>
</tr>
<tr>
<td></td>
<td>Cottbus-Senftenberg, Germany</td>
</tr>
<tr>
<td>Frasier, Cynthia L.</td>
<td>Omaha’s Henry Doorly Zoo and Aquarium</td>
</tr>
<tr>
<td></td>
<td>Omaha, NE, USA</td>
</tr>
<tr>
<td>Fuentes, Nathalia</td>
<td>Grupo de Estudio de Primates del Ecuador (GEPE)</td>
</tr>
<tr>
<td></td>
<td>Proyecto Washu / Fundación Naturaleza y Arte Ecuador</td>
</tr>
<tr>
<td>Garber, Paul A.</td>
<td>Department of Anthropology, Program in Ecology, Evolution, and Conservation Biology</td>
</tr>
<tr>
<td></td>
<td>University of Illinois</td>
</tr>
<tr>
<td></td>
<td>Urbana, IL, USA</td>
</tr>
<tr>
<td>Gonder, Mary Katherine</td>
<td>Bioko Biodiversity Protection Programme</td>
</tr>
<tr>
<td></td>
<td>College of Arts and Sciences</td>
</tr>
<tr>
<td></td>
<td>Drexel University</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, PA, USA</td>
</tr>
<tr>
<td>Gonedelé Bi, Sery</td>
<td>UFR Biosciences</td>
</tr>
<tr>
<td></td>
<td>Université Félix Houphouët-Boigny</td>
</tr>
<tr>
<td></td>
<td>Abidjan, Côte d’Ivoire</td>
</tr>
<tr>
<td>Gordo, Marcelo</td>
<td>Laboratório Biologia da Conservação Departamento de Biologia/ICB, Universidade Federal do Amazonas</td>
</tr>
<tr>
<td></td>
<td>Manaus, AM, Brazil</td>
</tr>
<tr>
<td>Gouveia, Sidney</td>
<td>Department of Ecology</td>
</tr>
<tr>
<td></td>
<td>Federal University of Sergipe</td>
</tr>
<tr>
<td></td>
<td>São Cristóvão, SE, Brazil</td>
</tr>
<tr>
<td>Gutiérrez-Pineda, Karol M.</td>
<td>Fundación Pro-Conservación de los Primates Panameños (FCPP)</td>
</tr>
<tr>
<td></td>
<td>Panam City, Panama</td>
</tr>
<tr>
<td>Hadisiswoyo, Panut</td>
<td>Orangutan Information Centre</td>
</tr>
<tr>
<td></td>
<td>Sumatra Utara, Indonesia</td>
</tr>
<tr>
<td>Hanlan, Fei</td>
<td>College of Life Science</td>
</tr>
<tr>
<td></td>
<td>China West Normal University</td>
</tr>
<tr>
<td></td>
<td>Nanchong, China</td>
</tr>
<tr>
<td>Hart, John A.</td>
<td>FZS-ICCN Lomami National Park Project</td>
</tr>
<tr>
<td></td>
<td>Kinshasa, Democratic Republic of the Congo</td>
</tr>
<tr>
<td>Herinaina, Rio</td>
<td>Primate Biology, Behaviour and Conservation</td>
</tr>
<tr>
<td></td>
<td>University of Roehampton</td>
</tr>
<tr>
<td></td>
<td>London, UK</td>
</tr>
<tr>
<td>Hending, Daniel</td>
<td>School of Biological Sciences</td>
</tr>
<tr>
<td></td>
<td>University of Bristol</td>
</tr>
<tr>
<td></td>
<td>Bristol, UK</td>
</tr>
<tr>
<td>Hernández-Jaramillo, Alma</td>
<td>Neotropical Primate Conservation</td>
</tr>
<tr>
<td></td>
<td>Bogotá, Colombia</td>
</tr>
<tr>
<td>Hirano, Zelinda B.</td>
<td>Biological Research Center (CEPESBI)</td>
</tr>
<tr>
<td></td>
<td>Fundação Universidade Regional de Blumenau (FURB)</td>
</tr>
<tr>
<td></td>
<td>Indaiatuba, SC, Brazil</td>
</tr>
<tr>
<td>Igayara-Souza, Claudia</td>
<td>Guarulhos Zoo</td>
</tr>
<tr>
<td></td>
<td>Guarulhos, SP, Brazil</td>
</tr>
<tr>
<td>Ikemeh, Rachel Ashegbofe</td>
<td>SW/Niger Delta Forest Project</td>
</tr>
<tr>
<td></td>
<td>New Garki, Abuja, Nigeria</td>
</tr>
<tr>
<td>Imong, Iniayom</td>
<td>Wildlife Conservation Society</td>
</tr>
<tr>
<td></td>
<td>Calabar, Nigeria</td>
</tr>
<tr>
<td>Jabbar, Sabrina</td>
<td>Mandai Nature</td>
</tr>
<tr>
<td></td>
<td>Singapore</td>
</tr>
<tr>
<td>Jerusalinsky, Leandro</td>
<td>Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros</td>
</tr>
<tr>
<td></td>
<td>Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio/CPB)</td>
</tr>
<tr>
<td></td>
<td>Cabedelo, PB, Brazil</td>
</tr>
<tr>
<td>Kamgang, Serge A.</td>
<td>Waza National Park</td>
</tr>
<tr>
<td></td>
<td>Far North Region, Cameroon</td>
</tr>
<tr>
<td>Kappeler, Peter M.</td>
<td>German Primate Center</td>
</tr>
<tr>
<td></td>
<td>Göttingen, Germany</td>
</tr>
<tr>
<td>Koné, Inza</td>
<td>Centre Suisse de Recherche Scientifiques en Côte d’Ivoire (CSRS)</td>
</tr>
<tr>
<td></td>
<td>Abidjan, Côte d’Ivoire</td>
</tr>
<tr>
<td>Kowalewski, Martin</td>
<td>Estación Biológica Corrientes (EBCo)</td>
</tr>
<tr>
<td></td>
<td>Museo Argentino de Ciencias Naturales BR CONICET</td>
</tr>
<tr>
<td></td>
<td>Consejo Nacional de Investigaciones Científicas y Técnicas</td>
</tr>
<tr>
<td></td>
<td>Corrientes, Argentina</td>
</tr>
<tr>
<td>Kuswanda, Wanda</td>
<td>Life Sciences and Environment Research Organization</td>
</tr>
<tr>
<td></td>
<td>National Research and Innovation Agency (BRIN) Central</td>
</tr>
<tr>
<td></td>
<td>Jakarta, Indonesia</td>
</tr>
</tbody>
</table>
Lagroteria, Diogo
Centro Nacional de Pesquisa e Conservação da Biodiversidade Amazônica
Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio/CEPAM)
Manaus, AM, Brazil

