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The planetary boundaries (PB) approach (1, 2) aims to de-
fine a safe operating space for human societies to develop 
and thrive, based on our evolving understanding of the 
functioning and resilience of the Earth System. Since its 
introduction, the framework has been subject to scientific 
scrutiny [e.g., (3–7)] and has attracted considerable interest 
and discussions within the policy, governance, and business 
sectors as an approach to inform efforts towards global sus-
tainability (8–10). 

In this analysis we further develop the basic PB frame-
work by (i) introducing a two-tier approach for several of 
the boundaries to account for regional-level heterogeneity; 

(ii) updating the quantification 
of most of the PBs; (iii) identi-
fying two core boundaries; and 
(iv) proposing a regional-level 
quantitative boundary for one 
of the two that were not quan-
tified earlier (1). 
 
The basic framework: Defin-
ing a safe operating space 
Throughout history, humanity 
has faced environmental con-
straints at local and regional 
levels, with some societies 
dealing with these challenges 
more effectively than others 
(11, 12). More recently, early 
industrial societies often used 
local waterways and airsheds 
as dumping grounds for their 
waste and effluent from indus-
trial processes. This eroded 
local and regional environmen-
tal quality and stability, 
threatening to undermine the 
progress made through indus-
trialization by damaging hu-
man health and degrading 
ecosystems. Eventually this led 
to the introduction of local or 
regional boundaries or con-
straints on what could be emit-
ted to and extracted from the 
environment (e.g., chemicals 
that pollute airsheds or water-
ways), and on how much the 
environment could be changed 
by direct human modification 
(land-use/cover change in nat-
ural ecosystems) (13). The reg-
ulation of some human 
impacts on the environment, 
for example the introduction of 

chemical contaminants, is often framed in the context of 
‘safe limits’ (14). 

These issues remain, but in addition we now face con-
straints at the planetary level where the magnitude of the 
challenge is vastly different. The human enterprise has 
grown so dramatically since the mid-20th century (15) that 
the relatively stable, 11,700-year long Holocene epoch, the 
only state of the planet that we know for certain can sup-
port contemporary human societies, is now being destabi-
lized (figs. S1 and S2) (16–18). In fact, a new geological 
epoch, the Anthropocene, has been proposed (19). 

The precautionary principle suggests that human socie-
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The planetary boundaries framework defines a safe operating space for 
humanity based on the intrinsic biophysical processes that regulate the 
stability of the Earth System. Here, we revise and update the planetary 
boundaries framework, with a focus on the underpinning biophysical 
science, based on targeted input from expert research communities and on 
more general scientific advances over the past 5 years. Several of the 
boundaries now have a two-tier approach, reflecting the importance of 
cross-scale interactions and the regional-level heterogeneity of the 
processes that underpin the boundaries. Two core boundaries—climate 
change and biosphere integrity—have been identified, each of which has 
the potential on its own to drive the Earth System into a new state should 
they be substantially and persistently transgressed. 
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ties would be unwise to drive the Earth System substantially 
away from a Holocene-like condition. A continuing trajecto-
ry away from the Holocene could lead, with an uncomforta-
bly high probability, to a very different state of the Earth 
System, one that is likely to be much less hospitable to the 
development of human societies (17, 18, 20). The PB frame-
work aims to help guide human societies away from such a 
trajectory by defining a “safe operating space” in which we 
can continue to develop and thrive. It does this by propos-
ing boundaries for anthropogenic perturbation of critical 
Earth System processes. Respecting these boundaries would 
greatly reduce the risk that anthropogenic activities could 
inadvertently drive the Earth System to a much less hospi-
table state. 

Nine processes, each of which is clearly being modified 
by human actions, were originally suggested to form the 
basis of the PB framework (1). While these processes are 
fundamental to Earth System functioning, there are many 
other ways that Earth System functioning could be de-
scribed, including potentially valuable metrics for quantify-
ing the human imprint on it. These alternative approaches 
[e.g., (4)] often represent ways to explore and quantify in-
teractions among the boundaries. They can provide a valua-
ble complement to the original approach (1), and further 
enrich the broader PB concept as it continues to evolve. 
 
The planetary boundary framework: Thresholds, feed-
backs, resilience, uncertainties 
A planetary boundary as originally defined (1) is not equiva-
lent to a global threshold or tipping point. As Fig. 1 shows, 
even when a global- or continental/ocean basin-level 
threshold in an Earth System process is likely to exist [e.g., 
(20, 21)], the proposed planetary boundary is not placed at 
the position of the biophysical threshold but rather up-
stream of it, i.e., well before reaching the threshold. This 
buffer between the boundary (the end of the safe operating 
space—the green zone in Fig. 1) and the threshold accounts 
not only for uncertainty in the precise position of the 
threshold with respect to the control variable, but also al-
lows society time to react to early warning signs that it may 
be approaching a threshold and consequent abrupt or risky 
change. 

The developing science of early warning signs can warn 
of an approaching threshold or a decrease in the capability 
of a system to persist under changing conditions. Examples 
include “critical slowing down” in a process (22), increasing 
variance (23), and flickering between states of the system 
(24–26). However, for such science to be useful in a policy 
context, it must provide enough time for society to respond 
in order to steer away from an impending threshold before 
it is crossed (27, 28). The problem of system inertia, for ex-
ample, in the climate system (18), needs to be taken into 
account in assessing the time needed for society to react to 
early warning signs. 

