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Emotion plays a critical role in many contemporary accounts of decision making, but exactly what underlies
its influence and how this is mediated in the brain remain far from clear. Here, we review behavioral studies
that suggest that Pavlovian processes can exert an important influence over choice and may account for
many effects that have traditionally been attributed to emotion. We illustrate how recent experiments cast
light on the underlying structure of Pavlovian control and argue that generally this influence makes good com-
putational sense. Corresponding neuroscientific data from both animals and humans implicate a central role
for the amygdala through interactions with other brain areas. This yields a neurobiological account of emotion
in which it may operate, often covertly, to optimize rather than corrupt economic choice.
Introduction
The disregard that human choice frequently pays to the axioms

of formal decision theory has placed a high premium on develop-

ing a biological understanding of the structure that underlies it.

Researchers from behavioral economics, finance, marketing,

and politics are now looking to neuroscience to provide insights

into the peculiarities of choice that often plague their own do-

mains. Reliance on a traditional two-system model, in which

a ‘‘cold,’’ rational, far-sighted cognitive system battles against

a ‘‘hot,’’ irrational, short-sighted emotional system (Camerer

et al., 2005; Kahneman and Frederick, 2002;Sloman, 1996), is

beginning to prove inadequate in light of contemporary psycho-

logical and neurobiological data that favor multiple decision-sys-

tems (Figure 1). The latter perspective promises a more mecha-

nistic account of decision making but leaves open the question

of exactly what was captured by traditional concepts of an emo-

tional system, this having provided such an enduring repository

for the various anomalies that have proved problematic to ac-

commodate.

The brain structure most commonly affiliated with emotion is

the amygdala, predominantly due to its widely studied role in Pav-

lovian (classical) conditioning. Indeed, the acquisition of innate

value and responding in Pavlovian paradigms plays a central

role in most standard neurobiological accounts of emotion (Do-

lan, 2002; LeDoux, 2000a; Rolls, 1998). However, recent animal

and human studies suggest that the amygdala may also play an

important role in guiding choice. Understanding how these two

aspects of amygdala function can be integrated focuses attention

on experimental studies that suggest that the information ac-

quired in Pavlovian learning might guide more sophisticated ac-

tion-selection processes underlying decisions. Here, we review

evidence, which draws strongly on studies of Pavlovian-instru-

mental interactions, that addresses this more elaborate role for

the amygdala. The resulting decision phenotype is typically emo-

tional but arises from underlying processes that are generally ra-

tional and whose effects might often only become apparent in in-

stances when they cause deviations from rationality.

We begin by reviewing the nature of Pavlovian conditioning, in

which we consider both the innate responses it evokes and the
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type of information it learns, which embodies the notion of Pav-

lovian (both appetitive and aversive) value. We then show how

several key experimental paradigms illustrate how other (instru-

mental) action systems can exploit this information to refine their

own performance. By addressing theoretical considerations, we

illustrate that these processes may often maximize the use of

information acquired through different learning mechanisms to

optimize choice. We then review the experimental evidence in

animals that implicates the amygdala in the control of many of

these aspects of decision making. Finally, concentrating on de-

cision making in humans, we draw parallels with results from be-

havioral economics that might be understood in terms of these

underlying, amygdala-dependent processes.

Pavlovian Learning
Pavlovian learning provides a unique means to learn the motiva-

tional landscape of the environment, by coupling experience-

based statistical learning with the wisdom of species-wide evo-

lutionary inheritance. In the classic experimental paradigm,

a neutral cue, such as switching on a light, reliably precedes

an important event, such as the arrival of food. Learning the pre-

dictive relationship between the two events has two key conse-

quences. First, it allows an appropriate response to be evoked in

anticipation of the outcome, such as approach and salivation.

Second, it endows the otherwise uninteresting cue with acquired

motivational value, reflecting the utility of the net reward or pun-

ishment that it predicts. As we shall discuss, this value turns out

to be a very useful quantity that can be adaptively exploited by

other decision-making systems, particularly when faced with po-

tentially complex choices.

Pavlovian Responses

Konorski (1967) first formalized the types of action evoked when

animals are faced with a motivationally salient event (uncondi-

tioned stimulus) or a cue predictive of a salient event (condi-

tioned stimulus). He classified actions into those specific to the

identity of the outcome, termed ‘‘consummatory responses,’’

such as salivating when faced with foods, and those more gen-

erally appropriate to the valence of the outcome, such as ap-

proach and withdrawal, termed ‘‘preparatory responses.’’
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Pavlovian responses are by and large appropriate, insofar as it

makes sense to approach food and salivate in anticipation of

eating it, and it makes sense to withdraw when seeing a predator.

