
Neuron 49, 157–166, January 5, 2006 ª2006 Elsevier Inc. DOI 10.1016/j.neuron.2005.11.014
Predictive Neural Coding of Reward Preference
Involves Dissociable Responses in Human
Ventral Midbrain and Ventral Striatum
John P. O’Doherty,1,2,* Tony W. Buchanan,3

Ben Seymour,1 and Raymond J. Dolan1

1Wellcome Department of Imaging Neuroscience
Institute of Neurology
University College London
12 Queen Square
London WC1N 3BG
United Kingdom
2Division of Humanities and Social Science
California Institute of Technology
Pasadena, California 91125
3Department of Neurology
University of Iowa
Iowa City, Iowa 52242

Summary

Food preferences are acquired through experience

and can exert strong influence on choice behavior. In
order to choose which food to consume, it is neces-

sary to maintain a predictive representation of the sub-
jective value of the associated food stimulus. Here, we

explore the neural mechanisms by which such predic-
tive representations are learned through classical con-

ditioning. Human subjects were scanned using fMRI
while learning associations between arbitrary visual

stimuli and subsequent delivery of one of five different
food flavors. Using a temporal difference algorithm to

model learning, we found predictive responses in the
ventral midbrain and a part of ventral striatum (ventral

putamen) that were related directly to subjects’ actual

behavioral preferences. These brain structures dem-
onstrated divergent response profiles, with the ventral

midbrain showing a linear response profile with pref-
erence, and the ventral striatum a bivalent response.

These results provide insight into the neural mecha-
nisms underlying human preference behavior.

Introduction

Choosing between different available foods reflects an
elementary form of decision making likely to be of crucial
adaptive significance in natural environments. Such de-
cisions are governed in part by individual preferences
that are in turn shaped by prior experience. In order to
implement decisions about what foods to consume, it
is necessary to be able to associate foods with cues in
the environment that predict their likely occurrence. Un-
derstanding the mechanisms by which the brain learns
and encodes preference predictions is important not
only for understanding the neural mechanisms of deci-
sion making but also for deriving neural markers that
predict subsequent preference behavior. A recent study
reported cultural modulation of neural and behavioral
responses to presentation of two drink brands, by pre-
senting cues relating to brand logos prior to subsequent
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delivery of the associated drink stimuli (McClure et al.,
2004). These cues strongly influenced subjects’ choice
behavior, suggesting a powerful influenceof prior learned
predictions on actual choice behavior.

A putative model for learning appetitive and aversive
predictions is temporal difference learning (Schultz
et al., 1997; Sutton and Barto, 1990). This method in-
volves a prediction error signal that indicates discrepan-
cies between successive predictions of future reward.
According to this model, trial-by-trial learning is reflected
by a shift in this prediction error signal from the time at
which the reward is delivered back to the time at which
the predictive cue is first presented. Neurophysiological
studies in nonhuman primates indicate that phasic activ-
ity in dopamine neurons is a possible neural substrate for
this prediction error signal (Hollerman and Schultz, 1998;
Montague et al., 1996; Schultz, 1998). Recent neuroi-
maging studies of appetitive learning indicate the pres-
ence of prediction error signals in prominent target
structures of dopamine neurons, such as the ventral
striatum (nucleus accumbens and ventral putamen)
and orbitofrontal cortex (McClure et al., 2003; O’Doherty
et al., 2003). Significant prediction error-related activity
has also been observed in ventral striatum during aver-
sive learning (Seymour et al., 2004). However, it is not
yet clear whether predictive activity in these brain areas
is directly related to subjects’ actual preference behav-
ior. A key test of the hypothesis that reward predictions
underlie behavioral decisions would be to determine
whether there is a direct link between neural activity en-
coding such reward predictions and actual behavioral
preferences.

To address this question, we determined subjects’
preferences for five different food ‘‘flavors’’: black-
currant juice, melon juice, grapefruit juice, carrot juice,
and a tasteless and odorless control solution. We deter-
mined overall preference ranks for each flavor by repeat-
edly presenting pairs of foods, incorporating all possible
combinations of pairs, and recording their preferences
on each occasion. Following this, we scanned subjects
using fMRI in a Pavlovian conditioning procedure during
which they were presented with five different arbitrary
visual cues, each of which was reliably associated with
the subsequent presentation (5 s later) of one of the
five specific foods (Figure 1). We predicted that the (pre-
viously neutral) visual cues would come to acquire pre-
dictive values according to the subject-specific prefer-
ences of the food they predicted.

Multiple behavioral measures were used to provide
evidence for Pavlovian conditioning. We used an on-
line measure of subjects’ pupillary dilation during the an-
ticipatory interval, after the cue had been delivered but
before the juice was presented, to provide an index of
learned anticipatory arousal. On each trial, the visual
cues were presented on either the left or the right of a fix-
ation cross, and we asked subjects to respond by using
a key press to indicate on which side the cue had been
presented (before the juice was delivered), enabling us
to determine whether reaction times had been modu-
lated by presentation of the cues associated with the
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Figure 1. Task Illustration

(A) Illustration of fractal stimuli used in the experiment. Each fractal was paired with a different flavor stimulus. An example pairing is shown here

(the actual pairings were counterbalanced across subjects).

