
 
 

 
 

 

 

The uncertainty and attendant risk in sales forecasts used in corporate budgeting processes is often 

ignored.  The pervasive use of single-value forecasts (Savage, 2012) to “roll up” a forecast for the firm 

ignores important aspects of asymmetry that is likely present in each individual forecast provided by 

sales managers.  The best way to estimate the rolled up forecast is by performing a Monte Carlo 

simulation, after representing the input forecasts as distributions.  Fortunately, this can be relatively 

simple even using Microsoft Excel™ (Excel™) as the simulation tool.  In this paper we motivate why this 

approach adds value and describe methods to implement the approach.  We present some simple 

example cases to illustrate the difference between likely risks (both high and low) of missing the forecast 

and the risk that many managers may assume.  Characterizing the actual risks based on a distribution 

can help firms better manage business risk and communicate with stakeholders. 

Firms generally have an annual budgeting cycle, which begins with collecting forecasts for the next year 

from all the sales functions1.  Whether a top-down2 revenue target is given in advance or not, it is 

common, after finalizing all bottom-up sales inputs, to include additional revenues in the target for the 

next year--these additional revenues may be referred to as “stretch” or some other colorful adjective, 

with the meaning that the leadership expects sales to find additional revenue beyond that which can be 

forecast specifically.   

It might be tempting to think of the stretch revenue as the uncertainty3 in the forecast.  While it is 

almost a given that the added top-down revenue is part of the total uncertainty in the forecast, in 

practice it is only a portion.  In this paper I discuss uncertainty in the individual inputs, how to describe 

those inputs as distributions, the resulting total uncertainty by combining inputs with uncertainties and 

distributions, and finally how to model the distribution for the rolled-up forecast to estimate the total 

uncertainty. 

Let’s first consider the case of a particular sales manager, we’ll call her Sharon, providing input into the 

forecast.  For simplicity, we take the case where the initial input contains no “stretch”; i.e. it is the sum 

of specifically forecasted amounts by Sharon.  Although there are invariably large data sets underlying 

the forecasts provided by sales managers, and the content of those detailed data may be adjusted many 

                                                           
1
 In this paper we consider any functions responsible for make sales to customers, and thereby generating 

revenue, to be sales functions, or simply sales.  The budgeting cycle includes not only sales inputs but cost inputs 
as well; however in this paper we look only at the revenue side of the complete cycle.  Also, while such processes 
are commonly iterative, for simplicity we assume there are a known set of sales inputs included in the final 
revenue total, and ignore the intervening changes to the individual forecast elements.  While such iterations can 
introduce additional uncertainties into the forecasts, we further assume that each component in the final forecast 
can be described by a function that can comment on the uncertainty of the value included in the final forecast.   
2
 When we refer to “rolled-up” forecast we mean simply the final total sales forecast figure from summing 

together all the individual submissions, after changes, plus any additions.  When we refer to “bottom-up” forecasts 
we are referring simply to the individual submissions, after changes. 
3
 As will become evident later, uncertainty refers to the concept that a single value for a forecast does not 

represent the full picture because there is a significant chance the actual revenues realized will differ from the 
forecast. 



 
 

 
 

 

 

times during the process, in the end there is a single figure, FSharon, that represents Sharon’s contribution 

to the overall forecast.  In most budgeting processes, that is as far as it goes, aside from later 

adjustments as already noted.  Now, what if we asked Sharon if she was 100% confident in the figure 

FSharon?  Generally, the answer would be “no”.  A problem arises if we ask Sharon “how confident are you 

in your forecast?”.  The question and hence the answer are ambiguous and can be interpreted in various 

ways.  For instance, if Sharon responds “I am 75% confident”, she might be saying there is only 25% 

chance the real revenues will come in below FSharon.  Alternatively, she might be saying that if you 

constructed a normal distribution representing the actual sales, with mean FSharon, then the +- 3  limits 

would be +- 37.5% of the mean, or  = 12.5%.  While the second response seems somewhat illogical, 

nonetheless there is a better way, and perhaps more commonly used way, to ask about the uncertainty 

of the forecast. 

A better question for Sharon would be “what are your 90% confidence interval limits on FSharon, and what 

is the most likely value of the actual sales?”  The answer to this question must be a range, and we note 

that the most likely (or expected) value can lie anywhere within this range.  This leads us to another 

problem: most managers, if they envision a distribution of actual outcomes related to FSharon at all, they 

would almost always assume a symmetric, normally shaped (i.e. Bell Curve shaped) distribution with 

mean at FSharon.  If we consider answers to the confidence interval question, Sharon might respond “the 

lower value is FℓSharon, the upper value is FuSharon, and the most likely value is F’Sharon.”  We note that 

F’Sharon may not be equal to the FSharon given earlier.  Why might that be the case?   