Pavlovian conditioning allows these apparently hardwired re-

sponses to be elicited as soon as a prediction is reliably made.

In this way, Pavlovian responses reflect a base set of evolution-

arily inherited hardwired actions, remarkably, though not exclu-

sively (Bolles, 1970), conserved across species.

Accordingly, situations in which Pavlovian actions are inap-

propriate often reflect either a change in environment that is

out of pace with evolution or the mischievous paradigms of ex-

perimental psychologists. The former is best illustrated by over-

eating in humans. The abundance of food in many modern soci-

eties renders the beneficial effect of a feeding system that

Figure 1. How Many Action Systems?
Consider the problem of learning to find the food in the maze above. First, the
simplest solution utilizes Pavlovian conditioning and exploits innate actions
such as approach and withdrawal. During Pavlovian conditioning, positions
that are associated with the outcome acquire a positive value that causes
the agent to approach them. Thus, following the tendency to approach the re-
ward from position d, d will acquire a positive utility, causing it to be ap-
proached from other positions, including c. Through sequential conditioning,
the individual can potentially navigate relying purely on the Pavlovian ap-
proach.
Second, habits involve the learning of action utilities. Trial and error will reveal
that turning right at d is immediately profitable, and the reward can be used di-
rectly to reinforce the action. Learning the preceding actions, such as what to
do at position b, is more difficult, because the outcomes are both delayed and
contingent on subsequent actions (the credit assignment problem; Bellman,
1957). One possibility is to use either the subsequently available best action
utility (as in Q learning; Watkins and Dayan, 1992) or the subsequent Pavlovian
state values (as in Actor-Critic learning; Barto, 1995) as a surrogate reward in-
dicator. This has the effect of propagating (or ‘‘bootstrapping’’) action utilities
to increasing distances in chains of actions.
Third, goal-directed learning mechanisms overcome the lack of an explicit rep-
resentation of the structure of the environment or of the utility of a goal in Pav-
lovian actions and habits by involving a model of some sort. Indeed, there may
be more than one distinct form of model-based decision system (Yoshida and
Ishii, 2006). A natural form is a map of the area within which one’s own position
and the position of the goal can be specified, in which the structure of the
model is governed by the two-dimensional physical nature of the environment.
Alternatively, propositional models, which have a less-constrained prior struc-
ture, might specify actions as bringing about transitions between uniquely
identified positional states. Such models bear a closer relation to linguistic
mechanisms, for instance taking the form of ‘‘from the starting position, go
left, left again, then right, and then right again,’’ and in theory have the capacity
to incorporate complex sets of state-action rules.
Fourth, and finally, control might also be guided by discrete episodic memories
of previous reinforcement. Such a controller is based on explicit recall of pre-
vious episodes and has been suggested to guide actions in the very earliest of
trials (Lengyel and Dayan, 2007).
evolved in much sparser environments inappropriate in light of

known health sequelae of excessive eating. However, a goal-di-

rected action system that can exploit this explicit knowledge

struggles to compete with its Pavlovian counterpart and in West-

ern societies may have contributed to an epidemic of obesity. In-

deed, the only ‘‘cure’’ for such Pavlovian gluttony may itself be

Pavlovian, insofar as contingently pairing nausea and vomiting

with food results in a food aversion capable of inhibiting Pavlov-

ian compulsion but, unfortunately, only if food is relatively novel

(Best and Gemberling, 1977).

More spectacular examples of Pavlovian ‘‘impulsivity’’ exist in

the experimental domain (Dayan et al., 2006). In his famous ex-

periment, Hershberger (1986) placed chicks in front of a food

cart and arranged the cart to move in the same direction as the

chick, but at twice the speed. Consequently, approaching the

cart caused it to retreat at twice the speed, but retreating from

the cart causes it to approach the chick. Chicks’ inability to learn

to move away from the cart can be explained by the dominance

of a preparatory Pavlovian impulse to approach it over an instru-

mental ability to learn to retreat and obtain the food.

In a broader sense, Pavlovian actions reflect the sorts of ac-

tions that evolution prescribes as almost invariably appropriate.

Indeed, in the aversive domain in particular, responses such as in

freeze and flight in situations of threat may clearly be life saving.