Lee, Chien
Sarawak, Borneo

Lee, Zan Hui
Universiti Sains Malaysia
Pulau Pinang, Malaysia

Leonard, NeaHga
Cat Ba Langur Conservation Project
Ca Ba National Park
Cat Ba Island, Cat Ba District
Hai Phong Province, Vietnam

Lewis, Richard
Durrell Wildlife Conservation Trust
Antananarivo, Madagascar

Louis, Jr., Edward E.
Omaha's Henry Doorly Zoo and Aquarium
Omaha, NE, USA

Lu, Zhang
School of Life Sciences
Sun Yat-Sen University
Guangzhou, Guangdong, China

Markolf, Matthias
University of Göttingen
Göttingen, Germany

Marques, Eduardo
Instituto Chico Mendes de Conservação da Biodiversidade
Cabedelo, PB, Brazil

Martinez, Jesus
Wildlife Conservation Society
La Paz, Bolivia

Matsuda Goodwin, Reiko
Department of Sociology and Anthropology
Fordham University
New York, USA

McGraw, W. Scott
The Ohio State University
Department of Anthropology
Columbus, OH, USA

McLester, Edward
Department for the Ecology of Animal Societies
Max Planck Institute of Animal Behavior
Konstanz, Germany

Melo, Fabiano R. de
Forestry Engineering Department
Viçosa Federal University
Viçosa, MG, Brazil

Mendes, Sérgio Lucena
Instituto Nacional da Mata Atlântica (INMA) and
Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil

Mendes-Oliveira, Ana Cristina
Laboratório de Ecologia e Zoologia de Vertebrados
Instituto de Ciências Biológicas
Universidade Federal do Pará
Belém, PA, Brazil

Meijaard, Erik
Borneo Futures
Brunei

Méndez-Carvajal, Pedro G.
Fundación Pro-Conservación de los Primates Panameños (FCPP)
Panam City, Panama

Montilla, Sebastián
Departamento de Ciencias Biológicas
Universidad de Los Andes y Fundación Proyecto Primates
Bogotá, Colombia

Morales-Jiménez, Alba Lucía
Fundación Biodiversa Colombia
Bogotá, Colombia

Morelos-Juárez, Citlalli
Fundación Reserva Tesoro Escondido
Ecuador

Morgan, Bethan Jane
Ebo Forest Research Project
Messa, Cameroon, and
Institute for Conservation Research
San Diego Zoo Global
Escondido, CA, USA

Myers Thompson, Jo A.
Lukuru Wildlife Research Foundation
Marion, OH, USA

Nadler, Tilo
Three Monkeys Wildlife Conservancy
Cuc Phuong Commune, Nho Quan District
Ninh Binh Province, Vietnam