(B) Illustration of timeline within a trial. At the beginning of each trial, a cue stimulus was presented on either the left or right side of a fixation cross.

A subject’s task was to indicate via a button box on which side of the screen the stimulus had been presented. Five seconds later, the cue stim-

ulus presentation was terminated, and at the same time 0.7 ml of the relevant flavor stimulus was delivered intra-orally. A further 5 s later the next

trial was triggered.
most or least preferred food stimulus. We also obtained
affective ratings for the visual cues before and after
the experiment to determine whether subjects changed
their affective evaluation of the visual stimuli as a func-
tion of the specific juice with which the stimulus had
been associated.

To establish whether reward-predicting responses
in key brain structures relate to subjects’ behavioral
preferences, we used a temporal difference learning
model to derive a reward-prediction signal that captures
the transfer of activity back from the time of reward in the
early trials to the time of presentation of the cue in the
late trials (Montague et al., 1996; O’Doherty et al., 2003;
Sutton, 1988). We correlated this modeled signal with
trial-by-trial fMRI data, separately for each cue-food as-
sociation, and tested for brain regions in which predic-
tive responses to the cues were modulated as a function
of subjects’ individual preferences. We tested for two
types of response profile: activity in which the predictive
response scaled linearly with preference (where the fMRI
signal increases linearly with increasing preference), and
activity which shows a bivalent response profile, with
a maximal response to the cues associated with the
most and least preferred foods compared to a cue asso-
ciated with a middle ranked preferred food. We looked
for significant effects in a number of key brain structures
that have been implicated in reward and reward-related
learning: the ventral striatum (incorporating the ventral
putamen as well as the nucleus accumbens proper),
the midbrain (in the vicinity of the dopaminergic nuclei),
the amygdala, and orbitofrontal cortex (O’Doherty,
2004).

Results

Behavioral Results
Pupillary Dilation

To test for significant differential effects in anticipatory
pupil dilation following presentation of the cue stimuli
as a function of preference, we performed a repeated-
measures ANOVA with one factor preference (from
most to least preferred), another factor experimental
session (session 1 versus session 2), and another factor
time within a trial (mean pupilometry responses were
binned into five 1 s long epochs from the time of presen-
tation of the cue up until immediately before delivery of
the juice). We observed a significant preference 3 ses-
sion 3 time interaction (F[8,80] = 21.6, p < 0.001), indi-
cating a significant effect of cue preference on anticipa-
tory pupil dilation, evident by the second block of trials.
Post hoc analyses revealed that the most and least pre-
ferred trials were associated with a significant increase
in anticipatory pupil dilation relative to the middle pre-
ferred trials (at p < 0.05). This provides evidence of in-
creased arousal due to anticipation of the subsequent
presentation of the most and least preferred stimuli
(Figure 2A).
Reaction Times

We tested for differences in reaction times in responses
made to the most and least preferred cues. A two-way
repeated-measures ANOVA of median reaction times
with one factor preference (Most versus Least Preferred)
and the other factor experimental session (session 1
versus session 2) revealed a significant session 3 pref-
erence interaction (F[1,11] = 5.9, p < 0.05), indicating that
responses to the cue associated with the most preferred
stimulus were significantly faster than the cue associ-
ated with the least preferred stimulus by the second
block of trials (Figure 2B).
Affective Evaluation of the Cue Stimuli
We next compared subjects’ affective evaluations of the
cue stimuli (using a pleasantness scale ranging from 210
[very unpleasant] to +10 [very pleasant]), before and
after the experiment. We used a two-way repeated-
measures ANOVA with one factor preference (most and
least preferred cues) and the other factor session (be-
fore and after). The interaction between preference and
session approached significance at p < 0.05 (F[1,11] =
4.7, p = 0.052). A post hoc t test revealed that the ratings
to the cue associated with the most preferred stimulus
were significantly greater than that made to the least
preferred stimulus by session 2 (t[11] = 2.4, p < 0.05).
These results suggest that subjects moderated their
affective evaluation of the least and most preferred cue
stimuli as a function of conditioning. Ratings for the
stimuli associated with the least preferred food went
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Figure 2. Multiple Behavioral Measures of Learning

(A) Trial averaged pupil dilation for the most, least, and middle preferred stimuli shown separately for both experimental sessions. Anticipatory

pupil dilation responses were significantly greater to the cues associated with the most and least preferred stimuli than that to cue associated

with the middle preferred stimuli by the second session.

(B) Reaction times for the cues associated with the most and least preferred stimulus plotted for both experimental sessions. The data plotted

are the average across subjects of the median reaction time for that cue in each individual subject. Error bars depict standard error of the mean. A

significant difference in reaction times to these cues emerged by the second session.

(C) Pleasantness ratings for the cues associated with the most and least preferred stimuli. By the second session, there was a significant differ-

ence in pleasantness ratings ascribed to the cues associated with the most and least preferred stimuli.
down across sessions, while ratings for the stimuli as-
sociated with most preferred went up, demonstrating
the development of learning over the sessions (see
Figure 2C).