In isolation, such responses reflect decisions in their own right. In

terms of optimal control, they can be thought of as a set of action

priors, over and above which instrumental systems may operate.

In the situations in which such decisions are inappropriate, the

resulting competition between other action systems is manifest

as instances of impulsivity or failed self control.

Pavlovian Values

Beyond basic responses, Pavlovian learning provides a mecha-

nism by which the predictive value of a cue or state can be

learned. This ‘‘value’’ reflects the sum of rewards and punish-

ments expected to occur from a given point in the environment,

yielding information that has potential uses beyond directing

Pavlovian ‘‘actions.’’ Accordingly, experimental psychologists

have developed several ingenious learning paradigms that illus-

trate just how Pavlovian values are exploited by other systems

(Figure 2) (Dickinson and Balleine, 2002; Mackintosh, 1983).

In the paradigm termed ‘‘conditioned reinforcement,’’ an ani-

mal is first taught the Pavlovian contingency between a cue

and a reward (Fantino, 1977; Hyde, 1976). Subsequently, it is

then exposed to the instrumental contingency between an ac-

tion, such as a lever press, and the cue. Even though the cue

is presented entirely in extinction, allowing no direct instrumental

learning of the reward that it previously predicted, the animal will

start to press to the lever, indicating critically that the acquisition

of Pavlovian value by the cue is, alone, able to reinforce instru-

mental action systems.

A slightly more complex illustration of Pavlovian-instrumental

cooperation is seen in avoidance learning, in which it deals

with the problem of how to reinforce actions that lead to appar-

ently neutral outcomes (which represent instances of successful

avoidance) (Mowrer, 1947). Specifically, Pavlovian fear mecha-

nisms are thought to motivate escape responses when a punish-

ment is predicted, and subsequent avoidance is driven by appe-

titive reinforcement of the state that marks the safety of
Neuron 58, June 12, 2008 ª2008 Elsevier Inc. 663
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Figure 2. Pavlovian and Instrumental
Learning and Their Interactions
(A) Pavlovian conditioning. Repeated sequential
presentations of a cue (light) followed by a reward
(chocolate) allow an individual to learn that the cue
predicts the reward.
(B) Instrumental conditioning (action learning). An
individual learns that action 1 (for example, press-
ing a button) leads to delivery of a particular reward
(chocolate). This reinforces the action whenever it
becomes available. A different action (for example,
spinning a wheel) leads to delivery of a different re-
ward (a refreshing drink), which reinforces action 2.
(C)Pavlovian-instrumental interactions. The Pavlov-
ian cue (light) is sometimes presented when various
actions are available. This will reinforce any action
seems to lead to delivery of the cue (conditioned re-
inforcement) labeled (a), all other reward-predicting
actions (actions 1 and 2, general Pavlovian-instru-
mental transfer) labeled (b), chocolate-associated
actions (action 1, specific Pavlovian-instrumental
transfer) labeled (c), or approach responses (Pav-
lovian conditioned responses) labeled (d).
successful avoidance, which has the form of a Pavlovian condi-

tioned inhibitor (a Pavlovian cue that predicts the omission of

punishment) (Bolles and Grossen, 1969; Bouton, 2006; Crawford

et al., 1977; Damato et al., 1968; Dickinson, 1980; Dinsmoor,

2001; Starr and Mineka, 1977). In this case, it is the Pavlovian

conditioned inhibitor that adopts the role of conditioned rein-

forcer.

Pavlovian values can also influence actions in a slightly subtler

way. In Pavlovian-instrumental transfer, a Pavlovian cue is first

trained to passively predict a particular reward. Next, the individ-

ual is trained on an instrumental learning paradigm, such as a

lever-press, for either the same or different reward. Finally, the

Pavlovian cue is presented at the same time as the instrumental

behavior, usually in extinction. In both animals and humans, the

appetitive Pavlovian cue increases the rate of instrumental appe-

titive responding, independently of the identity of the reward, re-

flecting a general increase in response vigor (general Pavlovian-

instrumental transfer) (Dickinson and Balleine, 2002; Estes,

1948; Lovibond, 1983). And in a similar manner, an aversive

cue will reduce responding (conditioned suppression) (Digiusto

et al., 1974; Estes and Skinner, 1941). However, it turns out

that Pavlovian values can be integrated more selectively with

choice, illustrated by specific reinforcer effects in transfer para-

digms. For example, if an animal that is both hungry and thirsty is

able to perform separate actions to obtain food or water, a Pav-

lovian cue previously associated with food will increase the num-

ber of times the animal selects the food-related action. Alterna-

tively, if the individual is sated for one or other reward (i.e., is

allowed to drink or eat freely), then the transfer effect is appropri-

ately directed at the nonconsumed reward (Balleine, 2001).