Nekaris, K. Anna I.
Nocturnal Primate Research Group
Oxford Brookes University
Oxford, UK
Neves, Leonardo G.
Instituto de Estudos Socioambientais do Sul da Bahia (IESB)
Universidade Estadual de Santa Cruz (UESC)
Ilhéus, BA, Brazil

Nijman, Vincent
Oxford Brookes University
Oxford, UK

Ngouh, Amadou
Université de Dschang
Cameroon

Oates, John F.
Dept of Anthropology
Hunter College CUNY
New York, NY, USA

Oklander, Luciana I.
Grupo de Investigación en Genética Aplicada
IBS Consejo Nacional de Investigaciones Científicas y Técnicas
Universidad Nacional de Misiones
Argentina

Passaro, Richard L.
Previously associated with the Cat Ba Langur Conservation Project
Vietnam

Pengfei, Fan
School of Life Sciences
Sun Yat-Sen University
Guangzhou, Guangdong, China

Perkin, Andrew
Independent Researcher
Tanzania

Perry, George (PJ)
Departments of Anthropology and Biology Pennsylvania State University
University Park, PA, USA

Pinel Ramos, Eduardo J.
Instituto de Neuroetologia
Universidad Veracruzana
Honduras

Pollensio, Herinandrasana
Département des Sciences de la Nature et de l’Environnement
Université d’Antsiranana
Antsiranana, Madagascar

Port-Carvalho, Márcio
Environmental Research Institute, Conservation and Biodiversity Nucleus
Infrastructure and Environment Secretariat of São Paulo, SP, Brazil, and
National School of Tropical Botany
Rio de Janeiro Botanical Garden
Rio de Janeiro, RJ, Brazil

Pozo-Montuy, Gilberto
Facultad Maya de Estados Agropecuarios
Universidad Autónoma de Chiapas
México

Prasetyo, Didik
Yayasan Orangutan Tapanuli Indonesia (YOTI)
Jakarta, Indonesia

Queiroz, Helder
Mamirauá Institute for Sustainable Development
Tefé, AM, Brazil

Raffel, Martina
Allwetter Zoo, Germany

Raharivololina, Brigitte M.
Mention Zoologie et Biodiversité Animale
Ecole Doctorale Sciences de la Vie et de l’Environnement
Université d’Antananarivo
Antananarivo, Madagascar

Rakotoarisoa, Gilbert
Parc Botanique et Zoologique de Tsimbazaza
Antananarivo, Madagascar

Rakotondraparany, Felix
Département de Zoologie et Biodiversité Animale
Université d’Antananarivo
Antananarivo, Madagascar

Rakotomalala, Valérie F.
Faculté des Sciences, de Technologie et de l’Environnement
Université de Mahajanga
Mahajanga, Madagascar

Rakotondrazandry, Jeannin Nicolas
Ecole Doctorale des Ecosystèmes Naturels
Université de Mahajanga
Mahajanga, Madagascar

Rakotondrina, Romeo
Mention Zoologie et Biodiversité Animale
Université d’Antananarivo
Antananarivo, Madagascar

Ralainasolo, Fidy
Durrell Wildlife Conservation Trust
Antananarivo, Madagascar
Randimbiharirina, Doménico R.
Groupe d’Étude et de Recherche sur les Primates de Madagascar (GERP)
Antananarivo, Madagascar

Randriatahina, Guy H.
Association Européenne pour l’Étude et la Conservation des Lémuriens (AEECL)
Madagascar

Rasoanainy, Noa E.
Département Zoologie et Biodiversité Animale Faculté des Sciences
Université d’Antananarivo
Antananarivo, Madagascar

Rasoanazava, Lucile
Faculté des Sciences, de Technologies et de l’Environnement
Université de Mahajanga
Mahajanga, Madagascar

Rasoloharijaona, Solofonirina
Faculté des Sciences, de Technologies et de l’Environnement
Université de Mahajanga
Mahajanga, Madagascar

Ratsimbazafy, Jonah
Groupe d’Étude et de Recherche sur les Primates de Madagascar (GERP)
Antsakaviro, Antananarivo, Madagascar

Raveloarimalala, Lucile Mialisoa
Madagascar Wildlife Conservation
Atsimondrova
Ambatondrazaka
Madagascar

Ravelomandrato, Faranky
Mention Zoologie et Biodiversité Animale
Université d’Antananarivo
Antananarivo, Madagascar

Raveloson, Herimala
Ecole Doctorale des Ecosystèmes Naturels
Université de Mahajanga
Mahajanga, Madagascar

Ravetta, André Luis
Programa de Capacitação Institucional
Museu Paraense Emílio Goeldi (PCI-MPEG)
Belém, PA, Brazil

Ren, Baoping
Ministry of Education Key Laboratory for Ecology of Tropical Islands
College of Life Sciences
Hainan Normal University
Haikou, China

