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Studies on human monetary prediction and decision making emphasize the role of the striatum in encoding prediction errors for
financial reward. However, less is known about how the brain encodes financial loss. Using Pavlovian conditioning of visual cues to
outcomes that simultaneously incorporate the chance of financial reward and loss, we show that striatal activation reflects positively
signed prediction errors for both. Furthermore, we show functional segregation within the striatum, with more anterior regions showing
relative selectivity for rewards and more posterior regions for losses. These findings mirror the anteroposterior valence-specific gradient
reported in rodents and endorse the role of the striatum in aversive motivational learning about financial losses, illustrating functional
and anatomical consistencies with primary aversive outcomes such as pain.
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Introduction
A wealth of human and animal studies implicates ventral and

dorsal regions of the striatum in aspects of the learned control of
behavior in the face of rewards and punishments. In experiments
involving primary rewards and punishments, the blood oxygen-
ation level-dependent (BOLD) signal in the human striatum
measured using functional magnetic resonance imaging (fMRI)
covaries closely with key learning signals used by abstract learn-
ing models (O’Doherty et al., 2003; Haruno et al., 2004; Seymour
et al., 2004; Tanaka et al., 2004, 2006; Yacubian et al., 2006). These
algorithms originate in sound psychological learning accounts
and are known to acquire normative predictions and affectively
optimal behaviors (Sutton and Barto, 1981, 1990; Barto, 1995).

However, two related sets of findings, regarding the orienta-
tion of this signal and the relationship between rewards and pun-
ishments, remain difficult to accommodate fully under this inter-
pretation. First, the BOLD signal seen in the striatum typically
takes the form of a signed prediction error with baseline activity
when outcomes match their predictions and above- and below-
baseline excursions and when outcomes are more or less than
expected, respectively. Of course, rewards and punishments have
opposite valences, with a negative punishment (e.g., one expected
but omitted) bearing a close computational and psychological

relationship with a “positive” reward. However, in experiments
that involve cues that predict rewards exclusively (which can be
presented or omitted), or primary punishments exclusively
(which can also be presented or omitted), the BOLD signals are
apparently oppositely oriented, with positive BOLD excursions
accompanying both positive reward and positive punishment
and below-baseline excursions accompanying both negative (or
omitted) reward and punishment (Delgado et al., 2000; Knutson
et al., 2000; Becerra et al., 2001; Breiter et al., 2001; Pagnoni et al.,
2002; Elliott et al., 2003; O’Doherty et al., 2003; Jensen et al., 2003;
Zink et al., 2003; Seymour et al., 2004, 2005; Tanaka et al., 2004;
Nieuwenhuis et al., 2005; Yacubian et al., 2006).

Second, in the above experiments that involve financial costs
(in contrast to those involving primary punishments such as
physical pain), the striatal BOLD signal is typically observed to be
oriented as in rewarding tasks, with monetary gains associated
with positive BOLD activations, and losses with “sub-baseline”
signals. Indeed, there are few reports of any brain areas showing a
positive BOLD response to financial loss at all, and although this
is not exclusively the case [for instance, in the amygdala (Yacu-
bian et al., 2006) and insula cortex (Knutson et al., 2007)], it has
been suggested that monetary losses and gains might be fully
processed by a unitary (appetitive) system, centered on the stria-
tum (Tom et al., 2007).

Potential explanations for these puzzles include the possibility
that the striatal BOLD signal reflects the release of different neu-
romodulators (Daw et al., 2002; Doya, 2002) (one reporting pre-
diction errors of each valence) or the possibility that that neigh-
boring regions of the striatum report on the different valences
(Reynolds and Berridge, 2001, 2002). Indeed, there are sound
psychological and neurophysiological reasons to think that sep-
arate, opponent systems are responsible for the two valences
(Konorski, 1967; Dickinson and Dearing, 1979; Gray, 1991). But,
on this interpretation, it remains unclear why different circum-
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stances implicate each signal (for instance, why pain is apparently
reported by a punishment-oriented prediction error but mone-
tary losses are not). We designed a Pavlovian conditioning exper-
iment, involving mixed gain and loss outcomes, to address these
underlying issues.

