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The Spatial Proximity of Metropolitan Area 
 

Housing Submarkets 
 
 

 Abstract 
 

An important question related to housing submarket construction is whether 

geographic areas must be spatially adjacent in order to be considered the same 

submarket.  Housing consumers do not necessarily limit their search to spatially 

concentrated areas and may search similarly priced neighborhoods located 

throughout a metropolitan area when making housing consumption decisions. 

This paper examines two alternative procedures for delineating submarkets: one 

that combines adjacent census block groups into areas with enough transactions to 

estimate the parameters of a hedonic house price equation; and a second that 

permits spatial discontinuities in submarkets.  The criterion used to evaluate the 

alternative techniques is the accuracy of hedonic house price predictions.   

 

The empirical research is conducted using data obtained from the Dallas Central 

Appraisal District (DCAD).  The DCAD provided information for every parcel of 

real property in Dallas County.  As of January 1, 2003, there were approximately 

500,000 single-family homes in the DCAD area and 44,000 transactions in the 

2000:4-2002:4 period.  We find that both submarket constructs significantly 

increase hedonic prediction accuracy over a standard pooled model, but that 

neither construct statistically dominates the other. 

 

These results have important implications for empirically modeling submarkets 

within metropolitan area housing markets.  Creating housing submarkets by 

combining spatially adjacent census block groups that lie within the same 

municipality and same independent school district is time consuming and costly.  

These results suggest that comparable increases in hedonic prediction accuracy 

can be achieved by delineating submarkets by dwelling size and median census 

block group per square foot transaction price. 
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Introduction 
 

Understanding how metropolitan areas are partitioned into housing submarkets is important for 

several reasons.  First, assigning properties to housing submarkets will likely increase the 

prediction accuracy of the statistical models that are used to estimate house prices.  Second, 

identifying housing submarket boundaries within metropolitan areas will enable researchers to 

better model spatial and temporal variation in those prices.  Third, an accurate assignment of 

properties to submarkets will improve lenders’ and investors’ abilities to price the risk associated 

with financing homeownership.  Finally, providing submarket boundary information to housing 

consumers will reduce their search costs.   

 

Analysts have examined numerous techniques for constructing housing submarkets.  Some have 

used principal component analysis and statistical clustering techniques to group small geographic 

areas (e.g. census block groups, census tracts, zip code districts, or local government areas) into 

housing submarkets while others have developed procedures that explicitly model submarket 

boundaries.  Goodman and Thibodeau (1998, 2003), for example, identify housing submarket 

boundaries using hierarchical models.  Their implementation of the Bryk and Raudenbush (1992) 

technique assigns elementary school zones to housing submarkets depending on whether 

neighborhood public school quality is capitalized into neighborhood house prices. 

 

Some submarket construction techniques focus on the supply side determinants of house prices 

and construct submarkets using characteristics of the housing stock (e.g. dwelling type, square 

feet of living area, dwelling age) and/or characteristics of the neighborhood (e.g. the quality of 

neighborhood schools, the quality of local police).  Other submarket construction techniques 

focus on demand side determinants of house prices and form housing submarkets based on 

household incomes or other socioeconomic/demographic characteristics.   

  

An important question related to housing submarket construction is whether geographic areas 

need be spatially adjacent to be considered the same submarket.  Housing consumers do not 

necessarily limit their search to spatially concentrated areas when searching for housing.  

Fundamentally, most housing consumers are constrained by their incomes and may search 
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similarly priced neighborhoods located throughout a metropolitan area when making housing 

consumption decisions.  

 

This paper empirically examines two alternative procedures for assigning single-family 

properties to submarkets. One combines spatially adjacent census block groups (located within 

the same municipality and same independent school district) into 372 areas with enough 

transactions to estimate the parameters of a hedonic house price equation. A second procedure 

permits spatial discontinuities by assigning properties to 325 submarkets based on dwelling size 

and on the average per square foot transaction price for the neighborhood. The empirical analysis 

is conducted using about 44,000 single-family transactions in the Dallas housing market over the 

2000:4-2002:4 period.  The criterion used to evaluate the alternative submarket constructions is 

the accuracy of hedonic house price predictions, over a 10% hold-out prediction sample.   The 

alternative measures of hedonic house price prediction accuracy reported here are:  (1) the 

average prediction error; (2) the mean absolute error; (3) the mean proportional error; (4) the 

mean squared error; and (5) the percent of the time that a predicted price is within ten (or fifteen 

or twenty) percent of an observed transaction price. 

 

Literature Review 

 

A housing (sub-) market is a geographic area where the price of housing (per unit of housing 

services) is constant.   Identifying geographic areas with constant per unit housing prices is 

challenging because housing is a heterogeneous good, and the market value of a house (as 

estimated by its transaction price) is a function of the property’s site, structural, neighborhood 

and location characteristics.  Hedonic and other semi-parametric and non-parametric house price 

modeling techniques have been used to examine the influence that site and structural 

characteristics have on house price.  Incorporating the influence that neighborhood and location 

characteristics have on house prices is more challenging.   

 

Analysts have employed a variety of statistical techniques to measure and control for the 

influence that location has on house price.  Kain and Quigley (1970) reduced services provided 

by 39 individual location characteristics to five factors using factor analysis. The indices include 
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the quality of adjacent parcels, the percent of the neighborhood dedicated to commercial uses, 

the amount of local commercial traffic, and numerous other potential externalities. Li and Brown 

(1980) separated the positive influence that accessibility has on residential real estate values 

from the negative effect that proximity to non-residential use has on residential property values. 