In humans, it seems likely that many everyday emotional in-

fluences on decision making may be related to phenomena

captured in the experimental paradigms developed by animal

learning theorists (Phelps and LeDoux, 2005), evidenced for in-

stance by the success of marketing and advertising campaigns

that exploit passive, emotionally laden cues. More directly,

overeating in the context of appetitive cues has clear parallels

with conditioned potentiation (Holland and Petrovich, 2005)

(see below). Addictive and compulsive behavior is thought to
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be strongly related to conditioned reinforcement and Pavlov-

ian-instrumental transfer (Everitt and Robbins, 2005). In behav-

ioral economics, so-called ‘‘framing’’ effects, in which the emo-

tional valence of the language in which options are described

dramatically changes people’s risk preferences (Kahneman

and Tversky, 2000; McNeil et al., 1982), resemble the effects

seen in transfer paradigms (De Martino et al., 2006). Further-

more, people’s tendencies to overvalue losses in comparison

to gains, apparent in loss aversion, has been suggested to be

related to the dominance of automatic responses to losses (Ca-

merer, 2005; Trepel et al., 2005). And in a further example from

behavioral economics, the ‘‘hot stove’’ effect, which describes

the bias away from collecting information (such as about the

temperature of stoves) about previous events with aversive

consequences, is a direct parallel to the avoidance ‘‘paradox’’

(Denrell and March, 2001).

Theoretical Aspects of Pavlovian Control

Insight into the importance of Pavlovian interactions can be

gained by considering the type of information that Pavlovian

values carry. Allowing assumptions about temporal discounting,

Pavlovian cues provide an indication of the average amount of

reinforcement available at a given time, which turns out to be

a potentially very useful signal. First, it provides a standard

against which individual actions should be judged. For example,

receiving £5 is positive in a neutral context, but negative in the

context of cues that suggest that an average outcome should

be £10. In terms of choice, this may change the relative utilities

of available options for individuals with nonlinear utility functions.

But more importantly, it may change the values of actions as they

are acquired through learning. Learning how much better or

worse the value of a current state is before and after taking a par-

ticular action, rather than directly learning absolute action

values, proves to be a much more efficient way of learning opti-

mal actions in situations in which Pavlovian state values are

known with greater relative certainty. Indeed, using state-based

values to learn action values is central to several popular learning

rules, notably the actor-critic and advantage learning models,

which have modest biological support (Baird, 1993; Dayan and

Balleine, 2002; O’Doherty et al., 2004).
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Second, such relative judgments may influence further learn-

ing by controlling exploration. Exploration is critical in environ-

ments when the outcomes of actions are either not known with

certainty or change over time. The strategy used for exploration

has an important effect on apparent risk attitudes (Denrell, 2007;

March, 1996; Niv et al., 2002). This is because if the value of an

action is uncertain then the relative value of an outcome deter-

mines the frequency with which it is sampled: an option judged

aversive will be tried less often than one judged positive. Thus,

Pavlovian values can modify asymmetrical sampling biases

that arise between positive and negative or high versus low var-

iance outcomes.

Third, in addition to judgments of relative utility, Pavlovian

values can also usefully inform how much effort an individual

should invest in a set of actions. This notion embodies the con-

cepts of excitement and motivational vigor and can be rational-

ized in any system in which there is an inherent opportunity cost

to performing an action (Niv et al., 2007). If the average return is

judged high by a Pavlovian system, then it makes sense to invest

more effort in instrumental actions, as seen in general Pavlovian-

instrumental transfer.

Fourth, and more specifically, Pavlovian values can selectively

guide choices among different options presented simulta-

neously. Pavlovian cue value reflects a state-based homeostatic

quantity that reflects physiological need. Thus, the utility of food

declines as one becomes sated, or the utility of shelter is re-

duced on a fine, warm day. This information can be used to judge

the specific utilities in situations in which many courses of action

exist, as is demonstrated by sensory-specific satiety. Indeed,

one of the paradigms (devaluation) that has been particularly in-

structive in dissociating different action systems draws on the

fact that habit-based learning systems are unable to access spe-

cific value-related information without experiencing outcomes

and relearning actions (Balleine, 1992).