Imaging Results

Responses Scaling Linearly with Preference
Our imaging data indicated that in one of our a priori
regions of interest there was a response profile that
showed a significant correlation with the predictive sig-
nal arising from the temporal difference model. Re-
sponses in this area scaled linearly with preference.
The region we identified corresponds to the ventral mid-
brain, in the vicinity of one of the main sites of origin of
dopaminergic ascending projection systems: the ventral
tegmental area (Figures 3A–3C). The subject averaged
parameter estimates (from the peak voxel at the group
level) are shown in Figure 3D, illustrating the linear trend.
To provide further validation of the linearity of the re-
sponse, we extracted the fitted parameter estimates
from the peak voxels in this region from each individual
subject and performed a forward stepwise linear regres-
sion procedure to test for a significant linear trend in the
data as a function of preference. In the stepwise proce-
dure, we also included a more elaborate model incorpo-
rating a quadratic response profile (symmetrical around
the middle-preferred food) in addition to the linear pro-
file. This procedure found a significant linear trend in
the data (F[1,63] = 20.4349; p < 0.001; r2 = 0.242), and
the more elaborate model incorporating the quadratic
response did not significantly account for any additional
variance (at p < 0.05). These data are plotted in Figure 3E.
Two outliers are present in the data, on account of the
parameter estimates from one particular single subject
(for the regressors corresponding to the most and sec-
ond most preferred stimuli). When these outliers are re-
moved, the linear fit is even more significant (F[1,62] =
22.726; p < 0.001; r2 = 0.271). Subject averaged per-
cent signal change time-course plots from the ventral
midbrain are shown in Figure 4C (alongside model-
predicted time courses in Figures 4A and 4B), for each
category of preferred stimulus (ranked from most to least
preferred), separately for early (first six) and late (last six)
trials of each trial type ranked according to preference
(from most to least preferred).

No other regions of interest showed significant activ-
ity at p < 0.001, but linear correlations with preference
were found in left amygdala (218, 23, 224; z = 2.96;
p < 0.002) and in medial orbitofrontal cortex (0, 30,
218; z = 2.79; p < 0.005) just below the threshold for sig-
nificance. We report these results for completeness
but do not discuss them further, as they did not reach
our significance criterion. Even though we used imaging
techniques designed to recover signal in areas with
dropout such as orbitofrontal cortex and medial tempo-
ral lobes, we cannot rule out the possibility that signal
dropout in regions such as orbitofrontal cortex or amyg-
dala contributed to the weak effects in these regions.

In addition to the analysis performed with preference
rankings, we also conducted an analysis in which we
tested for brain regions in which predictive signals from
the temporal difference model scaled according to the
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Figure 3. Preference Responses in Ventral Midbrain

(A) Predictive responses in ventral midbrain in the vicinity of the VTA scaling as a linear function of behavioral preference. Predictive responses in

this region emerged over the course of learning, responding initially to the food stimulus itself and then transferring back to the cue stimuli by the

end of learning. The statistical threshold is set at p < 0.001, and results are shown superimposed on the average structural image across subjects.

The activation peak is localized to the ventral border of the tegmentum, as illustrated by the black circle, but also extends further down the brain-

stem into the pons. The coordinates of the peak voxel are [0, 221, 230] ([x, y, z ] in MNI space) with the peak z = 4.21. The peak voxel remains

significant at the p < 0.001 level, even after adjusting p values to account for multiple analyses run with different learning rates (adjusted p value of

peak voxel = 6.6481 3 1025).

(B) To better illustrate the precise localization of the activation peak, a plot of the same activation is shown using a more stringent threshold (set at

p < 0.0001) overlaid on the mean normalized EPI image (averaged across subjects).

(C) Illustration of VTA activity from three individual subjects overlayed on each subjects’ individual mean EPI image. The threshold is set at

p < 0.01, uncorrected.

(D) Fitted parameter estimates for the temporal difference learning signal are shown from the peak voxel at the group random effects level for

each trial type in the order of most to least preferred. Error bars depict standard error of the mean.

(D) Plots of parameter estimates for the temporal difference learning signal from each individual subject in ventral midbrain shown for each of the

trial types (ranked in order of preference from most to least preferred). The solid black line depicts a fitted linear regression slope indicating a sig-