Materials and Methods
The key requirements for the task were to integrate monetary predictions
about gains and losses and to avoid framing the problem entirely in terms
of one valence. One strategy for mitigating the latter, at the potential
expense of low experimental power and only subtle outcomes, is to make
the task involve predictions alone, with no requirement for action, and
thereby avoiding subjects having expectations that they will be able to
win. Thus, we used fMRI to examine striatal representations of financial
loss in tasks that involve mixed gains and losses, using a probabilistic
first-order Pavlovian learning task with monetary outcomes. Impor-
tantly, the design included both mixed and nonmixed valence outcome
probabilities, allowing us to look specifically at the influence on outcome
representations (specifically, the prediction error) of the context pro-
vided by the nonexperienced outcome.
Subjects. Twenty four (11 female) subjects, age range 19 –35, participated
in the study. All were free of neurological or psychiatric disease and fully
consented to participate. The study was approved by the Joint National
Hospital for Neurology and Neurosurgery (University College London
Hospitals NHS trust) and Institute of Neurology (University College
London) Ethics Committee. Subjects were remunerated by amounts cor-
responding to their actual winnings during the task (mean zero) added to
a fixed prestated amount for time and inconvenience (£20).

Stimuli and Task. We performed a probabilistic first-order Pavlovian
delay conditioning task, with visual cues predictively paired with mone-
tary outcomes, as demonstrated in Figure 1. Visual cues were presented
on a computer monitor projected onto a screen, visible via an angled
mirror on top of the fMRI headcoil. The visual stimuli were presented for
3.5 s, and on termination, were followed immediately by a 1.5 s duration
image of their outcome, an empty circle (no outcome), a 50 pence coin,
or a £1.00 coin, below which was written in bold letters the amount, and

whether they had won or lost (for example, “WIN £1.00”). The five cues
predicted outcomes shown in Table 1.

The visual stimuli were abstract colored images, �6 cm in diameter
viewed on the projector screen from a distance of �50 cm. They were
fully balanced and randomized across subjects and matched for lumi-
nance. We presented 200 trials over two sessions, with each trial being
presented with a jittered interval of 2– 6 s.

Preference task. After the conditioning task, we assessed the acquisition
of Pavlovian cue values using a preference task, involving forced choices
between pairs of cues. Each cue was presented alongside (horizontally
adjacent) each other cue, and subjects (still inside the fMRI scanner)
made an arbitrary preference judgment between them, using a response
keypad (no outcomes were delivered). Each possible combination was
presented five times (making 50 trials), in random order, and with the
position of each cue (on the left or right side of the screen) also random-
ized. The total number of preference choices for each cue was summed
(in a similar manner to a league table) and nonparametric comparisons
assessed statistically.

Pupillometry. Pupil diameter was measured online during fMRI scan-
ning by an infrared eye tracker (Model 504; Applied Sciences Laborato-
ries, Waltham MA) recording at 60 Hz. Pupil recordings were analyzed
on an event-related trial basis and used to find evidence of basic condi-
tioning among the reward, aversive, and neutral cues. We used the peak
light reflex after presentation of the cue, which is a standard measure of
autonomic arousal (Bitsios et al., 2004), and we performed analyses using
a repeated-measures ANOVA and post hoc t tests. Technical problems led
to the data not being collected for four of the 24 subjects.

fMRI. Subjects learned the task de novo in an fMRI scanner to allow us
to record regionally specific neural responses. Functional brain images
were acquired on a 1.5T Sonata Siemens AG (Erlangen, Germany) scan-
ner. Subjects lay in the scanner with foam head-restraint pads to mini-
mize any movement. Images were realigned with the first volume, nor-
malized to a standard echo-planar imaging template, and smoothed
using a 6 mm full-width at half-maximum Gaussian kernel. Realignment
parameters were inspected visually to identify any potential subjects with
excessive head movement, and none were found. Images were analyzed
in an event-related manner using the general linear model, with the
onsets of each outcome represented as a stick function to provide a
stimulus function. Regressors of interest (10 in total) were then gener-
ated by convolving the stimulus function with a hemodynamic response
function (HRF). Effects of no interest included the onsets of visual cues
and realignment parameters from the image preprocessing to provide
additional correction for residual subject motion.

