Insights into Material Composition of Tread, Sidewall and Innerliner through a Global Tire Survey
Tire & Specialty Rubber (TSR) Business Unit

S. Teertstra, Clemson University Global Tire Industry Conference Hilton Head, SC., April 14, 2016
ARLANXEO – a joint venture with two strong partners

Combination of two powerful partners

- World’s largest integrated energy enterprise
- Backward integration into feedstock for synthetic rubber
- Strategic commitment to further develop value chain downstream
- Leading market and technology positions in synthetic rubber
- Well invested asset base
- Broadest product portfolio in the rubber industry with leading brands and quality

#1 in feedstock

#1 in synthetic rubber
Tire & Specialty Rubber BU – World’s leading manufacturer of Performance Elastomers

Facts
- Part of: ARLANXEO
- Customers: > 250
- Market position: ARLANXEO No. 1-3 in synthetic rubber
- Production capacity: > 1,000,000 t/a (all rubber grades)

Products & Brands
- Product & brands:
 - BTR: Butyl rubber (X_Butyl™ IIR, CIIR, BIIR)
 - PBR: Polybutadiene rubber (Buna™ CB / Nd EZ)
 - S-SBR: Solution styrene butadiene rubber (Buna™ VSL, SL)
 - E-SBR: Emulsion styrene butadiene rubber (Buna™ SE)

Applications
- Tire
- Plastics
- Consumer & Pharma
- Golf & sport balls
ARLANXEO is the Global Leader in Synthetic Rubber Used in All Parts of the Tire
44 PCR Tires Included:

- Tire segment: replacement, 2013 production
- Tire type, size: summer, 205/55R16 91V
- Brands: 23 / 25 top producers (ERJ 2013 ranking), representing 80% of global tire sales
- Top 5 producers: 205/55R16 tires from 3 different regions and additional tire sizes included (175/65R14 and 245/40R18)
- Tires from all main manufacturing regions, procured in NA, EMEA, Japan and India (APO)
- Korean (APO) and Chinese (GCH) tires purchased in NA, therefore are ‘export quality’
- Tires from Japan selected from the Eco segment
Silica in tread technology widespread but not yet universal

- Low, medium and high silica loading groups
- EMEA region tires contain high silica levels due to tire labeling requirements for wet grip and fuel economy
- NA tires contain high or medium levels of silica – driven mainly by market requirements and to a lesser extent regulatory controls
- APAC, LATAM and GCH range from high to low levels of silica – due to high export rates to various regions

Analysis of Filler Composition in PCR Tread Segments
Predicted tire performance is improved with the use of silica technology in PCR tires

- Temperature sweep of test specimens cut from PCR tire treads
- One tire from each silica grouping selected (low, medium, high)
- Wet and dry grip predicted to improve with silica loading (tan delta @ 0 °C, 20 °C)
Predicted tire performance is improved with the use of silica technology in PCR tires

- PCR tread specimens tested in a strain sweep experiment (60 °C and 10 Hz)
- One tire from each silica grouping selected (low, medium, high)
- Improved fuel economy (lower RRc) with increased silica
- RRc improvements known when silica technology is combined with high performance synthetic elastomers (Buna® sSBR and Nd-BR)

Dynamic Mechanical Analysis of Tread Specimens Predicts Decreased Rolling Resistance

- Lower RRc with increased silica
- RRc improvements known when silica technology is combined with high performance synthetic elastomers (Buna® sSBR and Nd-BR)
Nd-BR is used in PCR tread and sidewall to improve fuel efficiency by decreasing rolling resistance of the tire

Elemental Analysis of PCR Tread and Sidewall Specimens for Trace Neodymium

- ICP analysis identifies trace Neodymium (Nd) from catalyst used to produce rubber
- Unique signature derived from Nd-BR
- Nd-BR found in a higher percentage of tires from the top 5 producers
- Fewer examples of tires containing Nd-BR from producers ranked 6 to 25
- Benefits of Nd-BR to improving RRc are more significant in sidewall due to higher BR content
Nd-BR molecular structure decreases rolling tire energy loss