nificant linear trend in the data as a function of preference (r2 = 0.242; p < 0.001).
averaged pleasantness ratings for each of the juice stim-
uli. This analysis yielded a similar pattern of activity in the
midbrain to that obtained with preference rankings but at
a much lower significance level (which did not meet the
criteria for significance at p < 0.001). No other areas of
interest showed significant effects in this analysis.
Bivalent Responses as a Function of Preference
We also tested for regions that significantly correlated
with a bivalent response profile (responding to the cues
associated with the most and least preferred compared
to the middle preferred stimulus). One region of interest
showed a strong bivalent response: the ventral striatum,
bilaterally (Figures 5A and 5B). Subject averaged re-
sponses in the ventral striatum are shown in Figure 5C.
In order to determine whether the striatum was demon-
strating a quadratic response as a function of prefer-
ence or else an absolute valued linear response (i.e.,
scaling linearly both with increasing preference and
also with decreasing preference relative to the middle
preferred stimulus), we extracted the parameter esti-
mates from the peak voxel in each individual subject
and performed a forward stepwise linear regression pro-
cedure, adding linear, quadratic, and absolute valued
linear terms to the model in a stepwise fashion. Addition
of the quadratic term provided a significantly better fit to
the data than the linear term alone (F[1,62] = 24.3; p <
0.001; r2 = 0.278), indicating that a quadratic response
profile was a good description of the data. Further inclu-
sion of the orthogonalized component of the absolute
valued regressor (to account for the additional variance
explained by the absolute valued response over and
above the quadratic response) produced a significantly
better fit over the quadratic model alone (F[1,62] = 11.7;
p < 0.005). This result indicates that according to our
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Figure 4. Time Course Plot from Ventral Midbrain

(A) Model-predicted time course plots of the average evoked hemodynamic response during early (trials 1 to 6) and late (trials 24 to 30) trials for

each cue-juice pairing (ranked in order from most to least preferred). The model-predicted response of each trial is convolved with a canonical

hemoydnamic response function and then averaged across trials. The response for each trial type is shown scaled according to preference (as-

suming a perfect linear response as a function of preference).

(B) Model-predicted time course plot shown after mean-correction to simulate the fact that due to only a small number of baseline events in the

present experiment (1/6 of the total), the evoked hemodynamic response does not return to baseline but instead oscillates around a mean level of

activity over all the trials.

(C) Percent signal change subject averaged time course plots shown for each trial type, presented in order of preference of the associated flavor

stimulus (from most to least preferred). The time course is shown separately for early (in black; trials 1 to 6) and late trials (in red; trials 24 to 30).

The time course is extracted from the peak voxel in ventral midbrain (of the linear preference contrast) for each individual subject and then

averaged across subjects. Error bars reflect the standard error across subjects. This observed time course shows some correspondence to

the model-predicted time courses for the early and late trials (after mean correction), indicating that the observed fMRI signal reflects a linear

change as a function of preference around a mean activity level in this region.
analysis the best description of the response profile in
the ventral striatum is that it is demonstrating an abso-
lute linear valued response as a function of preference
anchored around the middle preferred stimulus (see Fig-
ure 5D). Subject averaged evoked BOLD signals in stria-
tum are plotted in Figure 6C (alongside model-predicted
time courses in Figures 6A and 6B), separately for early
(first six) and late (last six) trials of each trial type ranked
according to preference (from most to least preferred).
Gustatory Responses in Insular Cortex
We also conducted an additional analysis in which we
modeled responses at the time of presentation of the fla-
vor stimuli. A comparison of the flavor stimuli compared
to the baseline trial (in which no flavor stimulus was pre-
sented) revealed activity in primary gustatory cortex (in
mid-anterior insula and adjoining frontal operculum;
see Figure 7). Responses in this area did not show a sig-
nificant effect of preference, as tested by a repeated-
measures analysis of variance on the parameter esti-
mates across subjects from the peak voxel in this region
(F[4,48] = 0.541; p = 0.706). These results provide sup-
port to the suggestion that preference effects observed
elsewhere are unrelated to the sensory properties of the
stimuli.

Discussion

We show that neural responses to a predictive cue in
two key human brain regions, ventral striatum and mid-
brain, reflect the subjective value of the associated food
reward as indexed by behavioral preference. Moreover,
such representations develop with learning, responding
initially to the food stimulus itself, and then over the
course of learning transferring back to the time of pre-
sentation of the predictive cue. We suggest that such
value-weighted representations may play an important
role in guiding action selection when subjects choose
between actions that lead to different available awards.

Activity in the ventral mid-brain scaled linearly with
behavioral preference. Thus, the greater the activity in
this area to a predictive cue, the more the associated
food stimulus was preferred. While we also obtained
multiple behavioral and physiological measures that dis-
criminated in a relatively crude manner between either
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Figure 5. Preference Responses in Ventral Striatum

(A) Predictive responses in ventral striatum as a quadratic function of behavioral preference. The threshold is set at p < 0.001, and results are

shown superimposed on the average structural image across subjects. Coronal slices are shown through the ventral striatum at the given y co-

ordinates (top left of each slice). The coordinates for the peak voxel in the right striatum are [24, 9, 215] with a peak z value = 4.33; and in the left

striatum are [230, 9, 212], peak z = 3.92. These areas survived small volume correction within two 10 mm spheres defined around coordinates

derived from a previous study of temporal difference learning at p < 0.001, corrected, in right striatum and at p < 0.01, corrected, in left striatum

(O’Doherty et al., 2004). The peak voxel remains significant at the p < 0.001 level even after adjusting p values to account for multiple analyses run

with different learning rates (adjusted p value of peak voxel = 3.6718 3 1025).