Rigobert, Jhon
University of Antsiranana
Antsiranana, Madagascar

Rivera, Esteban
Grupo de Estudio de Primates del Ecuador (GEPE)
Proyecto Washu / Fundación Naturaleza y Arte
Ecuador

Rizaldi
Andalas University
Padang City, West Sumatra, Indonesia

Rodríguez-Menjívar, Melissa E.
Asociación Territorios Vivos El Salvador (ATVES)
El Salvador

Rowe, Noel
Primate Conservation Inc.
Charlestown, RI, USA

Rudran, Rasanyagam
Smithsonian’s Conservation Biology Institute
Front Royal, VA, USA

Ruppert, Nadine
School of Biological Sciences
Universiti Sains Malaysia
Pulau Pinang, Malaysia

Rylands, Anthony B.
Re:wild
Austin, TX, USA

Sánchez-Porras, Ronald
Universidad de Costa Rica
San José, Costa Rica

Salmona, Jordi
Laboratoire Évolution and Diversité Biologique - UMR5174
Université Toulouse III Paul Sabatier - IRD - CNRS
Toulouse, France

Schäffler, Livia
Leibniz Institute for the Analysis of Biodiversity Change (LIB)
Museum Koenig, and
Centre for Biodiversity Monitoring and Conservation Science
Section Conservation Ecology
Bonn, Germany

Schrudde, Daniela
Previously associated with the Cat Ba Langur Conservation Project
Vietnam

Schwitzer, Christoph
Dublin Zoo
Dublin, Ireland
Sefczek, Timothy M.
Omaha's Henry Doorly Zoo and Aquarium
Omaha, NE, USA

Seibokuro, Tukuru
Apoi Community Conservation Association
Nigeria

Sebedo, Thiago B.F.
Instituto Nacional de Pesquisa do Pantanal (INPP) Museu
Paraense Emílio Goeldi (MPEG), and
Programa de Capacitação Institucional
Cuiabá, MT, Brazil

Semel, Brandon
Fish and Wildlife Sciences
Virginia Tech University
Blacksburg, VA, USA

Semel, Meredith
Biological Sciences
Virginia Tech University
Blacksburg, VA, USA

Setiawan, Arif
SwaraOwa
Yogyakarta, Indonesia

Shanee, Sam
Neotropical Primate Conservation
Moyobamba, San Martín, Peru

Shekelle, Myron
Biology Department
Western Washington University
Bellingham, WA, USA

Spaan, Denise
Universidad Veracruzana de México
Xalapa, México

Steffens, Travis S.
Department of Sociology and Anthropology
University of Guelph
Guelph, ON, Canada, and
Planet Madagascar
Guelph, ON, Canada

Stenke, Roswitha
Previously associated with the Cat Ba Langur Conservation Project
Vietnam

Supriatna, Jatna
Department of Biology, FMIPA
University of Indonesia
Indonesia, and
Tapanuli Orangutan Foundation
Indonesia

Thuc, Phan Duy
Previously worked on the Golden-headed Langur

Tinsman, Jen
Conservation Genetics Department
Omaha's Henry Doorly Zoo and Aquarium
Omaha, NE, USA

Tirira, Diego G.
Grupo de Estudio de Primates del Ecuador (GEPE)
Fundación Mamíferos y Conservación
Capelo, Rumiñahui, Ecuador

Valença-Montenegro, Mônica M.
Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros
Instituto Chico Mendes de Conservação da Biodiversidade
(ICMBio/CPB)
Cabejeló, PB, Brazil

Vital, Orlando
Programa de Pós-Graduação em Ecologia
Centro de Conservação dos Saguis-da-Serra Universidade
Federal de Viçosa
Viçosa, MG, Brazil

Volampeno, Sylviane
Mikajy Natiara
Madagascar

Waebere, Patrick O.
ETH Zurich, Ecosystems Management, Forest Management and Development Group
Zurich, Switzerland

Wallace, Robert
Wildlife Conservation Society
La Paz, Bolivia

Wich, Serge
Liverpool John Moores University
Liverpool, UK

Wilmet, Leslie
Durrell Wildlife Conservation Trust
Antananarivo, Madagascar

Zaldaña-Orantes, Karla P.
Asociación Territorios Vivos El Salvador (ATVES)
San Salvador, El Salvador

Zaonarivelo, John
Département des Sciences de la Nature et de l’Environnement
Université d’Antsiranana
Antsiranana, Madagascar

Zhou, Jiang
School of Karst Science
Guizhou Normal University
Guiyang, China
Back cover photo: The Ka’apor Capuchin Monkey, Cebus kaapori, in the Gurupi Biological Reserve, Maranhão, Brazil. Photograph by Fabiano R. de Melo.
PRIMATES IN PERIL
The World’s 25 Most Endangered Primates
2022–2023