From the outcomes, linear contrasts of the statistical parametric maps
(SPMs) from the outcomes were taken to a group-level (random-effects)
analysis by way of a one-sample t test. Montreal Neurological Institute
coordinates and statistical z-scores are reported in figure legends.

Group level activations were localized according to the group averaged
structural scan. Activations were checked on a subject-by-subject basis
using individual normalized structural scans, acquired after the func-
tional test-scanning phase, to ensure correct localization. We report ac-
tivity in areas in which we had previous hypotheses, based on previous
data, although without specification of laterality. These regions have es-
tablished roles in both aversive and appetitive predictive learning, and
included the putamen, caudate, nucleus accumbens, midbrain (substan-

Figure 1. Experimental design. Visual cues were presented for 3.5 s and followed immedi-
ately with the outcome depicting the outcome amount, which was displayed for 1.5 s. For the
analysis, events were marked at the time of the outcome, and linear contrasts were performed
between the different outcome types. p, Pence.

Table 1. Cue-outcome contingencies

Cue Outcome Probability

Neutral £0 1
Univalent reward £0 0.5

£1 0.5
Univalent loss £0 0.5

£1 0.5
Bivalent cue (£1) £1 0.5

£1 0.5
Bivalent cue (50 pence) £0.50 0.5

£0.50 0.5
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tia nigra), amygdala, anterior insula cortex, and
orbitfrontal cortex. We report activations at a
threshold of p � 0.001, which survive false dis-
covery rate (FDR) correction at p � 0.05 for
multiple comparisons using an 8 mm sphere
around coordinates based on previous studies.
Note that in Figures 3 and 4, we use a threshold
of p � 0.005 (with a five voxel extent threshold)
for display purposes. No other activation was
found outside our areas of interest that sur-
vived whole-brain correction for multiple
comparisons using FDR correction at p � 0.05.
Details and statistics of all significant activa-
tions appear in the figure legends of the appro-
priate contrasts.

We performed two central analyses. One in-
volved trial-based contrasts for positive reward
and positive loss prediction errors: (1) positive-
reward prediction error, bivalent £1.00 win
outcome minus univalent £1.00 win outcome;
and (2) positive-loss prediction error, bivalent
£1.00 loss minus univalent £1.00 loss outcome.

In the second analysis, we used a simple re-
inforcement learning model to generate a sig-
nal corresponding to the outcome prediction
error, which, as in previous studies, was applied
as a regressor to the imaging data (O’Doherty et
al., 2003). Here, we used a temporal difference model with a learning rate
of � � 0.3. This was based primarily on our previous data from Pavlovian
learning (Seymour et al., 2005), although it should be noted that con-
verging evidence from a number of studies, examining both Pavlovian
and instrumental learning, has supported a comparable learning rate.
Furthermore, the results presented below are robust to changes in learn-
ing in realistic ranges (0.3– 0.7) based on previous studies. In this model,
the value v of a particular cue (referred to as a state s) is updated accord-
ing to the following learning rule: v(s) 4 v(s) � ��, where � is the
prediction error. This is defined as follows: � � rt � v(s)t, where r is the
return (i.e., the amount of money). We used a parametric design, in
which the temporal difference prediction error modulated the stimulus
functions on a stimulus-by-stimulus basis. The statistical basis of this
approach has been described previously (Buchel et al., 1998; O’Doherty
et al., 2003). Regressors corresponding to the outcome prediction errors
were then generated by convolving the stimulus function with an HRF.

Finally, we considered two further trial-based contrasts. One contrast
sought the representation of the negative prediction errors: (1) negative
reward prediction error, univalent £1.00 win outcome minus bivalent
£1.00 win outcome; and (2) negative loss prediction error, univalent
£1.00 loss minus bivalent £1.00 loss outcome. These contrasts afforded
no significant difference at our thresholds.

The second contrast considered residual activity in the striatum, when
equal prediction errors are subtracted: (1) zero net prediction error,
bivalent £0.50 win outcome minus univalent £1.00 win outcome; and (2)
zero net prediction error, bivalent £0.50 loss outcome minus univalent
£1.00 loss outcome. As expected from standard models, none of these
contrasts yielded a significant difference.

