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1. Introduction

A unique and puzzling observation about pain is its distributed
processing amongst multiple cortical and subcortical brain areas,
informally called the pain matrix. This is challenging and frustrat-
ing—challenging because it puts the onus on neuroscientists to
determine how each area and its interactions contribute to pain
processing, but frustrating given that no individual area can act
as an objective biomarker for subjective pain. Recently sophisti-
cated new analytical methods that can decode complex patterns
in data offer potentially more promising ways to interrogate pain
related brain activity. Here we consider whether and how these
methods might contribute to basic and clinical pain neuroscience,
and whether their limitations outweigh their promise.

2. Principles of decoding

In principle, any physiological measure that correlates with
pain, such as heart rate, can be used for prediction (decoding).
The problem is that most measures lack sensitivity and specificity,
such that we might need to pool the predictive capabilities of mul-
tiple data. Neuroimaging techniques, such as functional magnetic
resonance imaging (fMRI) and magneto-/electroencephalography
(M/EEG) allow noninvasive recording of brain signals from a large
number of spatially distributed sensors (eg, voxels/electrodes) and
time points. Traditionally, these data have been analysed using
simple linear regression models, treating the signals from each
sensor independently [8]. Accordingly, the approach has been to
predict signal changes, averaged over trials/subjects, at the level
of individual sensors from a set of known variables (eg, experimen-

tal conditions). Such analyses are called univariate: the analysis of
one sensor does not affect the analysis of any other (Fig. 1A).
Although univariate analyses have proven powerful to test which
brain regions respond to different aspects of pain processing, they
do not capture the complex spatiotemporal dynamic between
regions that characterises brain function.

By contrast, multivariate statistical analyses do not treat each
sensor independently and are in principle more suitable than uni-
variate methods for assessing information encoded in spatial and
temporal dependencies among regions. For this reason, the use of
multivariate techniques for neuroimaging, in particular multivari-
ate pattern analyses (MVPA), also known as brain decoding [13,25],
has been growing over recent years [19]. Brain decoding is usually
based on machine learning (ML) techniques [3]. ML is a branch of
artificial intelligence concerned with learning from data and fo-
cussed on making predictions. ML has an extremely broad applica-
tion domain, from computer vision to stock market analysis. In
neuroimaging, ML tries to identify spatial and/or temporal patterns
in the data from multiple sensors that best discriminate between 2
or more conditions (classification) or predict continuous variables
(regression) on unobserved data. Brain decoding therefore seems
particularly well suited for clinical applications, having the poten-
tial to identify diagnostic biomarkers for different medical condi-
tions [14] and for the development of brain–machine interfaces
[24].

3. Decoding methodology

ML-based decoding analysis of brain imaging data entails a ser-
ies of steps that include feature extraction and selection, training
and testing, and pattern interpretation (Fig. 1B).

Feature extraction consists of selecting the data (features) that
will be used to learn the ML model. In neuroimaging, it is common
to treat the sensors’ data as features and use whole-brain signals as
input to the model [21]. An alternative is to first run a sensorwise
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univariate analysis and then use the estimated regression coeffi-
cients as features [9]. More recently, connectivity-based features,
such as correlation between time series of different regions, have
also been used [2,1].

Feature selection is an optional step where nonmeaningful/
noisy features can be precluded from the analysis. Feature selec-
tion can rely on dimensionality reduction methods [22] or on prior
knowledge (eg, regions of interest) [12]. It can also rely on mea-
sures such as the predictive accuracy/error of the model [10] or
be part of the model itself [30].

After extracting features, the next step is to train and test the
model. By training, we mean learning the parameters of the model
using data. By testing, we mean estimating the model’s extrasam-
ple/prediction error, ie, the average generalization error when the
algorithm is applied to an independent test sample from the same
distribution of the training data (eg, a different sample of subjects
or experimental conditions). A common approach to do this is to
use cross-validation (Fig. 1B). Cross-validation uses part of the
available data to train the model and part to test it. It is important
to emphasize that if the test set data are not independent from the
training data, the cross-validation error does not reflect the true
generalization error of the model. The choice of algorithm depends
on the problem, and different properties—such as its predictive
accuracy, interpretability, and reproducibility—may be more or
less important depending on the application domain [20].

Finally, in neuroscience, it is important to assess the role that
each feature played in the predictions (pattern interpretation).
For linear algorithms, it is easy to represent the parameters of
the model in the original data space and to visualize the impor-
tance of each feature (magnitude of its parameter) in what is called
a discriminative map (Fig. 1B).

