FIRE AND HERPETOFAUNA IN GRASSLAND ECOSYSTEMS

Dan Fogell
Southeast Community College
Lincoln, Nebraska
WHAT’S A HERPETOFAUNA?

• Amphibians
 • Frogs, Toads, Salamanders, Caecilians
• Non-avian Reptiles
 • Snakes, Lizards, Amphisbaenians, Tuataras
• Turtles/Tortoises
• Crocodilians
QUESTION:

• If grassland herpetofauna coevolved with grasslands, and grasslands evolved with fire, then are grassland herpetofauna adapted to fire on a grassland?

• “It is illogical that animals associated with fire vegetation are not themselves at least behaviorally adapted to resist mortality by fire”

-- Means and Campbell, 1981
GRASSLAND HERPETOFAUNA ADAPTATIONS

- Amphibians
 - High-arched frog leaps (Leopard frogs, chorus frogs)
 - Short aquatic larval stages (Spadefoots, chorus frogs)
 - Burrowing ability (Great Plains toads, spadefoots, barred tiger salamanders)
 - High desiccation tolerance (all)
GRASSLAND HERPETOFAUNA ADAPTATIONS

- Reptiles
 - Leglessness/serpentine locomotion (Snakes, glass lizards)
 - “Tank” locomotion (Turtles, skinks, horned lizards)
 - Noisy snakes (Rattlesnakes, bullsnakes)
 - Burrowing ability (Box turtles, hognose snakes, horned lizards)
ANOTHER QUESTION:

- How many land managers consider amphibians and reptiles when employing fire as a tool for managing grasslands...or any other ecosystem for that matter?
 - T&E species (i.e. massasauga, crawfish frogs)
 - Keystone species (i.e. gopher tortoise)

- ANSWER: Not enough. As a result, little is known about herpetofaunal population and community responses to fire.
IMMEDIATE EFFECTS OF FIRE ON HERPETOFAUNA

- Mortality – most studies show that direct mortality is rare and of little significance to most populations
 - 68 marked eastern diamondback rattlesnakes in a 600-ha pine forest subjected to 5 burns in 5 years (Means and Campbell 1981)
 - Only 2 mortalities (both snakes in ecdysis)
 - Other studies showed similar results, though eastern glass lizards exhibited high mortality during prescribed burns (Means and Campbell 1981)
- Adaptations assist with escape (burrowing, locomotion specialties)
IMMEDIATE EFFECTS OF FIRE ON HERPETOFAUNA

• Dispersal – leaving the immediate area to avoid mortality from fire
 • Amphibians may find themselves far from water
 • Unfamiliar and inhospitable habitat
 • Unable to find adequate safety/cover
 • Predators often hunt fire fronts (i.e. raptors)
 • Suboptimal habitat
 • Depending on how far they move to escape fire
SHORT-TERM EFFECTS OF FIRE ON HERPETOFAUNA

- Reduced litter layers/natural cover
 - Exposed to predators (-)
 - Loss of prey base (-)
 - Due to immediate mortality or dispersal
 - Increased risk of desiccation (-)
 - No protection from temperature extremes/anomalies (-)
 - Reduced dispersal and foraging capabilities (-)
 - Increased distance between “safe zones”
SHORT-TERM EFFECTS OF FIRE ON HERPETOFAUNA

• Change in hydroperiod
 • Reduced vegetation = reduced evapotranspiration
 • Increased soil saturation (+)
 • Elevated water tables (+)
 • Massasaugas, crawfish frogs benefit especially
 • New temporary pools may form (+)
 • Old temporary pools hold water longer (+)
SHORT-TERM EFFECTS OF FIRE ON HERPETOFAUNA

- Increase in temperature and solar radiation exposure
 - Intensifies desiccation in amphibians (-)
 - Increases water temperature in aquatic habitats (-, +)
 - Faster growth/development of amphibian larvae
 - Higher UV-B exposure to amphibian eggs/larvae
 - Can increase reptile abundance in burned plots (+)
 - Thermoregulatory advantage
 - May result in premature emergence from hibernation (-, +)
LONGER-TERM EFFECTS OF FIRE ON HERPETOFAUNAL COMMUNITIES