(B) Illustration of activity in ventral striatum from three individual subjects overlayed on each subject’s individual structural image. The threshold

is set at p < 0.01, uncorrected.

(C) Fitted parameter estimates for the temporal difference learning signal from the group level peak voxel in the right ventral striatum indicating

a bivalent response as a function of preference. Error bars depict standard error of the mean.

(D) Parameter estimates for the temporal difference learning signal shown separately from the peak voxels in each individual subject (for the

bivalent preference contrast), plotted as a function of preference (from most to least preferred). Stepwise linear regression revealed that a qua-

dratic response profile showed a significant fit to the data (at p < 0.001; fitted quadratic response is shown as solid red line). However, signif-

icantly more variance was explained by an absolute valued linear response (significant at p < 0.005). This response profile is linear for both

decreasing and increasing preference anchored around the middle preferred stimulus, and the fit of this response profile to the data is depicted

in the figure as a solid black line.
most, least, or middle preferred items, such measures
were not as sensitive an index of behavioral preference
as our fMRI data. This provides some support to the
suggestion that brain imaging could be a more sensitive
predictor of subsequent preference behavior than tradi-
tional psychophysiological or behavioral assays, at least
at the group level (Wilkinson and Halligan, 2004).

In the present study, we do not discriminate between
a value signal and a prediction error signal, as the only
means to tell these signals apart would be to induce
an error in prediction by the omission of expected re-
ward. Thus, ventral midbrain responses may either re-
flect value or its derivative (prediction error). It should
be noted that in previous imaging studies in which
errors in reward prediction were induced, prediction er-
ror activity was reported in the ventral striatum but not
the ventral midbrain, favoring the possibility that ventral
midbrain responses relate to value and not prediction
error (McClure et al., 2003; O’Doherty et al., 2003,
2004). The finding of a univalent response in the ventral
midbrain is consistent with reports that dopamine neu-
rons show enhanced firing for rewards and predictors
of reward (Schultz, 1998). However, activity in ventral
midbrain may not directly reflect the activity of intrinsic
dopamine neurons. Although the link between the blood
oxygenation level dependent (BOLD) signal and the un-
derlying neural activity in dopaminergic midbrain re-
mains unexplored, evidence from visual cortex suggests
that the BOLD signal is more likely to reflect afferent
input into a brain region as well as intrinsic processing
within the area (Logothetis et al., 2001). Thus, one possi-
bility is that what is indexed in enhanced BOLD signal in
this area is effectively activity within inputs to these do-
pamine neurons.

Whereas ventral midbrain responses demonstrate a
univalent predictive signal with increasing activity to
increasing levels of preference, the ventral striatum
showed a bivalent signal with a maximal response to
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Figure 6. Model-Predicted and Actual Time Course Plots from Ventral Striatum (Ventral Putamen)

(A) Model-predicted time course plots of the average evoked hemodynamic response during early (trials 1 to 6) and late (trials 24 to 30) trials for

each cue-juice pairing (ranked in order from most to least preferred). The model-predicted response of each trial is convolved with a canonical

hemoydnamic response function and then averaged across trials. The response for each trial type is shown scaled according to preference

(assuming a perfect V-shaped response as a function of preference).

(B) Model-predicted time course plot shown after mean-correction to simulate the fact that due to only a small number of baseline events in the

present experiment (1/6 of the total), the evoked hemodynamic response does not return to baseline but instead oscillates around a mean level of

activity over all the trials.

(C) Percent signal change subject averaged time course plots shown for each trial type (right panel), presented in order of preference of the as-

sociated flavor stimulus (from most to least preferred). The time course is shown separately for early (in black; trials 1 to 6) and late trials (in red;

trials 24 to 30). The time course is extracted from the peak voxel in ventral striatum (for the bivalent preference contrast) of each individual subject

and then averaged across subjects. Error bars reflect the standard error across subjects. A shift in the time to peak of the response is evident as

a function of learning (by comparing early trials to late trials) for the most and least preferred trials compared to the middle preferred trials, as

reflected in the similarity of the observed time course to the predicted time course after mean correction shown in (B).
least and most preferred stimuli and lowest response to
the middle preferred. Previous studies have reported
predictive signals in ventral striatum during appetitive
learning (to juice and money rewards), as well as during
learning with aversive stimuli such as pain (Becerra
et al., 2001; Jensen et al., 2003; Knutson et al., 2001;
Seymour et al., 2004). Here, we explored responses re-
lated to preference rankings for everyday food stimuli,
none of which on their own would be considered to be
strongly aversive. Nevertheless, we found that ventral
striatum responded equally strongly to the predictor of
the least preferred food as to the predictor of the most
preferred food. One interesting possibility that arises
from these findings is that ventral striatum responses
may encode the relative value of the available stimuli,
rather than coding for their objective value indepen-
dently of the context in which they are presented. This
possibility will need to be tested in a future experiment
in which the same reward is presented in different con-
texts (i.e., alongside different combinations of rewards
Figure 7. Responses in Primary Gustatory

Cortex to Presentation of Flavor Stimuli

(A) Sagittal slice through right insular cortex

(at X = +36), demonstrating significant fla-

vor-related activation in the vicinity of primary

gustatory cortex, located in the middle/ante-

rior insula and adjacent frontal operculum.