Not all Earth System processes included in the PB ap-

proach have singular thresholds at the glob-
al/continental/ocean basin level (1). Nevertheless, it is im-
portant that boundaries be established for these processes. 
They affect the capacity of the Earth System to persist in a 
Holocene-like state under changing conditions (henceforth 
“resilience”) by regulating biogeochemical flows (e.g., the 
terrestrial and marine biological carbon sinks) or by provid-
ing the capacity for ecosystems to tolerate perturbations and 
shocks and to continue functioning under changing abiotic 
conditions (29, 30). Examples of such processes are land-
system change, freshwater use, change in biosphere integri-
ty (rate of biodiversity loss in 1,2) and changes in other bio-
geochemical flows in addition to carbon (e.g., nitrogen and 
phosphorus). Placing boundaries for these processes is more 
difficult than for those with known large-scale thresholds 
(21), but is nevertheless important for maintaining the resil-
ience of the Earth System as a whole. As indicated in Fig. 1, 
these processes, many of which show threshold behavior at 
local and regional scales, can generate feedbacks to the pro-
cesses that do have large-scale thresholds. The classic exam-
ple is the possible weakening of natural carbon sinks, which 
could further destabilize the climate system and push it 
closer to large thresholds (e.g, loss of the Greenland ice 
sheet; 18). An interesting research question of relevance to 
the PB approach is how small-scale regime shifts can propa-
gate across scales and possibly lead to global-level transi-
tions (31, 32). 

A zone of uncertainty, sometimes large, is associated 
with each of the boundaries (yellow zone in Fig. 1). This 
zone encapsulates both gaps and weaknesses in the scien-
tific knowledge base and intrinsic uncertainties in the func-
tioning of the Earth System. At the “safe” end of the zone of 
uncertainty, current scientific knowledge suggests that there 
is very low probability of crossing a critical threshold or sig-
nificantly eroding the resilience of the Earth System. Be-
yond the “danger” end of the zone of uncertainty, current 
knowledge suggests a much higher probability of a change 
to the functioning of the Earth System that could potentially 
be devastating for human societies. Application of the pre-
cautionary principle dictates that the planetary boundary is 
set at the “safe” end of the zone of uncertainty. This doesn’t 
mean that transgressing a boundary will instantly lead to an 
unwanted outcome, but that the farther the boundary is 
transgressed, the higher the risk of regime shifts, destabi-
lized system processes or erosion of resilience, and the 
smaller the opportunities to prepare for such changes. Ob-
servations of the climate system show this principle in ac-
tion by the influence of increasing atmospheric greenhouse 
gas concentrations on the frequency and intensity of many 
extreme weather events (17, 18). 
 
Linking global and regional scales 
PB processes operate across scales, from ocean ba-
sins/biomes or sources/sinks, to the level of the Earth Sys-
tem as a whole. Here we address the sub-global aspects of 
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the PB framework. Rockström et al. (1) estimated global 
boundaries only, acknowledging that the control variables 
for many processes are spatially heterogeneous. That is, 
changes in control variables at the sub-global level can in-
fluence functioning at the Earth System level, which indi-
cates the need to define sub-global boundaries that are 
compatible with the global-level boundary definition. Avoid-
ing the transgression of sub-global boundaries would thus 
contribute to an aggregate outcome within a planetary-level 
safe operating space. 

We focus on the five PBs that have strong regional oper-
ating scales: biosphere integrity, biogeochemical flows (ear-
lier termed “phosphorus (P) and nitrogen (N) cycles”: 1,2), 
land-system change, freshwater use and atmospheric aerosol 
loading. Table S1 describes how transgression of any of the 
proposed boundaries at the sub-global level affects the 
Earth System at the global level. 

For those processes where sub-global dynamics poten-
tially play a critical role in global dynamics, the operational 
challenge is to capture the importance of sub-global change 
for the functioning of the Earth System. To do this, we pro-
pose the development of a two-level set of control variables 
and boundaries. The sub-global-level units of analysis for 
these six boundaries are not identical; they vary according 
to the role that the processes play in the Earth System: (i) 
changes in biosphere integrity occur at the level of land-
based biomes, large freshwater ecosystems or major marine 
ecosystems as the largest sub-global unit; (ii) the role of di-
rect, human-driven land-system change in biophysical cli-
mate regulation is primarily related to changes in forest 
biomes; (iii) freshwater flows and use occur at the largest 
sub-global level in the major river basins around the world; 
and (iv) changes in biogeochemical flows, exemplified by 
phosphorus and nitrogen cycling aggregate from relatively 
localized but very severe perturbations in intensive agricul-
tural zones to affect global flows of nutrients. We recognize 
these as critical regions for Earth System functioning. 
Where appropriate, the updates of the individual bounda-
ries (see below) (33) now contain both the globally aggre-
gated boundary value of the control variable and its regional 
distribution function. Figure 2 shows the distributions and 
current status of the control variables for three of the 
boundaries where sub-global dynamics are critical—
biogeochemical cycles, land-system change and freshwater 
use. 

We emphasize that our sub-global-level focus is based on 
the necessity to consider this level to understand the func-
tioning of the Earth System as a whole. The PB framework 
is therefore meant to complement, not replace or supersede, 
efforts to address local and regional environmental issues. 
 
Updates of the individual boundaries 
Brief updates of all nine of the PBs are given in this section, 
while more detailed descriptions of the updates for three of 
the PBs that have undergone more extensive revision can be 

found in (33). The geographical distribution issues discussed 
above are particularly important for five of the PBs, and 
their control variables and boundaries have been revised 
accordingly (Table 1). Figure 3 shows the current status of 
the seven boundaries that can be quantified at the global 
level. 
 