• When fire is used to improve/restore degraded habitat…
 • Numerous studies outside the US (Africa, Asia, Australia) reported overall increases in herpetofaunal abundance and diversity resulting from natural and prescribed fires
 • In FL, fire in xeric pine forests results in increased abundance and diversity (Mushinsky 1985)
 • Especially for some endemics
 • In general, herpetofaunal diversity increases
LONGER-TERM EFFECTS OF FIRE ON HERPETOFAUNAL COMMUNITIES

• When fire is used a management tool...
 • Renken (2006), Russell et al. (1999), Pilliod et al. (2003) conducted exhaustive literature reviews
 • Consensus:
 • Despite short-term negative effects, existing herpetofaunal abundance and diversity are not significantly affected by prescribed fire
 • Diversity and abundance in burned and unburned plots are similar
LONGER-TERM EFFECTS OF FIRE ON HERPETOFAUNAL COMMUNITIES

• When fire is suppressed…
 • Isolated wetlands, bogs, swamps succeed into hardwood, closed canopy forests
 • Amphibian diversity and abundance decline
 • Grasslands succumb to red cedar (among other trees) succession
 • Shades out snake hibernacula
 • Savanna canopies close up
 • Reduces reptile basking sites – esp for gravid females
 • In general, abundance and diversity decline
WHY SHOULD YOU CONSIDER HERPETOFAUNA WHEN MAKING LAND MANAGEMENT DECISIONS?

• They comprise a significant amount of biomass
 • EX: Burton and Likens (1975) – report biomass of salamanders alone = 2.6 times that of birds and approximately equal to that of mice and shrews combined

• Moisture is much more important to herpetofauna (especially amphibians) than to mammals, birds
 • Reproduction, respiration, desiccation

• They have substantially shorter dispersal ranges
 • Often forced to adapt to landscape changes (or disappear) since relocation to more favorable conditions is difficult or impossible
MANAGEMENT CONSIDERATIONS

• *Primum non nocere*
 • First, do no harm
 • Prior to burning, managers should decide:
 • What species occur on the landscape?
 • Are there any conservation concerns for any species?
 • Will fire be beneficial, detrimental, or have a neutral effect on herpetofauna – especially species of concern?
 • What is an acceptable mortality rate – especially for species of concern?
MANAGEMENT RECOMMENDATIONS

• From Midwest Partners for Amphibian and Reptile Conservation (MWPARC)
• Adopted by the MWPARC Advisory Board in 2009
• Based on reviews of scientific literature, current research, and contributions from herpetologists and prescribed fire managers
• General guidelines
 • Consider your specific management objectives and then compromise if necessary
1. HERPETOFAUNAL SURVEYS

• Identify species diversity AND ecosystem diversity
 • Are there any features you may not have considered…i.e. small vernal pools, caves, rocky outcrops that can be used as communal hibernacula?

• Determine if any species are rare, sensitive, or otherwise of conservation concern

• Estimate population sizes and geographic extents for species of concern

• If necessary, seek out herpetologists for assistance
2. SEASONAL AND TEMPORAL CONSIDERATIONS

- Herps are ectotherms and normally inactive in winter
- Burning during winter (November 1st – March 1st) is optimal for herps
 - Understandably, this may NOT be optimal for land managers or for desired landscape goals
 - Hence the need for population surveys and estimates of acceptable losses
- IF burning after April 1st is unavoidable, consider choosing cool (less than 50\textdegree F), overcast days for burning – preferably if there have been several such days in succession – and early in the day
- Summer burning activity should consider costs vs. benefits
 - It’s nesting and gestation season
- Fall burns (prior to November 1st) should be avoided; burn oak savannas in cool weather but before leaf fall
3. AVOID SPRING SEASON BURNS NEAR COMMUNAL HIBERNACULA

- In temperate climates winter hibernation is necessary
- Many snake species hibernate communally in “hibernacula”
 - South-facing slopes/ formations offer thermal advantages during winter
 - Snakes are concentrated in small areas
- Upon emergence (spring) snakes “linger” around the hibernaculum
- Poorly planned burns could be devastating to snake populations
- Burns should be conducted before emergence, or not at all
4. FIRE INTENSITY AND SPEED SHOULD ACCOMMODATE SPECIES ON THE LANDSCAPE