The Role of the Amygdala
Pavlovian Learning

The amygdala is widely recognized as one of the principle brain

structures, along with the striatum, associated with Pavlovian

learning (Gallagher and Chiba, 1996; Klüver and Bucy, 1939;

LeDoux, 2000a; Maren and Quirk, 2004; Murray, 2007). Broadly,

it consists of two functionally and anatomically distinct compo-

nents, namely those that are affiliated with the central and baso-

lateral nuclei. Both are heavily connected with extensive cortical

and subcortical regions, consistent with a capacity to influence

diverse neural systems (Amaral and Price, 1984).

Early theories on the role of the amygdala centered on fear

(Weiskrantz, 1956), in light of the discovery that it acts as a critical

seat of Pavlovian aversive conditioning (Maren, 2005; Quirk

et al., 1995). More specifically, many elegant experiments have

demonstrated that the basolateral amygdala, by way of its exten-

sive afferent input from sensory cortical areas, is critical for form-

ing cue-outcome associations and that the central nucleus is

critical for mediating conditioned responses, by way of its pro-

jections to mid-brain and brainstem autonomic and arousal cen-

ters (Kapp et al., 1992). In what became known as the ‘‘serial

model’’ of amygdala function, the basolateral amygdala is

thought to learn associations, with direct projections to central
amygdala engaging the latter to execute appropriate responses

(LeDoux, 2000b).

In subsequent years, several key findings have emerged that

have enriched this picture. First, the amygdala has been found

to be critically involved in appetitive learning, in a similar (though

not identical) way to its involvement in aversive learning (Baxter

and Murray, 2002). Second, the central and basolateral nuclei of-

ten operate in parallel as well as in series. This is thought to sub-

serve dissociable components of learning, whereby the central

nucleus mediates more general affective, preparatory condition-

ing, with the basolateral nuclei mediating more consummatory,

value-specific, conditioning (Balleine and Killcross, 2006; Cardi-

nal et al., 2002). Third, rather than just executing Pavlovian re-

sponses, connections of both central and basolateral amygdala

with other areas, such as the striatum and prefrontal cortex, are

critical for integrating Pavlovian information with other decision-

making systems (Cardinal et al., 2002).

The Acquisition of Value

Single-neuron recording studies have identified neurons that en-

code the excitatory Pavlovian value of rewards and punishments

as well as neurons that encode salient predictions independently

of valence (Belova et al., 2007; Paton et al., 2006). Values can

also be inhibitory, as a consequence of the opponent relation-

ship between appetitive and aversive systems. Such opponency

comes in two forms: that related to the omission of an expected

motivational stimulus (Konorski, 1967) and that related to the off-

set of a tonic motivational stimulus (Solomon and Corbit, 1974).

Notably, the amygdala is implicated in encoding both (Belova

et al., 2007; Rogan et al., 2005; Seymour et al., 2005) .

Behavioral models of Pavlovian learning suggest that values

are acquired in a manner that depends on the discrepancy be-

tween predicted and actual outcomes (Rescorla and Wagner,

1972), and such prediction-error-based learning rules have ac-

cumulated significant biological support in another structure

strongly implicated in Pavlovian learning, namely the striatum.

This is the case for both appetitive learning, thought to be guided

by dopaminergic projections from the ventral tegmental area in

the midbrain (Nakahara et al., 2004; Satoh et al., 2003; Schultz

et al., 1997), and aversive learning, evidenced in humans by

fMRI (Jensen et al., 2007; Seymour et al., 2004). In both cases,

the nature of learning follows a class of updating algorithm

(called temporal difference models) that bootstrap value predic-

tions using temporal prediction errors and learn using both pos-

itive and negative prediction errors. This provides a flexible

mechanism to learn values ideally suited to environments with

delayed and uncertain outcomes.

The algorithmic nature of value learning in the amygdala is less

clear. Human fMRI studies have suggested that aversive Pavlov-

ian values are acquired in amygdala in a dynamic fashion consis-

tent with prediction-error-based models (Glascher and Buchel,

2005; Yacubian et al., 2006), and prediction errors occurring at

the time of outcome have been reported. A recent single-neuron

study of probabilistic appetitive and aversive conditioning in

monkeys has shown that separate neuronal populations encode

valence-specific, probabilistic, value-related signals (i.e., modu-

lated by outcome uncertainty) (Belova et al., 2007). This study

also found activity in keeping with a mirrored opponent pattern,

in which some neurons coded both reward and omitted
Neuron 58, June 12, 2008 ª2008 Elsevier Inc. 665
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punishment and vice versa. However, no cells intrinsically dis-

played a full prediction error pattern, suggesting that learning

might be driven by a temporal prediction error signal arising

from elsewhere.