Climate change 
We retain the control variables and boundaries originally 
proposed, i.e., an atmospheric CO2 concentration of 350 
ppm and an increase in top-of-atmosphere radiative forcing 
of +1.0 W m-2 relative to pre-industrial (1). The radiative 
forcing control variable is the more inclusive and funda-
mental, although CO2 is important because of its long life-
time in the atmosphere and the very large human 
emissions. Human-driven changes to radiative forcing in-
clude all anthropogenic factors—CO2, other greenhouse gas-
es, aerosols and other factors that affect the energy balance 
(18). Radiative forcing is generally the more stringent of the 
two boundaries although the relationship between it and 
CO2 can vary through time with changes in the relative im-
portance of the individual radiative forcing factors. 

Evidence has accumulated to suggest that the zone of 
uncertainty for the CO2 control variable should be narrowed 
from 350-550 ppm to 350-450 ppm CO2 (17, 18), while retain-
ing the current zone of uncertainty for radiative forcing of 
+1.0-1.5 W m-2 relative to pre-industrial. Current values of 
the control variables are 397 ppm CO2 (annual average con-
centration for 2013) (34) and +2.3 W m-2 (1.1-3.3 W m-2) in 
2011 relative to 1750 (18). Observed changes in climate at 
current levels of the control variables confirm the original 
choice of the boundary values and the narrowing of the 
zone of uncertainty for CO2. For example, there has already 
been an increase in the intensity, frequency and duration of 
heatwaves globally (35); the number of heavy rainfall events 
in many regions of the world is increasing (17); changes in 
atmospheric circulation patterns have increased drought in 
some regions of the world (17); and the rate of combined 
mass loss from the Greenland and Antarctic ice sheets is 
increasing (36). 
 
Changes in biosphere integrity 
We propose a two-component approach, addressing two key 
roles of the biosphere in the Earth System. The first cap-
tures the role of genetically unique material as the “infor-
mation bank” that ultimately determines the potential for 
life to continue to co-evolve with the abiotic component of 
the Earth System in the most resilient way possible. Genetic 
diversity provides the long-term capacity of the biosphere to 
persist under and adapt to abrupt and gradual abiotic 
change. The second captures the role of the biosphere in 
Earth System functioning through the value, range, distribu-
tion and relative abundance of the functional traits of the 
organisms present in an ecosystem or biota (7). 

For the first role the concept of Phylogenetic Species 
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Variability (PSV) (7, 33, 37) would be an appropriate control 
variable. However, since global data are not yet available for 
PSV, we retain the global extinction rate as an interim con-
trol variable, although it is measured inaccurately and with 
a time lag. There may be a significant risk in using extinc-
tion rate as a control variable, as phylogenetic (and func-
tional) diversity may be more sensitive to human pressures 
than species-level diversity (38). In principle, the boundary 
should be set at a rate of loss of PSV no greater than the 
rate of evolution of new PSV during the Holocene. Since 
that is unknown, we must fall back on the (imperfectly) 
known extinction rate of well-studied organisms over the 
past several million years—about 1 per million species-years 
(39)—and add a large uncertainty bound, raising the bound-
ary to 10 per million species-years. The risk is that, although 
the Earth System can tolerate a higher-than-background 
level of extinctions for a time, we do not know what levels 
of, or types of, biodiversity loss may possibly trigger nonlin-
ear or irreversible changes to the Earth System. 

The second control variable aims to capture the role of 
the biosphere in Earth System functioning, and measures 
loss of biodiversity components at both global and bi-
ome/large ecosystem levels. Although several variables have 
been developed at local scales for measuring functional di-
versity [e.g., (40)], finding an appropriate control variable at 
regional or global levels is challenging. For the present we 
propose an interim control variable: Biodiversity Intactness 
Index (BII) (41). BII assesses change in population abun-
dance as a result of human impacts, such as land or re-
source use, across a wide range of taxa and functional 
groups at a biome or ecosystem level using pre-industrial 
era abundance as a reference point. The index typically 
ranges from 100% (abundances across all functional groups 
at pre-industrial levels) to lower values that reflect the ex-
tent and degree of human modification of populations of 
plants and animals. BII values for particular functional 
groups can go above 100% if human modifications to eco-
systems lead to increases in the abundance of those species. 
Due to a lack of evidence on the relationship between BII 
and Earth System responses, we propose a preliminary 
boundary at 90% of the BII but with a very large uncertain-
ty range (90-30%) that reflects the large gaps in our 
knowledge about the BII-Earth System functioning relation-
ship (42, 43). BII has been so far applied to southern Africa’s 
terrestrial biomes only (cf. fig. S3 for an estimation of ag-
gregated human pressures on the terrestrial biosphere glob-
ally), where the index (not yet disaggregated to functional 
groups) was estimated to be 84%. BII ranged from 69 to 91% 
for the seven countries where it has been applied (41). Ob-
servations across these countries suggest that decreases in 
BII adequately capture increasing levels of ecosystem deg-
radation, defined as land uses that do not alter the land-
cover type but lead to a persistent loss in ecosystem produc-
tivity (41). 

In addition to further work on functional measures such 

as BII, in the longer term the concept of biome integrity—
the functioning and persistence of biomes at broad scales 
(7)—offers a promising approach, and, with further research, 
could provide a set of operational control variables (one per 
biome) that is appropriate, robust, and scientifically based. 

 
Stratospheric ozone depletion 
We retain the original control variable (O3 concentration in 
DU (Dobson Units) and boundary (275 DU). This boundary 
is only transgressed over Antarctica in the austral spring, 
when O3 concentration drops to about 200 DU (44). Howev-
er, the minimum O3 concentration has been steady for about 
15 years and is expected to rise over the coming decades as 
the ozone hole is repaired after the phasing out of ozone 
depleting substances. This is an example where, after a 
boundary has been transgressed regionally, humanity has 
taken effective action to return the process back to within 
the boundary. 
 