- Backfires vs. headfires
- Understand how species on the landscape respond to fire
 - Most herp species are unable to outrun fire
 - Slow fires may allow some species to get ahead of the fire
 - Larger snakes and lizards, frogs
 - Fast fires may leave cover objects unscathed (i.e. logs, clumps of dense litter, etc.) so animals that take cover will be safe
 - Salamanders, toads, smaller snakes and lizards
5. SIZE MATTERS

- Consider burning large areas in smaller sections during different years
 - Annual, large-scale burns can be just as detrimental to diversity as fire suppression
- For smaller areas that are isolated from nearby similar habitats, burning the entire site may result in the loss of entire species
 - Break up into sections
 - Burn on different days (if management constraints allow)
 - Burn during alternating or rotating years
6. INCOMPLETE BURNS ARE OK

- Consider leaving some landscape features intact
 - Snags, downed trees/logs
 - Patches of vegetation
- Provide safe harbor for herps and habitat for prey
7. IS RESTORATION TO INCREASE BOTANICAL DIVERSITY REALLY NECESSARY?

- One person’s botanically poor field is another person’s herpetologically rich haven
- Areas with low botanical diversity may be functional, animal-rich systems
- If it ain’t broke, don’t fix it – especially if it’s because you just don’t like how it looks.
8. IF YOU BUILD IT, THEY WILL COME

- Landscape management often includes mechanical brush/tree clearing
- Large piles of woody debris/brush make attractive habitat for snakes and lizards
- These activities should be avoided if possible
 - If unavoidable they should be burned…
 - …ASAP
 - …in cold weather
9. AS MUCH FUN AS IT CAN BE, RESIST BURNING REPEATEDLY

• K-selected species are sensitive to even the slightest mortality
 • Turtles
 • Long-lived, usually large snakes (i.e. rattlesnakes)
• Annual burns with even a few mortalities can hit some species hard
• Cumulative effects of annual burns may push some populations beyond recovery
• Burned grasslands often make surveys easier for biologists (i.e. massasauga surveys)…plan ahead
 • Burn early to avoid ANY mortality
10. ALWAYS SHOOT FOR MOSAIC CONDITIONS

- Heterogeneity = greater diversity
- Corridors between patches – especially for sensitive species
- Retain edges and ecotones whenever possible
- Consider more than one fire regime
 - Rarely is a single fire regime optimal for all fauna in a region (Braithwaite 1987)
RESEARCH NEEDS – IF YOU ARE SO INCLINED

• Herpetofaunal surveys of areas maintained by fire
 • Species present
 • Demographic status
 • Habitat requirements
• Sadly these data are lacking in most areas
RESEARCH NEEDS

- Studies that investigate the effects of...
 - Fire frequency
 - Fire intensity
 - Fire season
- ...on herpetofauna
RESEARCH NEEDS

- Using chemical and/or mechanical methods of grassland maintenance in place of fire
 - Mowing/cutting
 - Herbicidal application
 - Grazing
- How are herps affected?
- Especially around *Typha*-infested wetlands
RESEARCH NEEDS

• What effects would using fire to maintain temporary wetlands have on herps that use them?
 • Mostly amphibians
 • Fine balance between woody encroachment and maintaining enough “junk” around a wetland for warm season cover
 • Logs
 • Leaf litter
RESEARCH NEEDS

• Long-term studies that investigate the direct and indirect effects of fire on herpetofauna
 • Baseline and post-burn population estimates
 • Species occurrence
 • Spatial and temporal distributions pre- and post-burn
• Requires well-designed, well-planned experiments including treatment replications, controls, etc.
FINAL WORDS

• Information is lacking…but that is changing
• Think more about herps when planning your fire schedules
• Consider surveys of your properties
 • Herpetologists have low self-esteem and work very cheap 😊
 • Many states have herpetological societies that are looking for field trip locations…they usually work free 😊😊
• Ultimately, consider your resources:
 • No action is still an action…don’t abandon fire for the sake of a single species…find another way.
REFERENCES

• Means and Campbell 1981. Effects of prescribed fire on amphibians and reptiles. Pages 89-96 in G.W. Wood, editor: Prescribed fire and wildlife in southern forests. Belle Baruch Forest Science Institute, Clemson University, Georgetown, South Carolina

REFERENCES

MWPARC PRESCRIBED BURNING GUIDELINES FOR AMPHIBIANS AND REPTILES
Thank you!

Questions?