- Nd-BR has lowest PDI among high cis-1,4-BR materials
- Nd-BR has lowest content of short chains and chain ends responsible for energy losses during deformation of tire
- Most homogeneous polymer network formation expected with Nd-BR
- Improved rolling resistance in tire sidewall and tread applications with Nd-BR
Nd-BR presence in the tire can be correlated with higher silica levels in the tread

- Nd-BR found predominantly in tires with high silica loadings in the tread
- In many cases Nd-BR present in both the tread and sidewall of tire
- Benefit of Nd-BR to improve RRc being used with silica technology for higher performance tires in NA and EMEA

Complementary Technologies Lower the Rolling Resistance of Tires

![Graph showing the correlation between Nd-BR presence and silica levels in tires](image-url)

- **63%** of tires contain Nd-BR in NAFTA
- **77%** of tires contain Nd-BR in EMEA
- **14%** of tires contain Nd-BR in GCH
- **13%** of tires contain Nd-BR in APO
- **0%** of tires contain Nd-BR in LATAM
PCR innerliner (IL) gauge was found to be dependent on the tire construction

- Average IL gauge for 44 PCR tires included in survey is 0.76 mm (min = 0.35 mm, max = 1.14 mm)
- 82% of PCR tires in survey contain a protection layer between cord and IL
- A thicker IL layer is needed without a protection layer due to IL flow into cord
- All GCH tires had full cushion
- EMEA and LATAM tires full or partial
- NA tires partial or no cushion
PCR tire construction differences

Examples of Different Tire Constructions Found in PCR Tires

No Cushion Layer

Cushion Layer

S. Teertstra, Clemson University Global Tire Industry Conference | Hilton Head, SC., April 14, 2016
Significant regional and segment differences observed for halobutyl type and content in the IL of PCR Tires

- 59% of PCR contain BIIR, 41% CIIR
- BIIR avg 88 phr (min = 48 phr, max = 100)
- CIIR avg 67 phr (min = 40 phr, max = 86)
- SBR found in some EMEA, GCH and APO tires at up to 30 phr
- Inclusion of significant NR and SBR will negatively affect air retention behavior
- GCH and LATAM lower avg IL gauge and mainly CIIR at lower levels (NR inclusion)
- NA and EMEA higher avg IL gauge, predominantly BIIR at higher levels
- Eco class tires mainly BIIR with lower avg IL gauge (effect of light-weight tires)
Mineral fillers are being used in half of the PCR tires included in the survey

- 57% of tires contain mineral filler at a level higher than 5 phr
- CaCO3 and clay used at the highest levels, on average at 23 and 17 phr
- Talc detected in high levels in 1 tire from APO (33 phr)
- Mineral fillers used with both CIIR and BIIR, complementary to the CB
- No regional preferences observed
- No correlation with IL gauge observed

Mineral Fillers Appear to be Present Mainly to Reduce IL Compound Cost

- None: 43%
- Clay: 23%
- Talc: 5%
- CaCO3: 30%
- Silica: 0%
Truck and Bus Tire Survey
TBR Tire Survey conducted from a global perspective representing a significant portion of the worldwide tire market

60 TBR Tires Included:

- Tire segment: OE and replacement, 2009 - 2014 production
- Tire size & type: 22.5” diameter medium truck and bus tires; steer, drive and trailer
- Brands: 27 of the top 40 global tire producers (ERJ 2013 ranking)
- 7 tube type tires from India included, 20” diameter
Carbon black is the main filler used in TBR treads with only small amounts of inorganic fillers observed in some cases