Ocean acidification 
This boundary is intimately linked with one of the control 
variables, CO2, for the climate change PB. The concentration 
of free H+ ions in the surface ocean has increased by about 
30% over the last 200 years due to the increase in atmos-
pheric CO2 (45). This, in turn, influences carbonate chemis-
try in surface ocean waters. Specifically, it lowers the 
saturation state of aragonite (:arag), a form of calcium car-
bonate formed by many marine organisms. At :arag < 1, 
aragonite will dissolve. No new evidence has emerged to 
suggest that the originally proposed boundary (t80% of the 
preindustrial average annual global :arag) should be adjust-
ed, although geographical heterogeneity in :arag is im-
portant in monitoring the state of the boundary around the 
world’s oceans (fig. S4). Currently, :arag is approximately 
equal to 84% of the pre-industrial value (46). This boundary 
would not be transgressed if the climate change boundary of 
350 ppm CO2 were to be respected. 
 
Biogeochemical flows 
The original boundary was formulated for phosphorus (P) 
and nitrogen (N) only, but we now propose a more generic 
PB to encompass human influence on biogeochemical flows 
in general. While the carbon cycle is covered in the climate 
change boundary, other elements, such as silicon (47, 48) 
are also important for Earth System functioning. Further-
more, there is increasing evidence that ratios between ele-
ments in the environment may have impacts on biodiversity 
on land and in the sea (49–51). Thus, we may ultimately 
need to develop PBs for other elements and their ratios, alt-
hough for now we focus on P and N only. 

A two-level approach is now proposed for the P compo-
nent of the biogeochemical flows boundary (see also SM). 
The original global-level boundary, based on the prevention 
of a large-scale ocean anoxic event, is retained with the pro-
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posed boundary set at a sustained flow of 11 Tg P y-1 from 
freshwater systems into the ocean. Based on the analysis of 
Carpenter and Bennett (3), we now propose an additional 
regional-level P boundary, designed to avert widespread 
eutrophication of freshwater systems, at a flow of 6.2 Tg P  
y-1 (from fertilizers (mined P) to erodible soils. 

Given that the addition of P to regional watersheds is 
almost entirely via fertilizers, the regional-level boundary 
applies primarily to the world’s croplands. The current 
global rate of application of P in fertilizers to croplands is 
14.2 Tg P y-1 (52, 53). Observations point towards a few agri-
cultural regions of very high P application rates as the main 
contributors to the transgression of this boundary (Fig. 2 
and fig. S5A), and suggest that a redistribution of P from 
areas where it is currently in excess to areas where the soil 
is naturally P-poor may simultaneously boost global crop 
production and reduce the transgression of the regional-
level P boundary (3, 52, 54). 

The N boundary has been taken from the comprehensive 
analysis of De Vries et al. (5), which proposed a PB for eu-
trophication of aquatic ecosystems of 62 Tg N yr-1 from in-
dustrial and intentional biological N fixation, using the 
most stringent water quality criterion. As for the P bounda-
ry, a few agricultural regions of very high N application 
rates are the main contributors to the transgression of this 
boundary (Fig. 2 and fig. S5B). This suggests that a redistri-
bution of N could simultaneously boost global crop produc-
tion and reduce the transgression of the regional-level 
boundary. 

Because the major anthropogenic perturbation of both 
the N and P cycles arises from fertilizer application, we can 
analyze the links between the independently determined N 
and P boundaries in an integrated way based on the N:P 
ratio in the growing plant tissue of agricultural crops. Ap-
plying this ratio, which is on average 11.8 (55), to the P 
boundary (6.2 Tg P yr-1) gives an N boundary of 73 Tg N yr-1. 
Conversely, applying the ratio to the N boundary (62 Tg N 
yr-1) gives a P boundary of 5.3 Tg P yr-1. The small differences 
between the boundaries derived using the N:P ratio and 
those calculated independently, which are likely non-
significant differences given the precision of the data avail-
able for the calculations, show the internal consistency in 
our approach to the biogeochemical boundaries. 

More detail on the development of the P and N bounda-
ries is given in 33, where we also emphasize that the pro-
posed P and N boundaries may be larger for an optimal 
allocation of N (and P) over the globe. 
 
Land-system change 
The updated biosphere integrity boundary provides a signif-
icant constraint on the amount and pattern of land-system 
change in all terrestrial biomes—forests, woodlands, savan-
nas, grasslands, shrublands, tundra, etc. The land-system 
change boundary is now focused more tightly on a specific 
constraint: the biogeophysical processes in land systems 

that directly regulate climate—exchange of energy, water 
and momentum between the land surface and the atmos-
phere. The control variable has been changed from the 
amount of cropland to the amount of forest cover remain-
ing, as the three major forest biomes—tropical, temperate 
and boreal—play a stronger role in land surface-climate 
coupling than other biomes (56, 57). In particular, we focus 
on those land-system changes that can influence the climate 
in regions beyond the region where the land-system change 
occurred. 

Of the forest biomes, tropical forests have significant 
feedbacks to climate via changes in evapotranspiration 
when they are converted to non-forested systems, while 
changes in the distribution of boreal forests affect the albe-
do of the land surface and hence regional energy exchange. 
Both have strong regional and global teleconnections. The 
biome-level boundary for these two types of forest have 
been set at 85% (Table 1; SM) while the boundary for tem-
perate forests has been proposed at 50% of potential forest 
cover, because changes to temperate forests are estimated to 
have weaker influences on the climate system at the global 
level than changes to the other two major forest biomes 
(56). These boundaries would almost surely be met if the 
proposed biosphere integrity boundary of 90% BII were re-
spected. 