Proximity variables from Li and Brown include a corner grocery store, a neighborhood park, a 

school, a river, an ocean, conservation land, expressway interchange, or major thruway. Dubin 

and Sung (1990) group neighborhood characteristics into three broad categories: socioeconomic 

status of neighborhood residents (e.g. household income, education, occupation); quality of 

municipal services (e.g. education, public safety); and racial composition. They conclude that 

socioeconomic status and racial composition are more important than the quality of public 

services in determining house prices.   

 

One way to control for the influences of neighborhood and location attributes on house prices is 

to group geographic areas with similar neighborhood and location characteristics into a 

“submarket”.  House price model parameters can then be estimated for all properties within these 

submarkets without having to measure explicitly the influence that the location attributes have on 

house prices.  Eliminating (or significantly reducing) the influence that neighborhood and 

location attributes have on house prices enables analysts to focus on the site and structural 

determinants of house prices.  In addition, analysts can examine the influence that location and 

neighborhood attributes have on house prices by modeling across submarket variation in house 

prices.  The empirical challenge is to develop procedures that identify geographic areas sharing 

homogeneous location and neighborhood attributes. 

 

Some of the neighborhood and location attributes that influence house prices may be nested.  The 

quality of a neighborhood school, for example, is dependent upon, or nested within, the quality 

of the regional school district. Consequently, the value of a single-family detached house may 

depend on factors that are nested within a neighborhood, within a school district, and within a 

metropolitan area. Other attributes, such as ethnic areas, religious parishes, or housing types, may 

cross school or municipal boundaries, and will not necessarily be nested hierarchically or at all. 

 

Goodman (1978) provides empirical support for geographically segmented housing markets.  He 
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compared the hedonic coefficients for structural and neighborhood characteristics for five areas 

in metropolitan New Haven over a three-year period.  He reported that hedonic coefficients for 

neighborhood characteristics were not constant over space and concluded that metropolitan 

markets were geographically segmented.  Goodman and Dubin (1990) suggest both nested and 

non-nested tests for the optimal number and configuration of submarkets.  

 

Dale-Johnson (1982) assigned properties to submarkets using factor analysis to reduce the 

influence that 13 neighborhood and location variables have on house prices.  Maclennan and Tu 

(1996) used principal components to identify the most important neighborhood and location 

attributes and then defined submarkets using cluster analysis on the resulting factors.    

 

Goodman and Thibodeau (1998) define economically meaningful submarket boundaries as 

geographic areas where:  (1) the price of housing (per unit of service) is constant; and (2) 

individual housing characteristics are available for purchase.  They examined housing market 

segmentation within metropolitan Dallas using hierarchical models (Bryk and Raudenbush, 

1992) and single-family property transactions over the 1995:1 through 1997:1 period.  They 

supplemented transaction data with information on elementary school student performance for 

public elementary schools and demonstrated the technique using data for the Carrollton-Farmers 

Branch Independent School District (CFBISD).  Their results suggest that the metropolitan 

Dallas housing market is segmented by the quality of public education (as measured by student 

performance on standardized tests).    

 

Goodman and Thibodeau (2003) subsequently applied the technique to all single-family 

properties in the Dallas County area and compared hierarchical model submarkets to two 

alternative housing submarket constructions:  one that combined adjacent census tracts and a 

second that aggregated zip code districts. Using data for 28,000 single-family transactions for the 

1995:1 through 1997:1 period, they examined hedonic house price prediction accuracy for the 

alternative housing submarket constructions.  Their empirical results indicate spatial 

disaggregation yields significant gains in hedonic prediction accuracy.  Orford (2000, 2002) also 

takes a multilevel approach to modeling the housing market in England. 
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Bourassa, Hamelink, Hoesli and MacGregor (1999) segment the Sydney and Melbourne, 

Australia housing markets by applying principal components and cluster analysis to a variety of 

neighborhood attributes.  They report that three factors derived from twelve proximity and 

neighborhood attributes explain over 82 percent of the variance in house prices.  They define 

housing submarkets by applying cluster analysis to these factors.   

 

Bourassa, Hoesli and Peng (2003) and Thibodeau (2003) examine the effect that spatial 

disaggregation (e.g. employing submarkets) has on hedonic prediction accuracy.  Bourassa, 

Hoesli and Peng (2003) examine two submarket constructions: (1) geographically concentrated 

“sales areas” used by local real estate appraisers in New Zealand; and (2) an aspatial submarket 

construction obtained by applying cluster analysis to the most influential factors generated from 

property, neighborhood and location attributes.  They compared the hedonic house price 

predictions generated from these alternatives to a single equation for the entire city model.  They 

concluded that while the statistically generated submarkets significantly increased hedonic house 

price prediction accuracy relative to the single equation model, the statistically generated 

submarkets did not outperform the “sales area” submarkets.  Thibodeau (2003) constructed 

submarkets within Dallas County by combining adjacent census block groups located within the 

same municipality and the same independent school district.  He compared the hedonic 

predictions from this model to a single Dallas County model and to a model that included 

dummy variables for municipality.  He also reported significant increases in prediction accuracy 

associated with spatial disaggregation. 