Perhaps Sharon has a key account, and that account represents a large fraction of her total forecast.  

Sharon knows the customer has some expansion plans hinging on a few key deals.  If they all are closed, 

then the total forecast might increase 25%.  Sharon thinks less than half of these are very likely, but if 

they all are closed, then FuSharon moves up but the most likely value and the lower bound are unchanged.  

In fact, it is likely that most sales forecasts have asymmetric distributions of the possible actual values.  

Another case, for instance, might be a few large pending sales representing a significant downside.  Yet 

another variant might consider capacity constraints that would require capital approval should the sales 

deals close, and the timing of capital expense (capex) approval and deployment affecting the current 

year forecast.  To simplify thinking about this, just ask yourself “how many times has the upside been 

identical to the downside?”   

Now if we do ask Sharon for her forecast as a 90% confidence interval and a most likely value, what are 

we to do with those figures?  It is common to use a triangular distribution to represent the distribution 

of possible outcomes like the sales forecast scenarios described above (Kacker, 2007) (Larham, 2010) 

(Palomo & Insua, 2004) (Rodger, 1999).  In all references I reviewed discussing triangular distributions, I 

found the distribution is characterized by three values—the worst case, the best case, and the expected 

value.  Consider what these values represent in terms of uncertainty: the lower and upper values imply 

the forecaster is 100% certain no values will occur either below the worst case or above the best case; in 

other words the sales manager gives you a range with no uncertainty about it.  As already explained, a 



 
 

 
 

 

 

more likely case is that the sales manager can estimate a range representing a confidence interval of the 

actual values, say 90%, and a most likely or expected value.  This case is illustrated in Figure 1. 

 

Figure 1.  Probability distribution representing the distribution of 

possible actual sales based on the estimates of the sales manager.  

The values c, d, and m are given by the manager, as well as the 

confidence level.  The values a, b, and h must be determined to 

characterize the distribution for use in risk estimation later. 

Continuing with our sales manager Sharon, figure 1 says she is 90% confident the actual sales will fall 

between the value c and d, and thinks the most likely outcome is m.  Mathematically, the area under the 

curve between c and d equals 0.9 or 90%.  We also note that the area under the entire curve from a to b 

equals 1 or 100%.  For a complete description of the probability distribution of actual sales outcomes, 

we need to find the values a, b and m, where m is the maximum height, which by definition must occur 

at the most likely outcome, m. 

There are various ways we can approach the solution to the math/geometry problem of figure 1.  In 

appendices A through C we outline some solutions approaches and develop two different solutions.  For 

our purposes here, we note that we make use of the assumption that the height of f(v) is the same at c 

as it is at d (this is referred to in Appendix A as the “equal heights” assumption).  In short, with the equal 

heights assumption we can find the unknown values easily using Excel™.  With that in hand, let’s explore 

the implications of using triangular distributions in a rolled up forecast instead of point values. 

We start with five forecasts submitted to be rolled up into a higher level forecast.  These might 

represent five sales managers’ input into a business unit forecast, or five business units input into a 

company forecast.  Table 1 shows the starting values. 



 
 

 
 

 

 

 
Table 1.  Five sample forecasts to be used in the rolled-up forecast.  The values are 

interpreted as follows.  For F1, the forecaster is 90% confident that the actual sales will 

fall between $85M and $125M, and believes the most likely actual sales will be $100M. 

These data are based on the premise that forecasts do have a range of possible values, and the 

managers providing the forecasts can provide at least some estimate of a confidence interval.  Using the 

data in Table 1, we first solve for the unknown limit values, assuming the probability distributions of the 

input forecasts are represented by triangular distributions, as explained earlier.   

 
Table 2.  Solutions for the triangular distributions for five different input forecasts. 

Interpretation of the results in Table 2 using the F3 data is that the input was a range of $135M to 

$210M at 75% confidence level, with a most likely value of $180M.  Solving for the triangular 

distribution for F3 gives the worst case of $90M and best case of $240M.  We can now use the defined 

triangular distributions together in a Monte Carlo simulation to estimate the probability distribution of 

the rolled-up forecast. 

When the intervals are not symmetric the results can diverge from intuition quite dramatically.  In 

addition, if the five inputs are independent of one another, the resulting probability distribution can be 

significantly different than many managers’ expectations.  Figure 2 shows the results of a Monte Carlo 

simulation of the five test cases, where the distribution was generated from 40,0004 trials run in 

Microsoft Excel™ 2010. 