To address the possibility that cue-related responses might confound
identification of prediction error-related responses, we repeated all anal-
yses (both trial based and model based), with the inclusion of a single
cue-related regressor. Inspection of the regressor covariance matrix re-
lating to parameter estimability after convolution of the design matrix
with the HRF suggested that the models were not over specified. Indeed,
for the model-based analysis, there was no correlation between the cue
regressor and the prediction error. In keeping with this, the SPMs for
both trial-based and model-based analyses showed minimal changes in
results. Second, we repeated the trial-based analysis with full specifica-
tion of the identity of the cue (i.e., with five separate cue regressors). As
above, this did not alter the results to any substantial degree. Third, we
orthogonalized the outcome regressors with respect to the cue regressors,

and again, the results changed only minimally (in either direction). No
significant correlations were found with the cue-related regressors.

Results
Behavioral results
The postconditioning preference task demonstrated significant
preference for the cue associated with univalent reward cue over
the neutral cue, in turn preferred to the univalent loss cue. Pref-
erence scores for the bivalent cues were slightly above those of the
neutral cue, for which the expected value is equivalent (Fig. 2, see
figure legend for statistics).

Pupil diameter, which is an autonomic measure of arousal,
also provided evidence of basic conditioning to the rewarding
and aversive cues, compared with the neutral cue (Fig. 2, see
figure legend for statistics).

fMRI results
The experimental design allowed comparison of neural responses
to winning money in two conditions: one in which the alternative
was winning nothing, and one in which the alternative was losing.
Similarly, it allows comparison of neural activity corresponding
to losing money when the alternative was nothing or winning.
Thus, the key BOLD contrasts were between the univalent and
bivalent outcomes for both gain and loss outcomes, because these
reveal appetitive and aversive prediction errors, respectively, spe-
cifically relating to the outcomes associated with mixed-valence
predictions.

In the appetitive case (bivalent cue followed by a £1 reward,
univalent reward cue followed by £1 reward), this corresponds to
a positive relative reward prediction error of 50 pence and was
associated with activation in the ventral striatum (Fig. 3a). In the
aversive case (bivalent cue followed by a £1 loss, univalent loss cue
followed by £1 loss), this corresponds to a positive aversive pre-
diction error of �50 pence and was also associated with activa-
tion in the ventral striatum (Fig. 3b). The peak of the aversive
prediction error was slightly posterior to the appetitive predic-
tion error, as shown in the sagittal section displayed in Figure 3c.

However, the magnitude of these peaks was such that this

Figure 2. Behavioral results. a, Preference scores. One-way repeated-measures ANOVA; F(4,92) � 5.572; p � 0.0005; post hoc
two-tailed t test yielded significant differences between univalent reward and neutral and univalent loss and neutral ( p � 0.05).
b, Mean pupillometry, average across all trials across learning, in a trial-specific manner. We looked for a basic effect of condition-
ing between the rewarding, aversive, and neutral cue, which is a standard measure of conditioning. Repeated-measures ANOVA
revealed a significant effect of trial type. F(2,19) � 3.342; p � 0.05. The post hoc t tests showed a significant effect (increased
amplitude of light reflex) for both rewarding and aversive cues when compared with the neutral cue ( p � 0.05). Error bars
indicate SEM. p, Pence.
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analysis could not reliably differentiate the location of appetitive
and aversive prediction errors, with the activity in each peak be-
ing only insignificantly greater than activity associated with the
contrast that defined the other peak. Furthermore, the trial-based
contrasts (three and four) testing for negative prediction errors of
either valence showed no significant effects. This could reflect an
asymmetry reported at the spiking level for dopaminergic neu-
rons (Fiorillo et al., 2003; Bayer and Glimcher, 2005; Niv et al.,
2005; Morris et al., 2006), where positive errors are coded more
strongly than negative ones. It may additionally be because of the
relatively crude trial-based measures.