There are other reasons for thinking that the Pavlovian pro-

cesses seen in amygdala are not the same as those seen in stria-

tum, and one of the most significant reasons relates to the rep-

resentation of negative prediction errors (Redish et al., 2007).

In particular, aversive extinction (in which aversive outcomes

are omitted) is known to be mediated by active learning that in-

volves inputs from medial prefrontal cortex, in contrast to the

more direct acquisition of excitatory values (Maren and Quirk,

2004; Milad and Quirk, 2002). Such extinction memories are eas-

ily ‘‘forgotten’’ or disrupted by procedures such as reinstatement

and are sensitive to reconsolidation (Duvarci et al., 2006). This

aversively biased asymmetry endows amygdala-based Pavlov-

ian values with the same sort of ‘‘safety-first’’ encoding that re-

flects the affective hardwiring of unconditioned stimuli. Thus, it

is possible that the temporal-difference-based mechanisms of

Pavlovian value learning in striatum reflect a mechanism that

may be to a certain extent distinguishable and perhaps compu-

tationally more flexible than that implemented in amygdala, but

with both using prediction errors.

These differences may extend to the way in which Pavlovian

values influence decision making. Despite early models, it is un-

clear whether a striatal dopamine system exploits a learning

mechanism (for example, actor-critic) that directly utilizes Pav-

lovian predictions (or their errors) for action learning (Daw,

2007; Morris et al., 2006; Roesch et al., 2007; Samejima et al.,

2005), which would be necessary for Pavlovian effects on

choices, as seen in conditioned reinforcement, to have direct ac-

cess to actions values. Accordingly, this focuses attention else-

where to determine the components of a coordinated system

that mediates Pavlovian-instrumental interactions and on exper-

imental studies that attempt to disrupt them.

Pavlovian-Instrumental Interactions in Animals

There is good evidence that the amygdala yields Pavlovian

values to instrumental action systems, and indeed, central and

basolateral amygdala appear to mediate distinct types of inter-

action. For instance, Killcross et al. (1997) took rats with either

central or basolateral lesions, first trained them in a Pavlovian

conditioning procedure, and subsequently tested them in an in-

strumental procedure in which actions led to presentation of the

Pavlovian cue. Central nucleus lesioned animals displayed a def-

icit in the nonspecific suppression of instrumental responding

(conditioned suppression) produced by the cue, whereas baso-

lateral amygdala lesioned animals exhibited a deficit in biasing

instrumental choices away from an action that produced the

cue (conditioned punishment). In another example, Corbit and

Balleine, using a selective satiation procedure for instrumental

actions that led to different rewards, demonstrated that central

nucleus lesions (previously implicated in Pavlovian-instrumental

transfer; Hall et al., 2001; Holland and Gallagher, 2003) selec-

tively impaired general forms of Pavlovian-instrumental transfer

but that specific forms were selectively impaired with basolateral

amygdala lesions (Corbit and Balleine, 2005). Such dissociation

is borne out in other paradigms. The central nucleus has been

shown to be critical for contextual conditioning (Selden et al.,
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1991), conditioned approach (Hitchcott and Phillips, 1998), and

conditioned orienting (Holland et al., 2002a), whereas the baso-

lateral amygdala has been shown to be critical for reinforcer re-

valuation (Balleine et al., 2003; Hatfield et al., 1996; Malkova

et al., 1997), conditioned reinforcement (Cador et al., 1989;

Hitchcott and Phillips, 1998), and second-order conditioning

(Burns et al., 1993; Hatfield et al., 1996).

These and other results (Blair et al., 2005; Ostlund and Bal-

leine, 2008; Wilensky et al., 2000) suggest that the basolateral

amygdala encodes specific value-related outcome information,

such as that modulated by satiety. The anatomical connections

that may subserve this have been elucidated in a series of ele-

gant experiments on conditioned potentiation of feeding. In

this paradigm, Pavlovian cues paired with food when individuals

were hungry can motivate sated animals to eat beyond satiety.