<table>
<thead>
<tr>
<th>No Clear Regional or Manufacturer Trends Observed in Filler Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ 40% of tires contain inorganic filler levels above 10 phr (assumes 5 phr ZnO max.)</td>
</tr>
<tr>
<td>▪ Inorganic filler ranges from 0 to ~ 20 phr,</td>
</tr>
<tr>
<td>▪ Lower CB at higher inorganic filler levels</td>
</tr>
<tr>
<td>▪ Presence of silica confirmed in most cases where inorganic filler levels > 10 phr</td>
</tr>
<tr>
<td>▪ Wear resistance and heavy loads dictate NR usage and high CB levels in TBR tires</td>
</tr>
<tr>
<td>▪ Current RRc requirements/targets can be met without silica technology (eg. GHG Phase I, Smartway)</td>
</tr>
</tbody>
</table>

![Graph showing relationship between inorganic content and carbon black](image_url)
Predicted tire performance is improved with the use of silica technology in TBR tires

Dynamic Mechanical Analysis of Tread Specimens Predicts Decreased Rolling Resistance
Nd-BR is used in TBR sidewall to improve fuel efficiency by decreasing rolling resistance of the tire

- Nd-BR found in a higher percentage of tires from the top 5 producers
- 7 of 10 tires with Nd-BR are Smartway
- Various technologies are being used to improve RRc and meet regulations/targets

Elemental Analysis of TBR Sidewall Specimens for Trace Neodymium
Significantly thicker IL are used in TBR tires to retain air pressure

- IL gauge on average 2.5 X thicker than for PCR tires
- Full cushion construction
- GCH tires lower average IL thickness
- Tube tires contain a surprisingly thick IL
- All GCH tires had full cushion
- Performance requirements of TBR much higher due to high inflation pressure and high loads
- Maintaining air pressure is critical for fuel economy

A Thicker IL is Required in TBR Tires Due to the Service Conditions
A higher proportion of halobutyl is used in TBR tires to retain air pressure

- 57 of 60 tires contain BIIR at high levels
- Chlorine detected in 4 tires from GCH (CIIR or other chlorinated polymers)
- BIIR clearly is the standard in TBR
- Heat resistance of BIIR important for retreading operations in NA and EMEA (NR required with CIIR)
- Improved adhesion characteristics of BIIR at high levels versus CIIR

BIIR is Used Almost Exclusively in TBR Tires Due to the Service Conditions

<table>
<thead>
<tr>
<th>Tube Type</th>
<th># of Tires Included</th>
<th>HIIR in IL (phr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Tubeless</td>
<td>53</td>
<td>88</td>
</tr>
<tr>
<td>GCH Tubeless</td>
<td>20</td>
<td>78</td>
</tr>
<tr>
<td>Global Excl. GCH</td>
<td>33</td>
<td>94</td>
</tr>
<tr>
<td>Tube Type</td>
<td>7</td>
<td>84</td>
</tr>
</tbody>
</table>

S. Teertstra, Clemson University Global Tire Industry Conference | Hilton Head, SC., April 14, 2016
Further improvement of tire technology through the use of advanced materials will be required to meet new regulations.

Emissions & Fuel Economy Targets for Cars

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Target Year</th>
<th>Standard Type</th>
<th>Unadjusted Fleet Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU</td>
<td>2015 2021</td>
<td>CO\textsubscript{2} CO\textsubscript{2}</td>
<td>130 g/km 95 g/km</td>
</tr>
<tr>
<td>JP</td>
<td>2015 2020</td>
<td>Fuel economy</td>
<td>16.8 km/L 20.3 km/L</td>
</tr>
<tr>
<td>CA</td>
<td>2016</td>
<td>CO\textsubscript{2} + GHG</td>
<td>135 g/km</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>CO\textsubscript{2} + GHG</td>
<td>98 g/km</td>
</tr>
<tr>
<td>US</td>
<td>2016</td>
<td>Fuel economy</td>
<td>36.2 mpg</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>Fuel economy</td>
<td>56.2 mpg</td>
</tr>
<tr>
<td>MX</td>
<td>2016</td>
<td>Fuel economy</td>
<td>39.3 mpg</td>
</tr>
<tr>
<td>CN</td>
<td>2015 2020*</td>
<td>Fuel economy</td>
<td>6.9 L / 100km 5.0 L / 100km</td>
</tr>
<tr>
<td>KR</td>
<td>2015</td>
<td>Fuel economy</td>
<td>17 km / L</td>
</tr>
</tbody>
</table>