Therefore, we considered a more sensitive analysis based on a
temporal difference learning model. This model is known to offer
a good account of the neurophysiological responses of dopami-

nergic cells associated with Pavlovian
learning about rewards in monkeys
(Montague et al., 1996; Schultz et al.,
1997) and has been successfully used in
human fMRI to probe prediction-error
components of the BOLD signal from the
striatal targets of these cells (O’Doherty et
al., 2003; Haruno et al., 2004; Seymour et
al., 2004; Tanaka et al., 2004, 2006). We
applied the model as in previous studies
and used the prediction error occurring at
the time of the outcomes generated by this
model as a parametric regressor in the
fMRI data analysis. This model incorpo-
rates both positive and negative prediction
errors and thus identifies valence-specific
responses. Aversive prediction errors

should be negatively correlated with this signal; appetitive predic-
tion errors should be positively correlated with it. Therefore, un-
like the trial-based contrasts, this analysis should identify areas
that are specific to either valence.

In other words, this analysis identifies subject-specific, trial-
specific activity that correlates with the prediction errors fitted by
the temporal difference learning model. This analysis was applied
solely to the bivalent cues (because it is during these trials that we
expected to find opponent prediction error representations).

Activity associated with an aversive temporal difference out-
come prediction error was observed posteriorly in the mid puta-
men (Fig. 4a). Activity associated with an appetitive temporal
difference outcome prediction error was observed in more ante-
rior ventral striatum, in close proximity to the nucleus accum-
bens (Fig. 4b). These activations are presented in sagittal sections
(Fig. 4c, green and red, respectively), to permit comparison with
the simple prediction error contrasts shown in Figure 3c.

Given a recent report of identification of an aversive predic-
tion error in the amygdala (Yacubian et al., 2006), we looked at a
reduced threshold (uncorrected p � 0.01) specifically in that
region. However, no correlated activity was identified.

Discussion
Our results suggest a partial resolution to the puzzles outlined in
the introduction. The data suggest that aversive and appetitive
prediction errors may be represented in a similar manner, albeit
somewhat spatially resolvable along an axis of the striatum. The
appetitive prediction error appears to direct the BOLD signal in
more anterior and more ventral regions than the aversive predic-
tion error. Furthermore, it appears that the prevalence of each
sort of coding may depend on the affective context.

Although one should be cautious regarding the topographic
spatial resolution of fMRI, the anterior–posterior gradient re-
sembles that seen in stimulation studies of the ventral striatum in
rats, in which microinjecting a GABA agonist or a glutamate
antagonist into more anterior regions produces appetitive re-
sponses (feeding) and into more posterior regions produces aver-
sive responses (paw treading, burying) (Reynolds and Berridge,
2001, 2002, 2003). These studies are characteristic of a growing
body of evidence pointing to a role of the ventral striatum in
aversive motivation and with distinct neuronal responses associ-
ated with appetitive and aversive events (Ikemoto and Panksepp,
1999; Horvitz, 2000; Schoenbaum and Setlow, 2003; Setlow et al.,
2003; Jensen et al., 2003; Seymour et al., 2004, 2005; Roitman et
al., 2005; Wilson and Bowman, 2005).

Aversive learning is well recognized to involve the amygdala.

Figure 4. fMRI temporal difference (TD) model. a, Left, Aversive TD error, right mid striatum
[Montreal Neurological Institute (MNI) coordinates (x, y, z): �20, �4, 6; z � 3.89; p � 0.005;
21 voxels]. Yellow corresponds to p � 0.005; magenta corresponds to p � 0.001. Right, The
image is also shown in sagittal section (in red). b, Left, Appetitive TD error, right ventral striatum
(nucleus accumbens) [MNI coordinates (x, y, z): 10, 6, �1; z � 3.13; shown at p � 0.005; 15
voxels] and left ventral striatum (nucleus accumbens) [MNI coordinates (x, y, z): �12, 6, �18;
z � 3.62; 14 voxels]. Yellow corresponds to p � 0.005; magenta corresponds to p � 0.001.
Right, The image is also shown in sagittal section (in green).