 

Watkins (2001) provides a detailed review of the alternative approaches that housing economists 

have employed for characterizing housing submarkets.  Using transaction data for the Glasgow 

housing market, he examined three alternative approaches for delineating housing submarkets: 

(1) spatially stratified housing submarkets; (2) submarkets based on the similarity of structural 

characteristics; and (3) a hybrid definition that nests dwelling characteristics based submarkets 

within spatially defined submarkets.  He concluded that the nested model provided the best 

empirical approach for delineating submarkets.  
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Some analysts have delineated within metropolitan area housing submarkets based on 

determinants of housing demand, while others have delineated submarkets based on supply-side 

variables.  This paper proposes a method that delineates housing submarkets based on price. 

 

Theory 

 

From the earliest literature that explicitly recognized separate housing submarkets (Straszheim 

1974, 1975), analysts have concentrated on the role of housing supply in the grouping of nearby 

units into submarkets.  With the premise that similar units should be grouped together, it has 

been easiest to group nearby units, generally (although not always) within the same municipality.  

One can appeal to the premise that nearby units share similar neighborhood characteristics, either 

measured or unmeasured, and indeed the sale of nearby units may impact the sale price of units 

to be sold (labeled comparable properties by real estate appraisers).  One can also look to the 

grouping of nearby units as a way of making an enormous problem slightly less enormous.  

Following Cliff et al (1975) and Goodman (1981), the number of different ways that m dwelling 

units can be grouped into k submarkets is:  
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in which fi is the number of units in the ith submarket, gj is the number of submarkets which 

comprise j units in the analysis, and A a=∑ , where the summation is over all k-element 

partitions of m.  A very restrictive continuity constraint that “lines up” the dwelling units with 

their nearest neighbors and allows only linear grouping, reduces the number of ways that m units 

can be grouped to:   
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still a very large number. 
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All of the assumptions above, however, ignore the demand side of housing markets.  Consider 

the traditional central place model, where consumers work downtown and live away from their 

jobs.1  As noted in Figure 1, most models would locate consumers at locations relative to the 

Central Business District (CBD), where the locations are defined by income.  If the income 

elasticity of land demand exceeds (is less than) the income elasticity of travel costs, higher 

income individuals will locate further from (closer to) the CBD. 
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1 The central place model is provided for simplicity of exposition only.  The same arguments will apply just as 
validly for areas with multiple workplace centers. 
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Consider dwelling unit X in Figure 1, at an arbitrary distance from the CBD.  The researcher 

seeking to assign property X to a submarket might group X with dwelling Y, because dwelling Y 

is spatially “close.”  However, if lot sizes, house sizes, and municipal goods (even within the 

same municipality) are stratified by income, it could very well be that X is more appropriately 

grouped with unit Z in Sub 1´, which is the same distance from the CBD, but in the diametrically 

opposite direction, than with Y in Sub 1 which is only close physically.2 

 

What determines whether X should be grouped with Y or with Z?  If a housing submarket is an 

area where the (per unit) price of housing is constant, then the house price should determine 

whether X is grouped with Y or with Z.  If X is “priced” like Z, then X belongs in the same 

submarket as Z, even though Z is not “close” spatially. 

 

Hedonic Estimation 

 

This section describes the underlying hedonic regressions used to compare price delineated 

housing submarkets to spatially concentrated submarkets, using transaction data for Dallas, 

Texas.  The spatially concentrated submarkets were constructed by combining adjacent census 

block groups located within the same municipality and the same independent school district.  

This grouping controls for two important neighborhood determinants of house price: public 

school quality and public safety.  Goodman and Thibodeau (1998, 2003) have established that 

variation in school quality is capitalized in Dallas house prices.  There is also substantial 

variation in the quality of municipal services.  There are 25 separate municipalities within the 

Dallas Central Appraisal District (DCAD) area.  Average police response times, for example, in 

Dallas County range from 25 minutes for the City of Dallas police to 2 minutes for police in 

Highland Park.   

 

The main purpose of the paper is to empirically evaluate two alternative procedures for defining 

within-metropolitan area housing submarkets: the first alternative constructs housing submarkets 

by combining spatially adjacent census block groups within the same municipality and the same 

independent school district; the second alternative assigns properties to submarket based upon 
                                                
2  This point was first brought to Goodman’s attention by Guy Orcutt, and later expounded by Stephen Mayo. 
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the temporally adjusted per square foot transaction price regardless of location.  Fundamentally, 

the question is how well (sometimes unmeasured) spatial attributes get capitalized in the 

estimated coefficients for included structural characteristics.  Naturally, the implementation of 

our test requires making empirical decisions that are subject to criticism.  Alternative procedures 

for delineating spatial and aspatial submarkets should be considered. 

 

We conduct our empirical investigation with just over 44,000 transactions.  Forty-four thousand 

sales allow us to construct a significant number of spatially concentrated submarkets. 

Geographically small submarkets provide better control for (typically unmeasured) spatial 

attributes (including proximity externalities) compared to geographically large submarkets.  

Consequently, we construct as many submarkets as we think plausible given 44,000 transactions, 

and a hedonic specification (provided below) that estimates 25 unknown parameters.   

   

The spatial submarkets were constructed by combining adjacent census block groups located in 

the same municipality and the same independent school district.  Adjacent census block groups 

were combined until the submarket had about 120 transactions (using an econometric guideline 

suggesting 5 observations per estimated parameter to ensure parameter stability) available to 

estimate the parameters of the hedonic house price model.  This procedure yielded 372 spatial 

submarkets. 