Rats with lesions of the basolateral, but not central, amygdala

do not show the characteristic potentiation of feeding normally

seen when the Pavlovian cues are presented (Holland et al.,

2001, 2002b). This effect depends on connectivity with hypothal-

amus and orbitomedial prefrontal cortex (Petrovich et al., 2002,

2005) but not striatum or lateral orbitofrontal cortex (McDannald

et al., 2005). Indeed, a wealth of other experiments have con-

firmed the importance of amygdala-OFC connections in mediat-

ing the impact of outcome-specific value representations on

choice (Baxter et al., 2000; Baxter and Browning, 2007; Ostlund

and Balleine, 2007; Paton et al., 2006; Saddoris et al., 2005;

Schoenbaum et al., 2003; Stalnaker et al., 2007).

Amygdala connectivity with nucleus accumbens mediates

a number of other Pavlovian influences on action. First, autosh-

aping and higher-order conditioned approaches depend on the

integrity of basolateral amygdala and nucleus accumbens and

their interconnections (Parkinson et al., 2000, 2002; Setlow

et al., 2002). This may be an important mediator of the Pavlovian

impulsivity seen in paradigms such as negative automainte-

nance (Dayan et al., 2006; Williams and Williams, 1969). Second,

lesions of the core and shell of the nucleus accumbens disrupt

specific and general forms of Pavlovian-instrumental transfer,

respectively (Corbit et al., 2001).

Decision Making in Humans

The extent to which behavioral and anatomical findings from ro-

dents can be translated to humans (and primates) is an important

and open issue, because experimental data (in decision-making

tasks) on the latter are more scant. Human patients with amyg-

dala damage are impaired in decision-making tasks involving

risk and uncertainty, as are patients with ventromedial prefrontal

damage (Bechara et al., 1999). Using fMRI, Hampton and col-

leagues have shown that patients with amygdala lesions have

impaired outcome representations for instrumental choices in

ventromedial prefrontal cortex (Hampton et al., 2007), an area

known to be critical for learning action-outcome contingencies

in instrumental learning (Bechara et al., 2000; Hampton et al.,

2006; Kim et al., 2006), as it is in rats (Coutureau et al., 2000). Ac-

cordingly, the amygdala-medial prefrontal pathway may be a crit-

ical route by which stimulus-specific outcome information is

integrated with more sophisticated, goal-directed actions.

Indeed, many animal results have parallels with human

experiments (Delgado et al., 2006; Phelps and LeDoux,

2005). For instance, an amygdala contribution to human
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Pavlovian-instrumental transfer has recently been reported in the

context of an appetitive conditioning paradigm (Talmi et al.,

2008). Amygdala and orbitofrontal cortex are both implicated

in specific representations of outcome value in a similar manner

to animals (Gottfried et al., 2003), and this circuit may underlie

aspects of choice studied in behavioral economics. For exam-

ple, both areas are involved in using previous experiences of

regret to bias future decisions (regret avoidance): whereas the

orbitofrontal cortex appears important for representing the neg-

ative motivational value of regret, the amygdala appears more

specifically involved in biasing future decisions (i.e., learning)

(Coricelli et al., 2005). And consistent with other parallels, the

amygdala has been shown to have a central role in biasing

choice in the framing effect to cause risk aversion in positive con-

texts (De Martino et al., 2006; Figure 3), and in economic trans-

actions (selling objects) causing loss aversion (Weber et al.,

2007).

The role of the amygdala further extends to other aspects of

economic uncertainty. Humans, in general, have an aversion to

selecting options to which the probabilities determining the out-

comes are unknown (ambiguous), compared to options in which

they are known (risk), even when the overall expected value of

each is equivalent. By directly comparing choices made under

risk or ambiguity, Hsu and colleagues (Hsu et al., 2005) have

shown that amygdala activity predicts subjects’ decisions to

opt for less-ambiguous options. Intriguingly, lesions of the cen-

tral nucleus of the amygdala in the rat appear to impair the in-

crease in learning due to increases in cue-outcome associability

(uncertainty) (Holland and Gallagher, 1993). Associability, being

theoretically aligned to ambiguity by the fact that both drive

learning (in contrast to risk), is thought to control learning via

the neuromodulators acetylcholine and norepinephrine (Yu and

Dayan, 2005), midbrain sources of which (nucleus basalis and lo-

cus coeruleus, respectively) both receive substantial input from

the central nucleus.

A Role in Social Decision Making?