GHG Phase II Standards

- Proposed reductions of CO\textsubscript{2} and fuel consumption for medium and heavy duty vehicles
- Phased in between 2021 and 2027
- 24% reduction compared to Phase I standard for combination tractors designed to pull trailers
- 8% reduction for trailers starting in 2018 compared to 2017 models
- 16% reduction for vocational vehicles, pick-up trucks and light vans compared to Phase I

Source: Arthur D. Little: The Automotive CO\textsubscript{2} Emissions Challenge, 2014
Testing Capabilities

<table>
<thead>
<tr>
<th>Analytical Testing</th>
<th>NMR</th>
<th>GPC</th>
<th>FTIR</th>
<th>TGA</th>
<th>DSC</th>
<th>GC/MS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xray</td>
<td>Volatiles</td>
<td>Elemental Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixing</td>
<td>Intermeshing (1.5 L)</td>
<td>Tangential (1.5 L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brabender (85 & 375 mL)</td>
<td>DSM Microcompounder (15 mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound Testing</td>
<td>Mooney</td>
<td>MDR</td>
<td>Tensile</td>
<td>Tear</td>
<td>Permeability</td>
<td>Permanent Set</td>
</tr>
<tr>
<td></td>
<td>DeMattia Flex</td>
<td>RPA</td>
<td>Ageing</td>
<td>Abrasion</td>
<td>Adhesion</td>
<td>Rebound</td>
</tr>
<tr>
<td></td>
<td>Garvey Die Extrusion</td>
<td>Capillary Rheometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Rubber Testing</td>
<td>Dynamic mechanical analysis</td>
<td>Payne Effect</td>
<td>Heat Build-Up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Characterization*</td>
<td>SEM/EDX</td>
<td>XPS</td>
<td>AFM</td>
<td>ToF-SIMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optical Microscopy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Via Surface Science Western located in same facility
Disclaimer

ARLANXEO USA LLC
111 RIDC Park West Drive • Pittsburgh, PA 15275 • www.ARLANXEO.com

The manner in which you use and the purpose to which you put and utilize our products, technical assistance and information (whether verbal, written or by way of production evaluations), including any suggested formulations and recommendations are beyond our control. Therefore, it is imperative that you test our products, technical assistance and information to determine to your own satisfaction whether they are suitable for your intended uses and applications. This application-specific analysis must at least include testing to determine suitability from a technical as well as health, safety, and environmental standpoint. Such testing has not necessarily been done by us. Unless we otherwise agree in writing, all products are sold strictly pursuant to the terms of our standard conditions of sale. All information and technical assistance is given without warranty or guarantee and is subject to change without notice. It is expressly understood and agreed that you assume and hereby expressly release us from all liability, in tort, contract or otherwise, incurred in connection with the use of our products, technical assistance, and information. Any statement or recommendation not contained herein is unauthorized and shall not bind us. Nothing herein shall be construed as a recommendation to use any product in conflict with patents covering any material or its use. No license is implied or in fact granted under the claims of any patent.

Health and Safety Information: Appropriate literature has been assembled which provides information concerning the health and safety precautions that must be observed when handling the ARLANXEO products mentioned in this publication. For materials mentioned which are not ARLANXEO products, appropriate industrial hygiene and other safety precautions recommended by their manufacturers should be followed. Before working with any of these products, you must read and become familiar with the available information on their hazards, proper use, and handling. This cannot be overemphasized. Information is available in several forms, e.g., material safety data sheets and product labels. Consult your ARLANXEO Corporation representative or contact the Product Safety and Regulatory Affairs Department at ARLANXEO.

Note: The information contained in this publication is current as of April, 2016. Please contact ARLANXEO USA LLC to determine if this publication has been revised.