 

The alternative housing submarket construction invokes demand criteria by assigning properties 

to submarkets based upon both dwelling size and on the average per square foot transaction price 

for the census block group.  These submarkets were constructed in two steps.   First, the 

distribution of census block group median per square foot transaction prices was divided into 100 

segments.  The census block groups (CBGs) with the lowest median per square foot transaction 

prices were assigned to the first percentile; the CBGs with the next to the lowest per square foot 

transaction prices assigned to the second percentile, etcetera. Second, properties within each per 

square foot price percentile were assigned to submarkets according to dwelling size (as measured 

by square feet of living area).  Consequently the smaller properties in each collection of census 

block groups were separated from the larger properties holding CBG median per square foot 

transaction price roughly constant.  This procedure yielded 325 housing submarkets.  This 
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assignment completely ignores the spatial location of the property and could combine properties 

from different independent school districts and different municipalities.  However, it is unlikely 

that a neighborhood with below average public schools would be combined with an area with 

superior public schools since school quality is capitalized in house price.  Nevertheless, this 

assignment process is completely aspatial. 

 

The empirical challenge in implementing this procedure using transactions that took place over a 

two year period is that Dallas house prices were not constant (in either nominal or real terms) 

over the 2000:4-2002:4 period.  Furthermore, rates of house price appreciation varied spatially.  

Prior to constructing submarkets, the transactions were “marked to market” using a price index 

computed from hedonic house price equations.  Separate hedonic equations were estimated for 

each municipality.  In addition, for the large municipalities, separate house price indexes were 

estimated for low, median, and high priced housing.   

 

The hedonic specification for marking property values to market and for evaluating the 

alternative submarket constructs includes numerous structural characteristics: 

ln(PRICEi,t) =β 0 + β1*ln(AREA) + β2*ln(SERVQ) + β3*AGE +  

   β4*AGESQ + β5*AGECUBE + β6*BATHS  +   

   β7*GHSYS + β8*OHSYS + β9*NACSYS + β10*WACSYS +   

   β11*WETBAR + β12*FIREPL0 + β13*POOL + 

   β14*DTGAR + β15*CARPORT + β16*NOGAR + 

 
 
 

                                                              (3) 
 
where   
 
PRICEi,t = the transaction price of the ith house sold in quarter t,     
 
AREA  = square feet of living area, 
 

 ∑
=

T

t 1
ti,tt  , + SOLD* µδ                                                                        
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LNAREA = ln(AREA), 
 
SERVQ = square feet of servant's quarters, 
 
LNSERVQ = log (SERVQ) (ln (SERVQ)) = 0 if there are no servant’s quarters), 
 
DWELAGE = dwelling age, 
 
AGE = dwelling age in decades, 
 
AGESQ = AGE squared, 
 
AGECUBE = AGE cubed, 
 
BATHS = the number of bathrooms (two one-half bathrooms are counted as one full bath), 
 
CHSYS = central heating system (the omitted heating system category), 
 
GHSYS = dummy variable for (non-central) gas heating system, 
 

OHSYS = dummy variable for other heating system--other heating systems include floor 
furnaces, wall heating systems, radiator heating systems, and no heating 
systems, 

 
NACSYS = dummy variable for no air conditioning system, 
 
WACSYS = dummy variable for window air conditioning system, 

CACSYS = dummy variable for central air conditioning system (the omitted air 
conditioning category), 

 
WETBAR = dummy variable for the presence of a wetbar, 
 
FIREPL = dummy variable for the presence of at least one fireplace, 
 
POOL = dummy variable equal to 1 if swimming pool present  
   and zero otherwise, 
      
ATGAR = dummy variable equal to 1 if the property has an attached garage and zero 

otherwise (the omitted category), 
 
DTGAR = dummy variable equal to 1 if the property has a detached garage and zero 

otherwise, 
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CARPORT = dummy variable equal to 1 if the property has either an attached or a detached 
carport and zero otherwise, 

 
NOGAR = a dummy variable equal to one if the property has no covered  
   parking facility,  
 
SOLDt = dummy variables for sale quarter, t = 2000:4 to 2002:3; the omitted sale quarter 

is 2002:4 
 
 
Following Halvorsen and Palmquist (1980), the price index used to temporally adjust house 

prices to 2002:4 is eδ. 

 

Evaluating Alternative Submarket Definitions 

 

To facilitate comparison of the alternative submarket delineation procedures, the sample of 

transactions was separated into an estimation subsample and a prediction subsample.  The 

transactions in the estimation subsample are used to estimate parameters for the hedonic models 

defined by the alternative submarket delineations.  The transactions in the prediction sample are 

excluded from the estimation sample and are used to evaluate prediction accuracy for the 

alternative submarket constructions.  The same estimation and prediction subsamples are used 

for each alternative.  Consequently, any variation in prediction accuracy cannot be attributed to 

differences in the underlying sample (although these particular results may be an artifact of the 

particular sample drawn).  The estimation sample is a 90% random sample of all transactions.  

This sample was selected using a uniform random variable.  The remaining observations are held 

out to form the prediction sample.   