One of the most notable findings from human fMRI studies is the

exquisite sensitivity of the amygdala to motivational information

provided by faces, including to complex social information such

as moral status, trust, and suspicion (Adolphs et al., 1998;

Adolphs and Spezio, 2006; Calder and Young, 2005; Moll

et al., 2005; Singer et al., 2004; Winston et al., 2002). How

such rich motivational information can be used to influence

choice, both in terms of relatively basic hardwired responses

and integration with more goal-directed social decision making,

is little understood, but one possibility is that Pavlovian mecha-

nisms are involved. Choice in social interaction harbors a level

of complexity that makes it unique among natural decision-mak-

ing problems, because outcome probabilities depend on the un-

observable internal state of the other individual, which incorpo-

rates their motives (intentions). Because most interactions are

repeated, optimal learning requires subjects to generate a model

of another individuals’ behavior, and their model of our behavior,

and so on. These iteratively nested levels of complexity render

many social decision-making problems computationally intrac-

table (Lee, 2006).

Pavlovian learning mechanisms may offer help. First, by invok-

ing inherent prosocial tendencies (e.g., empathy and various
Figure 3. The Framing Effect and the Amygdala
Reproduced from De Martino et al. (2006).
(A) Behavioral frame biases. Subjects chose between a risky gamble and
a sure option in a forced-choice paradigm in which each option had the
same expected value, but the sure option was presented in either a positive
frame (in terms of winning) or a negative frame (in terms of losing). Subjects
bias their choices toward gambling in the ‘‘loss’’ frame, consistent with the
well-described frame effect, in which negative frames cause people to be-
come more risk seeking. Error bars denote SEM.
(B) BOLD responses. Activity in the amygdala strongly correlates with the di-
rection of the frame bias (choice 3 frame interaction) at the time of choice.
(C) Amygdala activity. BOLD signal change as a function of choice and frame,
displaying how activity follows the behavioral direction of the frame bias. Error
bars denote SEM.
Neuron 58, June 12, 2008 ª2008 Elsevier Inc. 667
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forms of altruism), Pavlovian mechanisms may prime reciprocity,

to the mutual advantage of cooperators (Seymour et al., 2007).

Second, associative value learning mechanisms have the capac-

ity to associate positive and negative outcomes across individ-

uals and circumstances, and estimates of trustworthiness pro-

vide a way of generalizing prosocial tendencies in other

individuals and across different types of social interaction (Axel-

rod and Hamilton, 1981; King-Casas et al., 2005; Trivers, 1971).

As an approximate inference about a hidden variable, namely

cooperative reciprocity, in the brain of others, it is a key determi-

nant of future outcomes that may obviate the requirement to

model precisely the complexity inherent in repeated social inter-

actions (Kraines and Kraines, 1993). Indeed, simple associative

learning models have proved remarkably good at predicting be-

havior in human game theoretic tasks (Erev and Roth, 1998,

2007) and that the amygdala may utilize such approximations

is hinted at by very recent studies that have manipulated trust us-

ing oxytocin (Baumgartner et al., 2008).

Conclusions
Clearly, there are several distinct mechanisms by which the

amygdala plays a key role not just in simple conditioning but

in complex decision making. Through Pavlovian learning, the

amygdala can evoke conditioned responses that reflect an evo-

lutionarily acquired action set capable of exerting a dominant ef-

fect on choice. Second, amygdala-based Pavlovian values are

exploited by instrumental (habit-based and goal-directed) learn-

ing mechanisms in specific ways, through connectivity with other

brain regions such as the striatum and prefrontal cortex.

We have argued that such Pavlovian integration is a theoreti-

cally reasonable strategy for improving and optimizing choice

outcomes. How this relates to traditional notions of emotion is

an open question, because definitions of emotion are often char-

acteristically vague. Whereas there may be much more to emo-

tion than that captured by innate values and responses and their

acquisition in Pavlovian conditioning, most modern accounts of

emotion contain these processes as a central theme (Dolan,

2002; LeDoux, 2000a; Rolls, 1998). Thus, the popular notion

that emotional mechanisms are irrational may be ill-conceived,

arising as an artifact of the fact that it is only when the influence

of emotional (Pavlovian) mechanisms is suboptimal are we prone

to be aware of their operation.

Lastly, there are notable parallels between the sorts of deci-

sion-making tasks well-studied in behavioral economics and

the paradigms used by learning theorists, whose subjects are of-

ten nonhuman. Not only can neuroscientists learn much from the

ingenious paradigms of behavioral economists, but the latter

may benefit from the insights into the basic structure of decision

making, and its subtle complexities, yielded by neuroscience.
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