Estimates of the current status of the land-system 
change boundary are given in Figs. 2 and 3 and fig. S6 and 
in (58). 
 
Freshwater use 
The revised freshwater use boundary has retained consump-
tive use of blue water [from rivers, lakes, reservoirs and re-
newable groundwater stores (59)] as the global-level control 
variable and 4000 km3/yr as the value of the boundary. This 
PB may be somewhat higher or lower depending on rivers’ 
ecological flow requirements (6). Therefore, we here report 
a new assessment to complement the PB with a basin-scale 
boundary for the maximum rate of blue water withdrawal 
along rivers, based on the amount of water required in the 
river system to avoid regime shifts in the functioning of 
flow-dependent ecosystems. We base our control variable on 
the concept of environmental water flows (EWF), which de-
fines the level of river flows for different hydrological char-
acteristics of river basins adequate to maintain a fair-to-
good ecosystem state (60–62). 

The Variable Monthly Flow (VMF) method (33, 63) was 
used to calculate the basin-scale boundary for water. This 
method takes account of intra-annual variability by classify-
ing flow regimes into high-, intermediate- and low-flow 
months and allocating EWF as a percentage of the mean 
monthly flow (MMF). Based on this analysis, the zones of 
uncertainty for the river-basin scale water boundary were 
set at 25 to 55% of MMF for the low-flow regime, 40-70% for 
the intermediate-flow regime, and 55-85% for the high-flow 
regime (table S2). The boundaries were set at the lower end 
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of the uncertainty ranges that encompass average monthly 
EWF. Our new estimates of the current status of the water 
use boundary—computed based on grid cell-specific esti-
mates of agricultural, industrial and domestic water with-
drawals—are shown in Figs. 2 and 3, with details in figs. S7 
and S8. 

Atmospheric aerosol loading: Aerosols have well-known, 
serious human health impacts, leading to about 7.2 million 
deaths per year (64). They also affect the functioning of the 
Earth System in many ways (65) (fig. S9). Here we focus on 
the impact of aerosols on regional ocean-atmosphere circu-
lation as the rationale for a separate aerosols boundary. We 
adopt aerosol optical depth (AOD,33) as the control variable 
and use the South Asian monsoon as a case study, based on 
the potential of widespread aerosol loading over the Indian 
subcontinent to switch the monsoon system to a drier state. 
The background AOD over South Asia is ~0.15 and can be as 
high as 0.4 during volcanic events (66). Emissions of black 
carbon and organic carbon from cooking and heating with 
biofuels and from diesel transportation, and emission of 
sulfates and nitrates from fossil fuel combustion, can in-
crease seasonal mean AODs to as high as 0.4 (larger during 
volcanic periods), leading to decreases of 10% to 15% of in-
cident solar radiation at the surface (fig. S9). A significant 
decrease in monsoon activity is likely around an AOD of 
0.50, an increase of 0.35 above the background (67). Taking 
a precautionary approach towards uncertainties surround-
ing the position of the tipping point, we propose a boundary 
at an AOD of 0.25 (an increase due to human activities of 
0.1), with a zone of uncertainty of 0.25 to 0.50. The annual 
mean AOD is currently about 0.3 (66), within the zone of 
uncertainty. 
 
Introduction of novel entities 
We define novel entities as new substances, new forms of 
existing substances and modified life-forms that have the 
potential for unwanted geophysical and/or biological effects. 
Anthropogenic introduction of novel entities to the envi-
ronment are of concern at the global level when these enti-
ties exhibit (i) persistence, (ii) mobility across scales with 
consequent widespread distributions, and (iii) potential im-
pacts on vital Earth System processes or sub-systems. These 
potentially include chemicals and other new types of engi-
neered materials/organisms [e.g. (68–71)] not previously 
known to the Earth System as well as naturally occurring 
elements (for example heavy metals) mobilized by anthro-
pogenic activities. The risks associated with the introduction 
of novel entities into the Earth System are exemplified by 
the release of CFCs (chlorofluorocarbons), which are very 
useful synthetic chemicals that were thought to be harmless 
but had unexpected, dramatic impacts on the stratospheric 
ozone layer. In effect, humanity is repeatedly running such 
global-scale experiments, but not yet applying the insights 
from previous experience to new applications (72, 73). 

Today there are more than 100,000 substances in global 

commerce (74). If nanomaterials and plastic polymers that 
degrade to microplastics are included, the list is even longer. 
There is also a “chemical intensification” due to the rapidly 
increasing global production of chemicals, the expanding 
worldwide distribution as chemical products or in consumer 
goods, and the extensive global trade in chemical wastes 
(75). 

In recent years there has been a growing debate about 
the global scale effects of chemical pollution, leading to calls 
for the definition of criteria to identify the kinds of chemical 
substances that are likely to be globally problematic (76, 77). 
Persson et al. (73) proposed that there are three conditions 
that need to be fulfilled in order for a chemical to pose a 
threat to the Earth System: (i) the chemical has an unknown 
disruptive effect on a vital Earth System process; (ii) the 
disruptive effect is not discovered until it is a problem at the 
global scale; and (iii) the effect is not readily reversible. The 
challenge to the research community is to develop the 
knowledge base that allows the screening of chemicals, be-
fore they are released into the environment, for properties 
that may predispose them towards becoming global prob-
lems. 