 

The alternative housing submarket definitions are evaluated using numerous statistical criteria: 

the mean absolute value of the prediction error, the mean percentage error, the mean squared 

error, and the percent of the time that a predicted price is within 10%, 15% and 20% of the 

observed price.  The prediction accuracy threshold employed by the automated valuation model 

(AVM) industry is that at least 50 percent of the predicted house prices must be within ten 

percent of observed transaction prices.   
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We also evaluate the alternative definitions of housing submarkets using a non-nested J-test.  

Following Davidson and MacKinnon (1981), Goodman and Dubin (1990) employ the non-nested 

J-test to examine alternative definitions of submarkets.  The non-nested J-test compares one 

specification (a particular set of regressors, functional form, or submarket definition) against an 

alternative when the alternative cannot be expressed as a restriction on the null hypothesis.  In 

our case, the null hypothesis is that the spatially proximate submarket definition is the 

appropriate way to delineate submarkets and the alternative is that housing submarkets are more 

appropriately defined by dwelling size and census block group average per square foot prices.  

The two submarket formulations may be considered as the spatially proximate submarket 

formulation: 

 

H0: y = Xβ  + ε0,  (4) 

 

and the per square foot formulation: 

 

H1: y = Zγ  + ε1,  (5) 

 

H1 cannot be written as a restriction on H0, so conventionally nested F-tests of covariance are not 

appropriate.   

 

One possibility for testing the restrictions involves an artificial nesting of the two models. 

Following Davidson and MacKinnon (1981) and Greene (2003), define Z1 as the set of Z that are 

not in X, and X1 likewise with respect to Z.  A standard F-test can be carried out to test the 

hypothesis that in the augmented regression: 

 

y = Xβ  + Z1γ1 + µ1,  (6) 

 

the vector γ1 = 0, with the test then reversed (with Z as the null hypothesis).  Greene notes that 

this compound model may have an “extremely large” number of regressors (in this problem the 

number of elements of Z1 will always equal the number of elements of X unless specific 

submarkets are identical).  This is potentially troublesome if one is comparing more than two 
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alternative well-specified hedonic formulations, with large numbers of regressors. 

 

The Davidson and MacKinnon J-test allows the researcher to test H0 against the alternative H1 

with the single parameter α: 

                                  ^ 
y = (1 – α) Xβ  + α (Zγ) + µ ,    (7) 
 
 
and reversing the test with: 
 
                                   ^ 
y = (1 – αʹ′) Zγ  + αʹ′ (Xβ) + µ ʹ′ , (8) 
 
 
where: y is the (log of) the actual transaction price, 

 Xβ  is the spatially proximate submarket model, 

 Zγ   is the price per square foot model, and '^' denotes predicted value. 

The test is H0: α  = 0 vs. H1: α  ≠ 0. If the t-statistic is significant we reject H0, which assumes 

that the alternative housing market constructions do not provide additional information. We 

compute similar test statistics with the per square foot submarket model as the null and with the 

spatially proximate submarket model as the alternative.  For the spatially proximate submarket 

model to dominate, we must fail to reject the spatially proximate submarket null (i.e. the first J 

test must be insignificant), but we must reject similar hypotheses with the per square foot model 

as the null (the J tests must be significant).   

To implement the J-test, we construct a block-diagonal design matrix.  The block matrices, XJ, 

contain the regressors for submarket J.  The design matrix includes the predicted house prices 

under the alternative submarket hypothesis, H1, and β1, …, βN represent N vectors of hedonic 

coefficients (one vector of coefficients for each submarket).  α is the scalar J test statistic with its 

accompanying confidence interval: 
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The parameters are estimated twice: one under the null that spatially segmented markets is the 

appropriate submarket construct and a second time under the null that per square foot segmented 

markets is the appropriate submarket construct. 

 

The J-test also provides an indirect demonstration of the benefits of combining estimators (Fair 

and Shiller, 1989, 1990).  A hybrid predictor can be computed as a linear combination of the two 

alternatives:  

                    ^              ^ 
y = (1 – α) Xβ + α (Zγ) + µ,     (10) 
 
 
The hybrid predictor will have a lower mean squared error when α is statistically significant.  

 

The Data 

The study data were obtained from the Dallas Central Appraisal District (DCAD).  The DCAD 

assesses property value for tax purposes for all real property in Dallas County and in portions of 

adjacent counties.  The characteristics of the 2002 DCAD single-family housing stock are 

summarized in Table 1.  There were 502,541 single-family properties in the DCAD jurisdiction 

in 2002.  The average single-family home had 1,778 square feet of living area and was 33.6 years 

old.  Most properties have central heating and central air-conditioning systems.  Just over ten 

percent of single-family homes in Dallas have swimming pools. 

 

There were just over 44,000 sales of single-family properties between the fourth quarter of 2000 

and the end of 2002.  The mean (temporally unadjusted) transaction price was about $164,700.  
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The homes that sold were typically younger and larger than properties in the DCAD housing 

stock (Table 2).   

 

Map 1 illustrates the locations of the municipalities within Dallas County and Table 3 provides 

information on the spatial distribution of single-family homes.  The first four columns of Table 3 

provide the number of properties in the metropolitan area, the percent of the Dallas County 

stock, the mean dwelling size and mean dwelling age for single-family homes for each 

municipality.  The last six columns provide information on the single-family transactions for 

each municipality: the number and percent of sales, the means for square feet of living area and 

dwelling age, and the mean nominal (temporally unadjusted) transaction prices.  Nearly 43% of 

the single-family housing stock and 35% of the sales are located in the City of Dallas.  The 

oldest, largest, and most expensive homes are located in Highland Park.  The youngest homes are 

in Coppell, a relatively new municipality located in the northwest corner of Dallas County.  The 

least expensive homes are located in the southeast corner of the County (Wilmer and Hutchins).  