Figure 3. fMRI simple bivalent, univalent contrasts. a, Aversive prediction error, right ventral striatum [Montreal Neurological
Institute (MNI) coordinates (x, y, z): �16, 0, �10; z � 3.74; 46 voxels at p � 0.005]. This contrast also revealed a peak in the right
anterior insula [data not shown; MNI coordinates (x, y, z): 30, 18, �12; z � 3.60]. Yellow corresponds to p � 0.005; magenta
corresponds to p � 0.001. b, Reward prediction error, right ventral striatum [MNI coordinates (x, y, z): �16, 6, �6; z � 3.38; 28
voxels at p � 0.005]. Yellow corresponds to p � 0.005; magenta corresponds to p � 0.001. c, Sagittal view showing the two
peaks, reward (green) and aversive (red).
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Interestingly, a recent gambling study involving mixed gains and
losses of money, at differing amounts and probabilities, identi-
fied loss prediction errors in the amygdala, but only gain-related
prediction error in the striatum (Yacubian et al., 2006). Although
it is difficult to place too much emphasis on the respective nega-
tive findings for this and our study, it is noteworthy that these two
areas are richly interconnected, both directly and indirectly
(Russchen et al., 1985).

The anatomical separation within the striatum could well be
accompanied by a separation in terms of the relevant neuro-
modulators (Daw et al., 2002; Doya, 2002). A substantial body of
data points to the role of dopamine in striatal reward-related
activity (Everitt et al., 1999; Montague et al., 2004; Wise, 2004),
specifically relating to the representation of prediction errors that
guide learning in Pavlovian and instrumental learning tasks
(Montague et al., 1996; Schultz et al., 1997). Furthermore, dopa-
mine has been observed to modulate striatal reward prediction
errors in human monetary gambling tasks selectively (Pessiglione
et al., 2006). If dopamine is involved in the appetitive prediction
error observed here, this raises the question as to the nature of the
aversive prediction error signal, given previous observations and
current controversies concerning dopaminergic involvement in
aversive behaviors (Ikemoto and Panksepp, 1999; Horvitz, 2000;
Ungless, 2004). One possibility is that serotonin released from the
dorsal raphe nucleus plays this role (Daw et al., 2002). Consistent
with this hypothesis, there is evidence of a serotonin-dopamine
gradient along a caudal-rostral axis in the striatum (Heidbreder
et al., 1999; Brown and Molliver, 2000). However, because our
study was not pharmacological, we cannot rule out the possibility
that instead of there being a separate, nondopaminergic oppo-
nent, dopamine provides a valence-independent signal that in-
teracts with valence-specific activity intrinsically coded in the
striatum (Seymour et al., 2005).

From the perspective of studies into financial decision making
and prediction, it is noteworthy that we see striatal BOLD signals
above the baseline associated with prediction errors for financial
losses, whereas most previous imaging studies involving positive
and negative financial returns show only decreases below baseline
for unexpected losses. This result is important because it makes
the findings for financial losses consonant with those for primary
aversive outcomes such as pain. It also reinforces caution in the
interpretation of striatal activity in human decision-making
tasks, which as noted in the past (Poldrack, 2006), are sometimes
prone to the reverse inference that striatal activity implies the
operation of reward mechanisms.

One possible reason for the difference between our results and
previous results is that in experimental monetary decision-
making tasks, subjects make choices under the reasonable expec-
tation (perhaps based on implicit knowledge of the mores of
ethical committees) of a net financial gain. This establishes an
appetitive context or frame within which all outcomes are judged.
In contrast, most decisions in day-to-day life involve risks that
span positive and negative outcomes; we hoped that mixed-
outcome prediction, with no opportunity for choice, would
avoid such a frame. Empirical work in finance and economics has
suggested that such mixed-outcome decisions fit rather awk-
wardly within the descriptive framework usually applied to deci-
sions that involve pure gains and losses. Constructs such as Pros-
pect theory suggest a strong dependence of decision making on
valence context (positive or negative) in which options are judged
(Levy and Levy, 2002). The absence of a positive orientation for
loss prediction errors in previous studies may thus have arisen
from such positive frames. Our results hint that more naturalistic

human studies that involve genuine risk of financial loss may be
critical to gain further insights into the role of the striatum and
other structures in the judgment and integration of gains and
losses.
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