As a first step towards meeting this challenge, the three 
conditions outlined above have been used as the basis for 
identifying scenarios of chemical pollution that fulfill the 
conditions, and as a next step, for pinpointing chemical pro-
files that fit the scenarios (28). This proposal constitutes a 
first attempt at adding the Earth System perspective when 
assessing hazard and risk of chemicals and offers a vision 
for a systematic approach to a complex management situa-
tion with many unknowns. 

Despite this progress in developing an Earth System-
oriented approach, there is not yet an aggregate, global-level 
analysis of chemical pollution on which to base a control 
variable or a boundary value. It may also serve little purpose 
to define boundary values and control variables for a plane-
tary boundary of this complexity. Nevertheless, there is a 
potential threat from novel entities to disrupt the function-
ing of Earth System and society needs to learn how to miti-
gate these unknown risks and manage chemicals under 
uncertainty (28, 73). 

Some precautionary and preventive actions can be con-
sidered. These may include stronger focus on green chemis-
try (78), finding synergies with risk-reducing interventions 
in other fields such as occupational health (79), paying more 
attention to learning from earlier mistakes (80, 81), as well 
as investing in science to better understand and monitor 
vital Earth System processes in order to be able to detect 
disruptive effects from novel entities as early as possible. 

 
Hierarchy of boundaries 
An analysis of the many interactions among the boundaries 
(table S3 and fig. S10) suggests that two of them—climate 
change and biosphere integrity—are highly integrated, 
emergent system-level phenomena that are connected to all 
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of the other PBs. They operate at the level of the whole 
Earth System (7), and have co-evolved for nearly 4 billion 
years (82). They are regulated by the other boundaries and, 
on the other hand, provide the planetary-level overarching 
systems within which the other boundary processes operate. 
Furthermore, large changes in the climate or in biosphere 
integrity would likely, on their own, push the Earth System 
out of the Holocene state. In fact, transitions between time 
periods in Earth history have often been delineated by sig-
nificant shifts in climate, the biosphere, or both (82, 83). 

These observations suggest a two-level hierarchy of 
boundaries, in which climate change and biosphere integri-
ty should be recognized as core planetary boundaries 
through which the other boundaries operate. The crossing 
of one or more of all of the other boundaries may seriously 
affect human wellbeing, and may predispose the transgres-
sion of a core boundary(ies), but does not by itself lead to a 
new state of the Earth System. This hierarchical approach to 
classifying the boundaries becomes clearer by examining in 
more detail the roles of climate and biosphere integrity in 
the functioning of the Earth System. 

The climate system is a manifestation of the amount, dis-
tribution and net balance of energy at the Earth’s surface. 
The total amount of energy sets the overall conditions for 
life. In Earth’s current climate a range of global surface 
temperatures and atmospheric pressures allows the three 
phases of water to be present simultaneously, with ice and 
water vapor playing critical roles in the physical feedbacks 
of the climate system. The distribution of energy by latitude, 
over the land and sea surfaces and within the ocean, plays a 
major role in the circulation of the two great fluids, the 
ocean and the atmosphere. These systemic physical charac-
teristics are key spatial determinants of the distribution of 
the biota and the structure and functioning of ecosystems, 
and are controllers of biogeochemical flows. 

Biosphere integrity is also crucial to Earth System func-
tioning, where the biosphere is defined as the totality of all 
ecosystems (terrestrial, freshwater and marine) on Earth 
and their biota (32). These ecosystems and biota play a criti-
cal role in determining the state of the Earth System, regu-
lating its material and energy flows and its responses to 
abrupt and gradual change (7). Diversity in the biosphere 
provides resilience to terrestrial and marine ecosystems (83, 
84). The biosphere not only interacts with the other plane-
tary boundaries, but also increases the capacity of the Earth 
System to persist in a given state under changes in these 
other boundaries. The ultimate basis for the many roles that 
the biosphere plays in Earth System dynamics is the genetic 
code of the biota, the basic information bank that defines 
the biosphere’s functional role and its capacity to innovate 
and persist into the future. 
 
Planetary boundaries in a societal context 
A proposed approach for Sustainable Development Goals 
(85) argues that the stable functioning of the Earth System 

is a prerequisite for thriving societies around the world. 
This approach implies that the PB framework, or something 
like it, will need to be implemented alongside the achieve-
ment of targets aimed at more immediate human needs, 
such as provision of clean, affordable and accessible energy 
and the adequate supply of food. World development within 
the biophysical limits of a stable Earth System has always 
been a necessity [e.g., (86, 87)]. However, only recently, for a 
number of reasons, has it become possible to identify, eval-
uate and quantify risks of abrupt planetary- and biome-level 
shifts due to overshoot of key Earth System parameters: (i) 
the emergence of global change- and Earth System- thinking 
(88), (ii) the rise of ‘the Planetary’ as a relevant level of 
complex system understanding (89–92), and (iii) observable 
impacts of the rapid increase in human pressures on the 
planet (16). 

The PB approach is embedded in this emerging social 
context, but it does not suggest how to maneuver within the 
safe operating space in the quest for global sustainability. 
For example, the PB framework does not as yet account for 
the regional distribution of the impact, nor of its historical 
patterns. Nor does the PB framework take into account the 
deeper issues of equity and causation. The current levels of 
the boundary processes, and the transgressions of bounda-
ries that have already occurred, are unevenly caused by dif-
ferent human societies and different social groups. The 
wealth benefits that these transgressions have brought are 
also unevenly distributed socially and geographically. It is 
easy to foresee that uneven distribution of causation and 
benefits will continue, and these differentials must surely be 
addressed for a Holocene-like Earth System state to be suc-
cessfully legitimated and maintained. However, the PB 
framework as currently construed provides no guidance as 
to how this may be achieved (although some potential syn-
ergies have been noted, see 54) and it cannot readily be used 
to make choices between pathways for piecemeal maneuver-
ing within the safe operating space or more radical shifts of 
global governance (93). 