The properties that sold tend to be larger and younger than the average existing home in Dallas.  

 

Census block groups were assigned to submarkets using contemporaneous (e.g. temporally 

adjusted) prices.  Temporal adjustments were computed using estimated coefficients from 

municipality specific hedonic equations.  Time adjustment factors were computed separately for 

low-priced, moderately-priced, and high-priced housing for the 15 largest municipalities.  For the 

smaller municipalities, all properties within the city were marked to market using a city-wide 

average temporal price index. The average time adjusted price is about $169,000.  The temporal 

adjustment indices derived from these equations are presented in Table 4.  The index number for 

all places in 2002:4 is 1.0000.  To estimate the 2002:4 market value for an Addison property that 

sold in 2000:4, for example, the observed transaction price was increased by 4.99%.    

 

There is substantial variation in rates of house price appreciation: both across metropolitan areas 

and within a metropolitan area's distribution of house prices.  In the portion of Carrollton located 

in Colin County, low-priced homes appreciated over 28% over the 2000:4-2002:4 period while 

the most expensive homes in the same area decreased in value over the same period.  In the City 

of Dallas, low-priced homes appreciated 3.3% over the 2000:4-2002:4 period while the most 
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expensive homes appreciated at nearly twice that rate--6.5%.  On average, house prices in the 

DCAD area increased by about 5% over the 2000:4-2002:4 period. 

 

There are two separate issues here: (1) what determines house prices; and (2) what determines 

appreciation rates.  This paper argues that housing markets could be established based on house 

prices (not appreciation rates).  To evaluate this housing submarket construct against an 

alternative (spatial) construct, we need to control for temporal variation in house prices over our 

period of analysis.  There are two ways to do this. One is to simply include dummy date of sale 

variables in the hedonic house price equations and not worry about spatial variation in 

appreciation rates.  However, our empirical analysis of house price appreciation clearly indicates 

that appreciation rates vary substantially across metropolitan areas (and even within metropolitan 

areas by house price).  Estimating price indices using dummy variables with data from multiple 

cities (e.g. the aspatial model) would not adequately control for temporal variation in house 

prices.  An alternative assumption would be that house price appreciation rates for specific types 

of housing (for low, medium and high priced housing) are fairly constant for properties within a 

metropolitan area.    

 

The alternative submarket constructions yield very different representations of housing 

submarkets.  We computed the mean Euclidean distance between a transaction and the 

geographic center of the transaction’s assigned submarket (as measured by the mean easting and 

northing for all transactions in the submarket).    This produced 372 average distances for the 

spatial submarkets and 325 average distances for the aspatial submarkets.  Table 5 reports the 

across submarket mean distances for these within submarket average distances.  For the spatial 

submarket assignment, the mean distance between a transaction and the geographic center of the 

submarket is 0.85 kilometers (with a standard deviation of 0.88 kilometers).  For the aspatial 

submarket definition, the average distance between a transaction and its geographic center is 

10.88 kilometers (with a standard deviation of 4.82km).    

 

The spatial submarket construct assigns all properties located in the City of Farmers Branch to 

one of five spatially concentrated Farmers Branch submarkets.  The aspatial submarket construct 

assigns transactions to submarkets based on price and ignores location.  Map 1 illustrates the 
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disparate locations of properties assigned to an aspatial submarket belonging to a particular 

property in one of the Farmers Branch submarkets.  The aspatial construct assigned a subset of 

the Farmers Branch properties to six different municipalities located across northern Dallas 

County: Carrollton, Dallas, Farmers Branch, Garland, Irving and Richardson. A casual 

inspection of the map indicates that many of these properties separated by more than 30 

kilometers. 

 

There is significant variation in the distributions of transaction prices across submarket 

constructs.  Table 5 shows the standard deviation for the distribution of transaction prices within 

each submarket for both submarket constructs.  The mean standard deviation in (temporally 

adjusted) transaction prices for the spatial submarkets is $54,145 and the mean standard 

deviation for the aspatial submarkets is $36,924. 

 

Results 

 

Hedonic house price predictions were also computed using an all DCAD model to facilitate 

evaluation of the alternative submarket constructions. The estimated parameters for the all 

DCAD model (results available from the authors) explain 82% in the variation in the log of 

transaction price.  Nearly all of the estimated coefficients are statistically significant at 

conventional levels and all the estimated coefficients have the expected signs.   

 

The estimated coefficients from the hedonic equations for the three alternative housing 

submarket specifications (e.g. no submarkets, spatial submarkets, and aspatial dwelling size-per 

square foot submarkets) were used to predict 2002:4 transaction prices.  The predicted prices 

were corrected for the finite sample bias that results from using a semi-log house price 

specification (see Thibodeau, 1992). 

 

The hedonic prediction accuracy results are in Table 6.  While the all-DCAD model explains 

over 80% of the variance in the log of transaction price, in part because there is considerable 

variance to explain, this model does not predict price very accurately.  Less than 36% of the 

predicted prices are within ten percent of the observed transaction price, about half are within 
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15%.  The all-DCAD model does not come close to satisfying the automated valuation models 

(AVMs) industry standard threshold for prediction accuracy. 