The threshold is set at p < 0.001, uncorrected.

(B) Parameter estimates extracted from a

peak voxel in dorsal mid-insula (at coordi-

nates [36, 23, 6]; peak z = 6.15) ranked as a

function of preference (from most to least pre-

ferred). Error bars depict standard error of the

mean. A repeated-measures analysis of vari-

ance revealed no significant effect of prefer-

ence in this region (even at p < 0.05).
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with variable preference values), in order to establish
whether the striatal responses to a reward-predicting
cue scales according to relative preference, as is known
to be the case in the orbitofrontal cortex (Tremblay and
Schultz, 1999). Furthermore, it will also be useful in
future experiments to explore whether predictive re-
sponses in striatum also scale in a similar manner to
cues associated with stimuli that are found to be truly
aversive by subjects.

The divergence in response profile between the ven-
tral midbrain and striatum observed here has impor-
tant implications for understanding the manner in which
these structures interact during learning. The reward-
prediction error theory of reward learning stipulates that
value responses in the striatum and elsewhere are
learned via phasic prediction error activity of afferent
dopamine neurons. However, the results presented here
suggest that there is not a simple linear relationship be-
tween the activity in midrain dopaminergic loci and re-
sponses in target structures such as the striatum. One
possibility is that an opponent signal scaling positively
with decreasing preference is also providing input to
striatum, leading to the bivalent predictive responses
seen here. A candidate opponent signal could be the
phasic activity of serotonin neurons, as suggested in a
recent theory proposing opponent interactions between
serotonin and dopamine (Daw et al., 2002). Such a pro-
posal remains speculative in the absence of direct neu-
rophysiological evidence. Yet, divergent response pro-
files in these two structures suggests that learning of
value representations in striatum may not be mediated
exclusively via an afferent dopaminergic signal.

While the imaging results described here are inter-
preted in the context of Pavlovian conditioning, it is
also possible that some of the effects we see pertain
to the influence of the Pavlovian cue on the button press
(used to indicate whether the stimulus is presented on
the left or the right of the screen), an effect known as
Pavlovian to instrumental transfer. In this study, the but-
ton press was not made contingent on obtaining a re-
ward; nevertheless, it is possible that at least some sub-
jects perceived such a contingency, and in such cases
instrumental conditioning mechanisms may have been
invoked. However, Pavlovian to instrumental transfer ef-
fects are unlikely to account in large part for the signifi-
cant preference signal reported in the ventral striatum.
This is because in a previous paradigm we used a purely
passive Pavlovian conditioning task in which juice was
delivered following a cue presentation without any re-
quirement of subjects to perform a behavioral response
(O’Doherty et al., 2003). Even in this case, we observed
significant prediction error effects to reward in the
same part of ventral putamen. Thus, it is reasonable to
assume that the effects we observe in the present study
(at least in the ventral striatum) are mostly due to Pavlov-
ian and not instrumental conditioning effects.

It has long been known that associating brand items
with other rewarding or appetitive stimuli, through the
process of classical conditioning, makes it possible to
modulate subjects’ preferences (Gorn, 1982). This pro-
cess may account in large part for the efficacy and
power of advertising. At a broader level, we suggest
that our findings provide insight into the neural mecha-
nisms by which such preference signals can be acquired
through experience. An obvious extension of our ap-
proach and that of McClure et al. (2004) would be to pair
arbitrary cue stimuli associated with a given food with
other rewarding stimuli (such as attractive faces or pleas-
ant music) and then evaluate the degree to which behav-
ioral preference, and its neuronal correlates, can be
experimentally modulated as a function of such associa-
tive learning (Cox et al., 2005). The principal implication
of the present study is that it provides an account of
how predictive representations, learned through classi-
cal conditioning, come to elicit activity in the human brain
that relate directly to subsequent behavioral preference.
We suggest that such representations play an important
role in the guidance of action based upon future reward,
a form of elementary behavioral decision making.

Experimental Procedures

Subjects

Thirteen healthy right-handed normal subjects were included in the

experiment, of which eight were female (mean age, 27.5; range, 21–

40). The subjects were preassessed to exclude those with a prior

history of neurological or psychiatric illness. All subjects gave in-

formed consent, and the study was approved by the local research

ethics committee.

Experimental Protocol

Before scanning, subjects took part in a preference-ranking proce-

dure, in which on each trial the subject was presented with a choice

between two of the five juice stimuli and was asked to choose which

one they preferred. Each possible combination of stimulus pairs was

presented to the subject, and preference rankings were derived.

Once preference rankings had been derived, subjects were placed

in the scanner and were given 0.7 ml aliquots of each of the five jui-

ces in random order and asked to evaluate each juice for its pleas-

antness, using a scale ranging from 210 to +10, where 210 = very

nonpleasant, +10 = very pleasant, and 0 = neutral.

The first of two w15 min scanning sessions was then initiated.