The nature of the PB framework implies that two im-
portant cautions should be observed when application of 
the framework to policy or management is proposed: 

 
Boundary interactions 
The planetary boundaries framework arises from the scien-
tific evidence that Earth is a single complex, integrated sys-
tem—that is, the boundaries operate as an interdependent 
set [e.g., (94)] (table S1 and fig. S10). While a systematic, 
quantitative analysis of interactions among all of the pro-
cesses for which boundaries are proposed remains beyond 
the scope of current modeling and observational capacity, 
the Earth System clearly operates in well-defined states in 
which these processes and their interactions can create sta-
bilizing or destabilizing feedbacks (16, 90, 95). This has pro-
found implications for global sustainability, as it emphasizes 
the need to address multiple interacting environmental pro-

/ sciencemag.org/content/early/recent / 15 January 2015 / Page 7 / 10.1126/science.1259855 
 

http://www.sciencemag.org/content/early/recent


cesses simultaneously (e.g., stabilizing the climate system 
requires sustainable forest management, stable ocean eco-
systems, etc). 
 
Scale 
The PB framework is not designed to be “downscaled” or 
“disaggregated” to smaller levels, such as nations or local 
communities. That said, the PB framework recognizes the 
importance of changes at the level of sub-systems in the 
Earth System (e.g., biomes or large river basins) on the func-
tioning of the Earth System as a whole. Also, there are 
strong arguments for an integrated approach coupling 
boundary definitions at regional and global levels with de-
velopment goals to enable the application of “PB thinking” 
at levels (nations, basins, regions) where policy action most 
commonly occurs [e.g., (85, 96)]. 

This update of the PB framework is one step on a longer-
term evolution of scientific knowledge to inform and sup-
port global sustainability goals and pathways. This evolu-
tion is needed more than ever before; there are severe 
implementation gaps in many global environmental policies 
relating to the PB issues, where problematic trends are not 
being halted or reversed despite international consensus 
about the urgency of the problems. The prospect of tighter 
resource constraints and rising environmental hazards is 
also unavoidably turning the focus onto global social equity 
and the planetary stewardship of the Earth’s life support 
system. There is a need for a truly global evidence base, with 
much greater integration among issues, in order to respond 
to these global challenges. New research initiatives [e.g., 
Future Earth (www.futureearth.org)] provide evidence that 
science can respond to this need by applying Earth System 
research to advance a new generation of integrated global 
analyses and to explore options for transformations towards 
sustainability. This is a clear sign that, as the risks of the 
Anthropocene to human wellbeing become clearer, research 
is maturing to a point where a systemic step-change is pos-
sible—and necessary—in exploring and defining a safe and 
just planetary operating space for the further development 
of human societies. 

 
Methods summary 
Our approach to building the planetary boundaries frame-
work is described above. We have implemented the frame-
work through an expert assessment and synthesis of the 
scientific knowledge of intrinsic biophysical processes that 
regulate the stability of the Earth System. Our precautionary 
approach is based on the maintenance of a Holocene-like 
state of the ES, and on an assessment of the level of human-
driven change that would risk destabilizing this state. For 
the climate change PB, there is already much literature on 
which to base such an assessment. For others, such as strat-
ospheric ozone, ocean acidification, extinction rates, and P 
and N cycles, we have used estimates of pre-industrial val-
ues of the control variable as a Holocene baseline. Where 

large, undesirable thresholds exist and have been studied 
(e.g., polar ice sheets, Amazon rainforest, aragonite dissolu-
tion, atmospheric aerosols and the South Asian monsoon), 
quantitative boundaries can be readily proposed. For others, 
where the focus is on erosion of ES resilience, the bounda-
ries are more difficult (but not impossible) to quantify, as 
reflected in larger uncertainty zones. 

We used large-scale assessments of the impact of human 
activities on ES functioning [e.g., IPCC (17, 18), the IGBP 
synthesis (16), chemicals (75, 80)] as sources of community-
level understanding on which to propose PBs. Our update 
has also relied on post-2009 assessments of individual 
boundaries by the relevant expert research communities; 
examples include phosphorus (3), nitrogen (5), biosphere 
integrity (7), freshwater use (5, 63), and novel entities [with 
a focus on chemicals, (28, 73)]. Finally, some new analyses 
have been undertaken specifically for this paper: (i) a 
freshwater use PB based on the environmental water flow 
(EWF) approach (33, 63); (ii) the linkage of the phosphorus 
and nitrogen boundaries via the N:P ratio in growing crop 
tissue (33); and (iii) the use of major forest biomes as the 
basis for the land-system change PB (33). 
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Fig. 1. The conceptual framework for the planetary boundaries 
approach, showing the safe operating space, the zone of uncertainty, 
the position of the threshold (where one is likely to exist) and the area 
of high risk. Modified from (1). 
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Fig. 2. The global distributions and current status of the control 
variables for (A) biogeochemical flows – P, (B) biogeochemical flows – N, 
(C) land-system change, and (D) freshwater use. In each panel, green 
areas are within the boundary (safe); yellow areas are within the zone of 
uncertainty (increasing risk); and red areas are beyond the zone of 
uncertainty (high risk). Gray areas in (A) and (B) are areas where P and N 
fertilizers are not applied, in (C) are areas not covered by major forest 
biomes, and in (D) are areas where river flow is very low so that 
environmental flows are not allocated. See Table 1 for values of the 
boundaries and their zones of uncertainty, and 33 for more details on 
methods and results. 
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Fig. 3. The current status of the control variables for seven of the nine 
planetary boundaries. Green zone is the safe operating space (below the 
boundary), yellow represents the zone of uncertainty (increasing risk), and 
red is the high-risk zone. The planetary boundary itself lies at the inner heavy 
circle. The control variables have been normalized for the zone of uncertainty 
(between the two heavy circles); the center of the figure therefore does not 
represent values of 0 for the control variables. The control variable shown for 
climate change is atmospheric CO2 concentration. Processes for which 
global-level boundaries cannot yet be quantified are represented by gray 
wedges; these are atmospheric aerosol loading, novel entities and the 
functional role of biosphere integrity. Modified from (1). 
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Table 1. The updated control variables and their current values, along with the proposed 
boundaries and zones of uncertainty, for all nine planetary boundaries.    
Earth system process Control variable(s) Planetary boundary 