 

The spatially concentrated submarkets produce a dramatic improvement in hedonic prediction 

accuracy.  The mean absolute dollar error is reduced by over $ 15,000 – from $34,276 to 18,979.  

The percent of predicted prices that are within ten percent of observed prices increases from 36% 

to 66%!  Over 86% of the predicted prices are within twenty percent of the observed price.   

 

The aspatial submarket model has a lower mean and mean squared error, but slightly fewer 

predicted prices within ten, fifteen and twenty percent of the observed prices.  The mean squared 

prediction error for the aspatial submarket model is 24.3% lower than the mean squared 

prediction error for the spatially concentrated submarket model.   

 

Table 7 contains results for the non-nested J-test.  The J-test statistics indicate that neither 

submarket construction statistically dominates the alternative.  With spatially proximate 

submarkets the null hypothesis, the estimated coefficient for predicted prices from the 

(alternative) aspatial submarket model is 0.84.  The standard error of the estimate is 0.0077.  

When the null is reversed, the estimated coefficient for predicted values for the (alternative) 

spatially proximate submarket model is 0.82 with a standard error of 0.0072.  Both nulls are 

rejected at conventional levels.  In economic terms, each alternative model provides additional 

information to the null for prediction purposes.  

 

Can prediction accuracy be increased by combining models?  We estimated the parameters of a 

hybrid model that minimizes the mean squared prediction error associated with taking a 

weighted average of the two estimators.  The OLS parameters were computed without an 

intercept and with the constraint that the weights sum to one.  The estimation results, in Table 8, 

indicate that Least Squares applies 80% weight to the aspatial submarket model and 20% to the 

spatially concentrated submarket model.  The hybrid model reduces the mean absolute error to 

$18,400 (Table 6) and the mean squared prediction error, but the spatially concentrated model 

still has the highest percent of predictions within ten percent of observed transaction prices.   
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Conclusions 

 
This research examined alternative procedures for delineating housing submarkets within 

metropolitan areas.  The results indicate that delineating housing submarkets by dwelling size 

and per square foot house price perform about as well as spatially concentrated submarkets that 

control for variation in public school quality and the provision of public safety.  In fact, the 

“winner” of the competition depends on how performance is measured.  The spatially proximate 

submarket model yields more predictions within ten percent of observed prices, but the 

predictions from this model have a significantly higher mean squared prediction error. 

 

These results have important implications for empirically modeling submarkets within 

metropolitan area housing markets.  Creating housing submarkets by combining spatially 

adjacent census block groups that lie within the same municipality and same independent school 

district is time consuming and costly.  These results suggest that comparable increases in hedonic 

prediction accuracy can be achieved by delineating submarkets by dwelling size and median 

census block group per square foot transaction price. 

____________________________________________________________________________ 

A version of this paper was presented at the January 2004 AREUEA meetings in San Diego, CA.  

We would like to acknowledge Chris Redfearn, Ed Coulson and two referees for providing 

comments on earlier drafts.



 23 

References 

 

Bourassa, S.C., F. Hamelink, M. Hoesli and B.D. MacGregor.  1999.  Defining Housing 
Submarkets. Journal of Housing Economics 8(June):160-183. 

 
Bourassa, S. C., M. Hoesli and V.S. Peng.  2003.  Do Housing Submarkets Really Matter? Journal 

of Housing Economics 12(1):12-28. 
 

Bryk, A. S. and S.W. Raudenbush.  1992.  Hierarchical Linear Models:  Applications and Data 
Analysis Methods.  Sage Publications.  Newbury Park. 

 
Cliff, A.D., P. Haggett, J.K. Ord, K.A. Bassett, and R.B. Davies. 1975. Elements of Spatial 

Structure. Cambridge: Cambridge University Press, Chapter 2. 
 
Dale-Johnson, D. 1982.  An Alternative Approach to Housing Market Segmentation Using 

Hedonic Price Data. Journal of Urban Economics 11:311-332. 
 
Davidson, R. and J.G. MacKinnon.  1981. Several Tests for Model Specification in the Presence 

of Alternative Hypotheses. Econometrica 49(3):781-793. 
 
Dubin, R.A., and C.H. Sung.  1990.  Specification of Hedonic Regressions:  Non-nested Tests on 

Measures of Neighborhood Quality.  Journal of Urban Economics 27:97-110. 
 
Fair, R.C. and R.J. Shiller.  1990. Comparing Information in Forecasts from Econometric Models. 

American Economic Review 80:375-389. 
 
_____.  1989. Informational Content of Ex Ante Forecasts. Review of Economics and Statistics 

71:325-331. 
 
Goodman, A.C. 1978.  Hedonic Prices, Price Indices, and Housing Markets. Journal of Urban 

Economics 5(4):471-484. 
 
________.  1981.  Housing Submarkets within Urban Areas: Definitions and Evidence. Journal of 

Regional Science 21:175-185. 
 
Goodman, A.C., and R.A. Dubin.  1990.  Non-Nested Tests and Sample Stratification: Theory and 

a Hedonic Example. Review of Economics and Statistics 72 (February):168-73. 
 
Goodman, A.C. and T.G. Thibodeau. 1998. Housing Market Segmentation. Journal of Housing 

Economics 7:121-143. 
  
_________.  2003.  Housing Market Segmentation and Hedonic Prediction Accuracy. Journal of 

Housing Economics 12(3):181-201. 
 