4. Decoding pain

The first study to use brain decoding in the context of pain [18]
demonstrated the feasibility of using ML on whole-brain fMRI data
from healthy individuals to predict self-reported thermal pain.
Using similar approaches to decode different aspects of pain per-
ception, Brodersen et al. [4] demonstrated that the joint activation
of a set of brain regions, including the pain matrix, provided more
accurate trial-by-trial predictions of thermal pain perception than
any single region. The spatial patterns of activity in insular and cin-
gulate cortex have been found to highly overlap for pain felt on
one’s hand and observed on another person’s hand [7]. Cecchi
et al. [6] illustrated the advantage of combining ML and psycho-
physics to predict the temporal evolution of thermal pain percep-
tion from within-subject fMRI data. Despite these successes, the
translation of brain decoding into real-world clinical applications
depends on its ability to make between-subject predictions. One
of the first studies to address this issue [5] showed that ML

Fig. 1. (A) Toy example of the response of 2 sensors (v1 and v2) for 2 different conditions (green and red). If each sensor is analysed independently (univariate analysis), it is
not possible in this case to reliably distinguish between the 2 conditions. Distributions of the responses of each sensor for the 2 conditions (green and red curves) overlap
significantly (particularly for v1). However, using a linear classifier (multivariate pattern analysis or brain decoding), it is possible to estimate a linear function (black line) that
can reliably discriminate between the 2 conditions using data from the 2 sensors simultaneously. (B) Multivariate pattern analysis (brain decoding) steps. These steps include
feature extraction and possibly selection (extracting and selecting a subset of brain signals from sensors v1 to vn) as well as training and testing a machine learning (ML)
model using cross-validation (CV). It is important to note here that when there is no a priori reason for choosing a particular subset of features, feature selection should be
performed using training data only (ie, within CV) to avoid double dipping (ie, the use of both training and testing data to select relevant features), which can strongly bias
estimates of the generalization error [16]; for a comprehensive discussion on circularity in feature selection, see [16]. The k-fold CV breaks the data into k blocks of
observations. The model is then trained using k � 1 blocks and tested on the remaining block. This procedure is repeated k times. Common choices for k are k = 5 and 10.
When k equals the total number of samples, it is called leave-one-out CV (LOOCV). LOOCV is approximately unbiased for the true (expected) prediction error because the data
are trained on all observations minus 1. However, because the training sets are almost identical, the predictions are highly correlated, and therefore the LOOCV prediction
error estimate tends to have higher variance than does the error estimate from k-fold CV. CV can also be used for choosing the value of tuning parameters from the ML
algorithm or feature selection approach, as long as we hold out a validation set (independent from the training and testing data used for CV) to assess the model
generalization error. However, in situations where there are not enough data, model selection and parameter tuning can be done in an inner CV performed on every training
set of the main CV (known as nested CV). This approach can, however, be computationally expensive. We illustrate here a linear classifier (classification model) where the
predictions of 2 classes, c1 (eg, chronic pain patients) and c2 (eg, healthy control), are given by a linear combination of the input features, ie, f(b � features) ? ci, where b are
the model parameters, and grey regions indicate the blocks of data not being used in this cross-validation fold. The final step refers to interpreting the predictive patterns by
displaying them, for example, in the form of discriminative maps. Note that the model predictions are based on all features.
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algorithms trained on whole-brain patterns of activity from a
group of subjects could discriminate painful from nonpainful ther-
mal stimulation on an independent set of individuals. In addition,
Prato et al. [26] proposed a regression algorithm based on fMRI
for making between-subject predictions of pain intensity following
an injection of ascorbic acid. Schulz et al. [31] showed that ML
models trained on EEG-based time-frequency patterns from a
group of subjects can predict the sensitivity of a new individual
to cutaneous pain. Perhaps the most comprehensive demonstra-
tion of an objective neural code of subjective phasic pain was from
Wager et al. [35]. The authors first identified patterns of brain
activity that could distinguish between heat-induced painful from
nonpainful stimulation in healthy subjects. In 3 independent
groups of subjects, these patterns were then used to successfully
discriminate painful heat from nonpainful warmth and physical
from social pain, and measure the effect of analgesics. More re-
cently, Liang et al. [17] showed how pain can be distinguished from
other sensory stimuli which also involve activation in areas of the
classical pain matrix. Finally, Ung et al. [33] demonstrated that
decoding can go beyond predicting acute pain in healthy subjects,
using MRI-based measures of grey-matter volume to successfully
discriminate patients with chronic low back pain from controls.

5. Neurobiological considerations

Pain neurobiology is generally concerned with the question of
pain encoding (ie, how the nervous system gives rise to the percept
of pain); despite the impressive results of decoding experiments to
date, how much they inform our understanding of pain is less clear
[23]. One of the problems is knowing what is being decoded.
Depending on the model and data, ML models can be powerful
and robust. When used as black boxes, they will maximize the pre-
dictive accuracy given any property of the data, whether it is biolog-
ically meaningful and/or interpretable (eg, condition-related
neuronal activity) or not (eg, artefacts). This issue is particularly rel-
evant for neuroscience applications, where it is important to under-
stand which brain regions/features contain information about the
experimental condition. In fact, although it is possible to create sen-
sorwise maps from multivariate model parameters (Fig. 1B), spatial

inferences on these maps are not straightforward. Contrary to uni-
variate models, multivariate maps do not naturally provide a null
hypothesis (and corresponding statistical test) associated with each
sensor/feature, and therefore information mapping usually relies
on computationally expensive techniques, such as permutation
tests [21,27] and local sensorwise multivariate (searchlight) ap-
proaches [15]. The parameters are also dependent on the character-
istics of the algorithm (eg, regularization) and data (eg, signal-to-
noise ratio and brain physiology), which further hinders the inter-
pretation of multivariate maps [11]. Even though the latter issues
also affect the univariate approach to some extent, the success of
decoding methods for neuroscience needs further investigation
and possibly confirmation from lesion/invasive data.