(zone of uncertainty) 
 

Current value of 
control variable 

Climate change 
(R2009: same) 

Atmospheric CO2 
concentration, ppm 
Energy imbalance at top-
of-atmosphere, W m-2 

350 ppm CO2 (350-450 ppm) 
 
Energy imbalance: +1.0 W m-2 (+1.0-1.5 W 
m-2) 

396.5 ppm CO2 
 
2.3 W m-2 (1.1-3.3 
W m-2) 

Change in biosphere 
integrity 
(R2009: Rate of 
biodiversity loss) 
 

Genetic diversity: 
Extinction rate 
 
 
 
Functional: diversity: 
Biodiversity Intactness 
Index (BII) 
 
 
Note: These are interim 
control variables until 
more appropriate ones are 
developed. 

Genetic: < 10 E/MSY (10-100 E/MSY) but 
with an aspirational goal of ca. 1 M/ESY* 
(the background rate of extinction loss).* 
E/MSY = extinctions per million species-
years 
Functional: Maintain BII at 90% (90-30%) 
or above, assessed geographically by 
biomes/large regional areas (e.g. southern 
Africa), major marine ecosystems (e.g., 
coral reefs) or by large functional groups 

100-1000 E/MSY 
 
 
 
 
84%, applied to 
southern Africa 
only 

Stratospheric ozone 
depletion 
(R2009: same) 

Stratospheric O3 
concentration, DU 

<5% reduction from pre-industrial level of 
290 DU (5%–10%), assessed by latitude 

Only transgressed 
over Antarctica in 
Austral spring 
(~200 DU) 

Ocean acidification 
(R2009: same) 

Carbonate ion 
concentration, average 
global surface ocean 
saturation state with 
respect to aragonite 
�ȍarag ) 

�����RI�WKH�SUH-industrial aragonite 
saturation state of mean surface ocean, 
including natural diel and seasonal 
YDULDELOLW\�������– ����� 

~84% of the pre-
industrial aragonite 
saturation state 

Biogeochemical flows: 
(P and N cycles) 
[R2009: 
Biogeochemical flows: 
(interference with P and 
N cycles)] 

P cycle: 
Global: P flow from 
freshwater systems into the 
ocean 
Regional: P flow from 
fertilizers to erodible soils 
 
 
N cycle: 
Global: Industrial and 
intentional biological 
fixation of N 
 

P cycle: 
Global: 11 Tg P yr-1 (11-100 Tg P yr-1) 
 
 
Regional: 6.2 Tg yr-1 mined and applied to 
erodible (agricultural) soils (6.2-11.2 Tg  
yr-1). Boundary is a global average but 
regional distribution is critical for impacts. 
 
62 Tg N yr-1 (62-82 Tg N yr-1).  
Boundary acts as a global ‘valve’ limiting 
introduction of new reactive N to Earth 
System, but regional distribution of 
fertilizer N is critical for impacts. 

 
~22 Tg P yr-1 
 
 
~14 Tg P yr-1 
 
 
 
 
~150 Tg N yr-1 
 

Land-system change 
(R2009: same) 

Global: area of forested 
land as % of original forest 
cover 
 
Biome: area of forested 
land as % of potential 
forest 

Global: 75% (75-54%) Values are a 
weighted average of the three individual 
biome boundaries and their uncertainty 
zones 
Biome: 
Tropical: 85% (85-60%) 
Temperate: 50% (50-30%) 
Boreal: 85% (85-60%) 

62% 

Freshwater use 
(R2009: Global 
freshwater use) 

Global: Maximum amount 
of consumptive blue water 
use (km3 yr-1) 
Basin: Blue water 
withdrawal as % of mean 
monthly river flow 

Global: 4000 km3 yr-1 (4000-6000 km3 yr-1) 
 
 
Basin: Maximum monthly withdrawal as a 
percentage of mean monthly river flow. For 
low-flow months: 25% (25-55%); for 
intermediate-flow months: 30% (30-60%); 
for high-flow months: 55% (55-85%) 

~2600 km3 yr-1 

  



Atmospheric aerosol 
loading 
(R2009: same) 
 

Global: Aerosol Optical 
Depth (AOD), but much 
regional variation 
Regional: AOD as a 
seasonal average over a 
region. South Asian 
Monsoon used as a case 
study 

 
 
 
Regional: (South Asian Monsoon as a case study): 
anthropogenic total (absorbing and scattering) 
AOD over Indian subcontinent of 0.25 (0.25-0.50); 
absorbing (warming) AOD less than 10% of total 
AOD 

 
 
 
0.30 AOD, 
over South 
Asian region 

Introduction of novel 
entities 
(R2009: Chemical 
pollution) 

No control variable 
currently defined 

No boundary currently identified, but see 
boundary for stratospheric ozone for an example 
of a boundary related to a novel entity (CFCs) 
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