 24 

Greene, W.H.  1993.  Econometric Analysis. Second Edition.  Macmillan Publishing Company. 
 
Halvorsen, R. and R. Palmquist.  1980.  The Interpretation of Dummy Variables in 

Semilogarithmic Equations. American Economic Review 70(3): 474-475. 
 
Kain, J., and J.Quigley.  1970.  Measuring the Value of Housing Quality. Journal of the American 

Statistical Association 65(330):532-48. 
 

Li, M. and H.J. Brown. 1980. Micro-Neighborhood Externalities and Hedonic Housing 
Prices. Land Economics 56(2):125-141. 

 
Maclennan, D. and Y. Tu.  1996.  Economic Perspectives on the Structure of Local Housing 

Systems. Housing Studies 11:387-406. 
 

Orford, S.  2000.  Modelling Spatial Structures in Local Housing Market Dynamics: A Multilevel 
Perspective. Urban Studies 37 (9):1643-1671. 

 
_______.  2002.  Valuing Locational Externalities: a GIS and Multilevel Modeling Approach. 

Environment and Planning B- Planning & Design  29 (1):105-127. 
 
Straszheim, M.R.  1974. Hedonic Estimation of Housing Market Prices: A Further Comment. The 

Review of Economics and Statistics 56 (3):404-406. 
 
________.  1975.  An Econometric Analysis of the Urban Housing Market. New York: National 

Bureau of Economic Research. 
 
Thibodeau, T.G.  2003.  Marking Single-Family Property Values to Market. Real Estate 

Economics 31(1):1-22.  
 
________.  1992. Residential Real Estate Prices: 1974-1983.  Blackstone Books: Studies in Urban 

and Resource Economics. 
 

Watkins, C.A.  2001.  The definition and identification of housing submarkets. Environment and 
Planning A 33 (12) (December): 2235-2253. 

 
 
 



 25 

Table 1 
 
            Characteristics of the 2002 DCAD Single-Family Housing Stock 
 
 
 Variable         N           Mean        Std Dev      Minimum       Maximum 
 
 area         502,541       1778.20        847.56       500.00      10000.00 
 
 dwelage      502,541         33.61         18.80            0         75.00 
  
 BATHS        502,541          1.97          0.79            0          7.00 
  
 CHSYS        502,541          0.84          0.37            0          1.00 
 
 GHSYS        502,541          0.14          0.34            0          1.00 
 
 OHSYS        502,541          0.02          0.15            0          1.00 
 
 CACSYS       502,541          0.81          0.39            0          1.00 
 
 WACSYS       502,541          0.16          0.37            0          1.00 
 
 NACSYS       502,541          0.03          0.16            0          1.00 
 
 WETBAR       502,541          0.09          0.28            0          1.00 
 
 FIREPL       502,541          0.68          0.59            0          4.00 
 
 POOL         502,541          0.11          0.31            0          1.00 
 
 ATGAR        502,541          0.70          0.46            0          1.00 
 
 DTGAR        502,541          0.12          0.32            0          1.00 
 
 CARPORT      502,541          0.04          0.20            0          1.00 
 
 NOGAR        502,541          0.14          0.35            0          1.00 
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                                Table 2 
 
    Descriptive Statistics for 2000:4-2002:4 Single-Family Transactions 
 
 Variable      N           Mean      Std Dev      Minimum         Maximum 

 price       44,001    164695.67    131600.10     14000.00     2400000.00 

 tadjprice   44,001    169057.73    135450.49     15288.48     2591550.50 

 area        44,001      1896.50       762.92       518.00        7716.00 

 adjpsf      44,001        85.09        34.10        21.28         696.67 

 dwelage     44,001        27.70        18.33            0          75.00 

 BATHS       44,001         2.12         0.68            0           5.50 

 CHSYS       44,001         0.94         0.23            0           1.00 

 GHSYS       44,001         0.05         0.21            0           1.00 

 OHSYS       44,001         0.01         0.11            0           1.00 

 CACSYS      44,001         0.93         0.25            0           1.00 

 WACSYS      44,001         0.06         0.24            0           1.00 

 NACSYS      44,001         0.01         0.08            0           1.00 

 WETBAR      44,001         0.11         0.32            0           1.00 

 FIREPL      44,001         0.81         0.52            0           3.00 

 POOL        44,001         0.13         0.33            0           1.00 

 ATGAR       44,001         0.80         0.40            0           1.00 

 DTGAR       44,001         0.10         0.29            0           1.00 

 CARPORT     44,001         0.03         0.17            0           1.00 

 NOGAR       44,001         0.08         0.27            0           1.00 

 SQM01       44,001         0.12         0.32            0           1.00 

 SQM02       44,001         0.13         0.33            0           1.00 

 SQM03       44,001         0.10         0.31            0           1.00 

 SQM04       44,001         0.11         0.31            0           1.00 

 SQM05       44,001         0.14         0.34            0           1.00 

 SQM06       44,001         0.14         0.35            0           1.00 

 SQM07       44,001         0.10         0.30            0           1.00 

 SQM08       44,001         0.10         0.30            0           1.00 

 

Note: tadjprice is the temporally adjusted price; adjpsf is the per square foot 

temporally adjusted price; and SQM01-SQM08 are dummy variables for sale 

quarter with SQM01 corresponding to 2000:4.