Each session consisted of 90 trials each of 10 s duration. There

were six main trial types, each presented 15 times and in random or-

der throughout the session. On each trial, one out of six arbitrary

fractal cue stimuli was presented on a gray background to either

the left or the right of a central fixation cross. The subjects’ task

was to respond with a button press as soon as possible after the be-

ginning of the trial to indicate on which side of the fixation cross the

stimulus had appeared. After a further 5 s, the next trial was sched-

uled. For five of the trial types, presentation of a specific cue stimu-

lus was consistently followed 5 s later by intra-oral delivery of 0.7 ml

of one of the four different juices or else the tasteless control stimu-

lus. The sixth or baseline trial type involved a cue stimulus that was

followed 5 s later by nothing. For all trials, after a further 5 s, the next

trial was scheduled. The specific allocation of cue stimuli to a given

trial type was counter-balanced across subjects. Once the first ses-

sion was completed, following a brief break, the second session was

initiated, which involved a further 15 repetitions of the same six trial

types.

On completion of the experiment, subjects were again asked to

provide pleasantness ratings in the scanner for each of the juices.

They were then removed from the scanner, and preference rankings

were again tested. There were no significant differences in pleasant-

ness ratings from before and after the experiment (interaction term

of ANOVA with one factor pleasantness ratings and the other factor

session [before an after]: F[4,9] = 1.5, p = 0.27). Furthermore, Kron-

bach’s a for test-retest reliability of the preference ratings (from be-

fore to after) the experiment was 0.90. This indicates highly stable

pleasantness and preference ratings for the food stimuli over the

course of the experiment.

Flavor Stimulus Presentation

The flavor stimuli were contained in five 50 ml syringes that were at-

tached to an SP220I electronic syringe pump (World Precision
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Instruments Ltd, Stevenage, UK), positioned in the scanner control

room and delivered to the subjects via five separate 6 meter long 3

mm wide polythene tubes, which were placed into the subject’s

mouth via a specifically designed five-way disposable mouthpiece

(which kept each tube separate but enabled each juice to be deliv-

ered centrally in the oral cavity). The syringes were also attached

to a computer-controlled valve system that enabled the different

tastes to be delivered independently along the tubing. The appara-

tus was controlled by the stimulus-presentation computer posi-

tioned in the control room, which also received volume trigger pulses

from the scanner. The visual stimuli were viewed on a projector

screen positioned to the rear of the scanner and viewed through

a mirror attached to the head coil w4 cm from the subject’s head.

Preference Rankings

Subjects had relatively diverse preference rankings. The blackcur-

rant juice was the most popular stimulus, ranked as the most pre-

ferred by 6 out of 13 subjects, though other subjects ranked melon

(four subjects), grapefruit juice (one subject), or carrot juice (one

subject) as their most preferred. The grapefruit juice was perhaps

the least popular stimulus, ranked by seven subjects as their least

preferred stimulus, though other subjects found the tasteless con-

trol solution (three subjects), carrot juice (three subjects), or melon

juice (one subject) to be their least preferred. Middle ranked stimuli

were even more heterogenous, with four subjects rating the taste-

less control solution, three subjects rating the blackcurrant juice,

three subjects rating the grapefruit juice, and two subjects rating

the carrot juice as their middle preferred stimulus. Given the consid-

erable variance in preference rankings between subjects, it is un-

likely that neural effects related to preference at the group level

can be easily attributed to systematic differences in the sensory

(gustatory, texture, or olfactory) properties of the stimuli.

Imaging Procedure

The functional imaging was conducted by using a 3 Tesla Siemens

Allegra head-only MRI scanner to acquire gradient echo T2*-

weighted echo-planar images (EPI) with BOLD contrast. We em-

ployed a special sequence designed to optimize functional sensitiv-

ity in OFC and medial temporal lobes (Deichmann et al., 2003). This

consisted of tilted acquistion in an oblique orientation at 30* to the

AC-PC line, as well as application of a preparation pulse with a dura-

tion of 1 ms and amplitude of 22 mT/m in the slice selection direc-

tion. The sequence enabled 36 axial slices of 3 mm thickness and

3 mm in-plane resolution to be acquired with a TR of 2.34 s. Cover-

age was obtained from the base of the orbitofrontal cortex and

medial temporal lobes to the superior border of the dorsal anterior

cingulate cortex. Subjects were placed in a light head restraint within

the scanner to limit head movement during acquisition. A T1-

weighted structural image was also acquired for each subject. Func-

tional imaging data were acquired in two separate 390 volume

runs. To detect transient head movements due to swallowing, we at-

tached a 1.5 cm long copper coil with a radius of 0.5 cm to the neck

of each subject. Small movements of the coil induced a current in the

magnetic field that could be detected when amplified using one

channel of an EEG system positioned in the scanner room (National

Hospital for Neurology and Neurosurgery, London, UK). This pro-

duced a time series over the whole experiment reflecting transient

head movement.