                                                           
4
 In a Monte Carlo simulation, the input distributions are randomly sampled to obtain particular values of the 

actual sales for each trial, which are summed to obtain the total sales for that trial.  This process is repeated 
thousands of times and the resulting values are plotted in a histogram to represent the estimated distribution of 
actual sales.  In this case, a random number between 0 and 1 is generated and used as the cumulative probability 
for that trial; that is, the point along the distribution where the area under the curve equals the random value.  
Using the known distributions, the value of actual sales corresponding to the given cumulative probability can be 
determined for each distribution.  These values are then summed. 



 
 

 
 

 

 

 

Figure 2.  Monte Carlo Simulation results using the five test cases.  The test distributions 

are shown in the inset.  The red curve represents the implicit assumption about the 

outcome by management (see text).  The blue curve is the distribution from the Monte 

Carlo simulation; the dark shaded area is the area to the left of the most likely value.  

Results generated using the equal heights assumption. 

In Figure 2 the red curve is a normal distribution with mean equal to the sum of the expected values and 

standard deviation estimated from taking the estimated range of outcomes as ± 15% and   = range/4.  

In other words, if a range of outcomes were considered, many managers would envision the distribution 

to be a symmetric normal distribution.  In Figure 2, we assume that a manager might arbitrarily estimate 

that “worst case” is ± 15%, and used that to estimate the standard deviation and plot the resulting 

distribution.  Thus, the red curve in Figure 2 represents what many managers would implicitly assume 

given five expected values and not considering probability distributions, if they considered a range of 

outcomes at all.   

The striking features of figure 2 are that while the most likely value of the simulated distribution is close 

to the sum of the five input values5, the distribution differs from a normal distribution, and the 

distribution has a wider range of outcomes than many managers would expect.  The likelihood of 

coming in below budget is about 40%, considerably more than the 15% that might be assumed in our 

example.  On the other hand, the upper limit to the possible values is much higher than might otherwise 

be assumed, and there is more chance of upside than downside. 

By examining the shapes of the input distributions and performing comparisons over time to actual 

results, it is possible to draw some conclusions about the quality of the individual forecasts.  A common 

issue in sales forecasting are managers who desire to avoid “missing their number”.  This leads to the 

                                                           
5
 Note that regardless of the distribution shapes, we can add the most likely values of each distribution together 

and this sum is the most likely value of the distribution of all sales.  In practice, in a Monte Carlo simulation the 
simulated value and the actual value might deviate slightly due to imperfect randomness of the sampling, or poor 
choice of the “bin” values of the resulting histogram.  In the example in this paper, we constructed the histogram 
bins to be symmetric about the most likely value, to avoid an artifact created by forcing the largest bin to be below 
or above the most likely value. 



 
 

 
 

 

 

phenomenon known as “sandbagging”, wherein the sales managers deliberately understate the most 

likely value.  On the other hand, they may be similarly tempted to provide an excessively wide range of 

values as their confidence interval.  If you ask a sales manager for a range of actual sales they have 90% 

confidence in, and you then ask them “what is the chance sales will come in below your low figure”, and 

their answer is “there is no chance my sales will be below the low figure”, then they are not providing an 

accurate range.  Over time, enough empirical evidence may be accumulated to allow adjustments to 

input forecasts based on past forecasts vs. actual sales. 

From a risk perspective, the example given here indicates a larger upside and the resulting distribution is 

skewed above the most likely value.  An interesting situation to consider is if the values towards the 

higher end of the distribution might represent more sales than available capacity to deliver product, 

thus exposing the business to another risk.  Perhaps capitalizing on the upside requires new capital to be 

obtained and installed, and there is a lead time for both review and approval, and purchase, delivery, 

and installation.  The firm, looking at such a distribution, may choose to initiate a capital approval 

process earlier than normal to avoid missing out on upside sales. 

Further, it should be stressed that in this example, there is a 40% chance of the actual sales coming in at 

some figure below the most likely value.  Since the most likely value is probably used as the sales target, 

and may be communicated to other stakeholders, it would be sensible to state the target as a range 

with some confidence and a most likely value, or at least to state the chance of missing the value low. 

In conclusion, we have illustrated why forecast inputs are better represented as distributions than point 

values.  We have developed the process to easily represent these inputs as triangular distributions, 

making them available to a Monte Carlo simulation of the total forecast.  Using the Monte Carlo 

approach, we have illustrated how to quantify risk of the actual sales coming in either below or above 

the forecast most likely value.  This knowledge can be used to improve management processes in 

several ways, including a better understanding of downside risk and how that should be communicated 

to stakeholders. 
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