6. Clinical applications

Clinical applications are often argued to have the greatest need
for MVPA-based decoding (Fig. 2). In a sense, the issue about what
is being decoded is less problematic for diagnostic purposes, as the
problem is defined in terms of clinical outcomes, not biological
mechanisms. However, there are many other issues looming: to
be useful, an MVPA-based biomarker will need to differentiate
chronic pain from comorbidities (eg, depression) and previous
treatments (eg, opiates), and predict disease severity as well as
spontaneous and treatment-induced remission. Ideally, it would
also distinguish different aetiologies of chronic pain and predict fu-
ture outcomes [32,1]. Methodologically, the greatest problem may
be operational: to be clinically useful, an MRI-based biomarker
would need to be independent of geographic site, scanner type,
and operator use. So whereas the existing decoding results are
highly encouraging, the challenges ahead for a clinically usable
biomarker are enormous.

A more realistic application might be in clinical trials, in which
many of the above factors can be controlled. Indeed, MVPA could in
principle be applied to both human and animal models of chronic
pain used for drug development. As well as providing new and ro-
bust biologically based outcome measures, it might even be possi-
ble to address other issues, such as differentiating placebo from
true therapeutic effects.

fMRI �me-series Parcella�on with Atlas Data covariance matrix

Sparse graphical model
(inverse covariance)

Sparse discrimina�ve model
(L1-norm SVM)

Sparse weight vector
Discrimina�ve connec�ons

Fig. 2. Using multivariate pattern analyses for diagnostic classification. In principle, imaging-based diagnostic classification can be based either on studying brain responses
to phasic pain stimuli or on baseline activity. This example is based on using baseline brain connectivity to classify patients and control subjects; it is very similar to the
method we have previously used to successfully classify patients with major depressive disorder [28]. Subjects are scanned with functional magnetic resonance imaging to
produce standard voxel-based time series of activity. The brain is then parcellated into regions of interest (ROIs) using a standardized brain atlas. The average activity in each
ROI is covaried with every other to generate a covariance matrix of pairwise connectivities. To reduce the high dimensionality of the feature space, a sparse graphical model
(gLASSO) can be used to estimate sparse pairwise partial correlations (inverse covariances), which become the features used in decoding. The sensitivity maps in this case
correspond to the brain networks that best discriminate between patients and healthy subjects.

866 M.J. Rosa, B. Seymour / PAIN
�

155 (2014) 864–867



Author's personal copy

7. Neuroengineering applications

There are broader potential uses of decoding—for example, in
the development of brain–machine interfaces for pain. However,
these neuroengineering applications need to solve the difficult
problem of real-time decoding [34], in which spontaneous (not
event locked) changes in pain are decoded. If this can be achieved,
one could, for example, develop communication systems for those
unable to reliably report pain, such as patients with impaired con-
sciousness and infants. Decoding methods could also be useful for
closed-loop neuromodulation, whereby stimulation (eg, thalamic
stimulation) is directly tied to decoded subjective pain. This is use-
ful for 2 reasons: first, it optimizes the timing and level of stimula-
tion (avoiding under- or overstimulation). Second, with more
complex neuromodulatory methods, which have multiple stimula-
tion parameters (eg, current frequency/amplitude), it allows search
for optimal parameters to be computerized.

Clearly the logistical limitations of current neuroimaging meth-
ods (ie, fMRI and MEG) constrain their use to proof-of-principle
therapeutic neuroengineering applications. At present, there are
no successful decoding examples using practically implementable
systems (eg, wireless EEG/functional near-infrared spectroscopy
[fNIRS]), and it is possible that the best signals will be either too
deep for surface-based recording or will not require multivariate
decoding at all, as is also the case for closed-loop deep brain stim-
ulation for Parkinson’s disease [29].

8. Conclusion

The appeal of MVPA-based decoding is that it intuitively cap-
tures the multivariate nature of how the brain processes informa-
tion—something that has particular resonance with current
concepts of pain processing. Not only does this offer a formaliza-
tion of the concept of a decodable brainwise pain matrix, but it also
has allowed identification of the most accurate biological signature
of subjective pain to date. This leads to justifiable optimism about
clinical diagnostic/prognostic applications. However, the problem
of what is being decoded plagues their interpretability from a
neurobiological perspective and arguably leaves us little closer to
understanding how chronic pain is processed in the brain. With
this in mind, it is likely that data-driven multivariate approaches
will gradually give way entirely to hypothesis-driven multivariate
approaches that mechanistically describe network-level pain
processing.
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