Temporal Difference Model

The temporal difference (TD) learning model used in this study is that

described by Schultz et al. (Schultz et al., 1997). On each trial, the

predicted value (V) at any time t within a trial is calculated as a linear

product of the weights wi and the presence or absence of a CS stim-

ulus at time t, coded in the stimulus representation vector xi(t):

V̂ðtÞ=
X

i

wixiðtÞ:

Learning occurs by updating the predicted value of each time

point t in the trial by comparing the value at time t + 1 to that at

time t, leading to a prediction error or d(t):

dðtÞ= rðtÞ+ gV̂ðt + 1Þ2 V̂ðtÞ

where r(t) = reward at time t.
The parameter g is a discount factor, which determines the extent

to which rewards that arrive earlier are more important than rewards

that arrive later on. In the present study, we set g = 0.99. The weights

wi are then updated on a trial-by-trial basis according to the correla-

tion between prediction error and the stimulus representation:

Dwi = a
X

t

xiðtÞdðtÞ

where a = learning rate.

We used this algorithm to derive a theoretical prediction error sig-

nal to model learning-related changes over the course of the 30 pre-

sentations of each trial type (across both sessions 1 and 2). The sig-

nal took the form of a phasic response, which over the course of

learning shifted its responses from the time of presentation of the re-

ward (5 s into the trial) back to the time of presentation of the cue

stimulus (at the beginning of each trial). In this analysis, we used

a six time point TD model, in which the time of presentation of the

reward was designated to occur at time point 5, and the time of pre-

sentation of the cue stimulus at time point 1. We report results using

a learning rate (a) of 0.1, which shows strong activation in both ven-

tral midbrain and ventral striatum (the same learning rate was used

for all subjects). Using this learning rate, convergence (i.e., complete

learning) occurs by the end of the 30 trials. This learning rate is

slightly slower than that used in previous studies (where typically

a = 0.2 was found to be optimal; O’Doherty et al., 2003, 2004). How-

ever, this study differs from previous studies in the increased inter-

stimulus interval (5 s instead of 3 s used previously) and the in-

creased number of trial types. This could account for the slower

learning rate observed here. For completeness, we tested other

learning rates (from 0.2 through to 0.8), but responses were maximal

for the learning rate shown.

Image Analysis

Image analysis was performed using SPM2 (Wellcome Department

of Imaging Neuroscience, Institute of Neurology, London, UK). To

correct for subject motion, the images were realigned to the first

volume, spatially normalized to a standard T2* template with a re-

sampled vowel size of 3 mm3, and spatial smoothing was applied

using a Gaussian kernel with a full-width at half-maximum (FWHM)

of 8 mm. Intensity normalization and high-pass temporal filtering

(using a filter width of 128 s) were also applied to the data.

For the statistical analysis, each trial was modeled as having five

time points: the time of presentation of the cue, three interim time

points, and the time of presentation of the reward. The TD prediction

error signal (described above) was entered into the general linear

model as a parametric regressor to capture changes in neural activ-

ity over time as a function of learning for each trial type and for each

time point within a trial. The main feature of this signal in the case of

the present study was that it captures a shift in the timing of activity

within a trial from the time of presentation of the reward itself back to

the time of presentation of the cue, over the course of learning.

These regressors were then convolved with the canonical hemody-

namic response function and correlated with each subjects’ fMRI

data in SPM.

In addition, the six scan-to-scan motion parameters produced

during realignment were included to account for residual effects of

scan-to-scan motion. To take into account transient head motion

effects produced by, for example, swallowing, we also included an

additional motion regressor that featured the output of the motion-

detector coil, band-pass filtered appropriately and subsampled to

the number of scans in the experiment. Linear contrasts between

regressors were computed at the individual subject level to detect

regions showing responses to the TD regressor that scaled in a linear

or quadratic fashion as a function of preference. To enable inference

at the group level, the contrasts from each individual subject were

taken to the second level, and random-effects group statistics

were computed. A priori we defined the midbrain (in the vicinity of

the ventral tegmental area and substantia nigra), ventral striatum, or-

bitofrontal cortex, and amygdala as areas of interest. By ventral

striatum, we refer to the ventral aspects of the striatum incorporating

both the nucleus accumbens proper as well as adjacent ventral

parts of the putamen. It is important to note that our definition of ven-

tral striatum is more extensive than sometimes used in the literature.

Often this term is used to refer exclusively to the part of the striatum
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encompassing the nucleus accumbens and olfactory tubercle. In-

clusion of the ventral parts of the putamen in the definition used

here is motivated by recent findings that the ventral part of putamen

has similar cytoarchitectonic characteristics as the nucleus accum-

bens proper (Holt et al., 1997; Karachi et al., 2002), as well as by the

fact that reward-predictive responses have frequently been re-

ported in this area in previous fMRI studies (O’Doherty et al., 2003,

2004; McClure et al., 2003). Results are reported in areas of interest

at p < 0.001, uncorrected.

The structural T1 images were coregistered to the mean functional

EPI images for each subject and normalized using the parameters

derived from the EPI images. Anatomical localization was carried

out by overlaying the t maps on a normalized structural image aver-

aged across subjects, and with reference to an anatomical atlas

(Duvernoy, 1999).
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