Serum Carbon Isotope Values Change in Adults in Response to Changes in Sugar-Sweetened Beverage Intake

Abstract

Serum carbon isotope values (δ13C-to-12C serum carbon isotope ratio (δ13C)), which reflect consumption of corn- and cane-based foods, differ between persons consuming high and low amounts of sugar-sweetened beverages (SSBs). In this study, we determined whether serum δ13C changes in response to change in SSB intake during an 18-mo behavioral intervention trial. Data were from a subset of 144 participants from the PREMIER trial, a completed behavioral intervention (Maryland, 1998–2004). SSB intake was assessed using 2 24-h dietary recall interviews. Blinded serum samples were assayed for δ13C by natural abundance stable isotope mass spectroscopy. Multiple linear regression models with generalized estimating equations and robust variance estimation were used. At baseline, mean SSB intake was 13.8 ± 14.2 fl oz/d, and mean δ13C serum value was −19.3 ± 0.6 units per mil (designated ‰). A reduction of 12 oz (355 mL)/d SSB (equivalent to 1 can of soda per day) was associated with 0.17 ‰ (95% CI: 0.08‰, 0.25‰; P < 0.0001) reduction in serum δ13C values over 18 mo (equivalent to a 1% reduction in δ13C from baseline). After adjusting for potential confounders, a reduction of 12 oz/d SSB (equivalent to 1 can of soda per day), over an 18-mo period, was associated with 0.12 ‰ (95% CI: 0.01‰, 0.22‰; P = 0.025) reduction in serum δ13C. These findings suggest that serum δ13C can be used as a measure of dietary changes in SSB intake. J. Nutr. doi: 10.3945/jn.113.186213.

Introduction

Epidemiologic investigations of the association between diet and chronic disease outcomes are limited by measurement error resulting from self-reported data (1–9), which underscores the need for biomarkers that reflect dietary intake. The ratio of 13C-to-12C (measured as δ13C) in human serum has been proposed as a novel biomarker of sugar-sweetened beverage (SSB) intake because carbon stable isotope values in blood have been shown to differ between persons consuming high and low amounts of SSBs (10,11). It has been hypothesized that, because Zea mays (corn) and Saccharum (cane) are C4 plants and because C4 plants are naturally enriched in carbon 13C compared with other plants, a measure of δ13C in human serum can be used as a surrogate for assessing the intake of foods sweetened with corn syrup and cane sugar (10).

Previous studies showed an association between the δ13C value of human blood and sugar intake (11–13); however, these studies were cross-sectional and could not provide data on whether serum δ13C values change in response to changes in sugar intake. In this study, we evaluated whether serum δ13C values change in response to changes in SSB intake during an 18-mo behavioral intervention trial. We use data from the PREMIER trial, a study in which participants changed their SSB intake over the course of the intervention (14).

Participants and Methods

Study population. Study participants were from the Baltimore, Maryland center of the PREMIER trial. Information on PREMIER study design, recruitment, and data collection was published previously (15). Briefly, PREMIER is a completed, 18-mo, multicenter, randomized trial designed to determine the blood pressure–lowering effects of 2 behavioral interventions in adults with a high-normal blood pressure or stage 1 hypertension (15). Participants consisted of 810 men and women, aged 25–79 y, recruited from 4 study centers in the United States (Baltimore, Maryland; Baton Rouge, Louisiana; Durham, North Carolina; and Portland, Oregon) from 1998 to 2004. The protocol of the trial was approved by institutional review boards at each center and an external protocol review committee. Written consent was obtained for each participant. Participants were randomly assigned to 1 of 3 groups: 1) an “advice-only” control group that received information but no behavioral counseling; 2) an “established” behavioral intervention group that received counseling on weight loss, physical activity, and dietary sodium...
intake; or 3) an "established plus DASH" behavioral intervention group that received counseling similar to the established group plus counseling on the DASH (Dietary Approaches to Stop Hypertension) diet plan. Participants were advised to reduce intake of foods or beverages that were the highest contributors to their total caloric intake.

Measurement of \(\delta^{13}C \) in serum. In the PREMIER study, blood was drawn after an 8-h fast, and samples were stored at 70°C after collection. For the purpose of this analysis, serum samples obtained at baseline, 6 mo, and 18 mo were thawed to measure \(\delta^{13}C \) value. Information on laboratory methods used to measure \(\delta^{13}C \) was published previously (10). Briefly, samples were quantitatively combusted to carbon monoxide in a EuroVector elemental analyzer (EA3000; EuroVector) configured with a continuous-flow stable isotope mass spectrometer (Isoprime; Micromass). Conventionally, natural abundance isotope ratios are expressed relative to an international standard, expressed using the \(\delta \) notation as units per mil \((\%_{\text{o}})\). The equation defining isotope ratios was published previously (13). The \(\%_{\text{o}} \) unit is approximately equivalent to 10 times the percentage difference of the \(^{13}C \)-to-\(^{12}C \) ratio of a sample from the \(^{13}C \)-to-\(^{12}C \) ratio of a standard reference. Because serum samples from this study have lower \(^{13}C \)-to-\(^{12}C \) than VPDB (Vienna Pee Dee Belemnite), sample \(\delta^{13}C \) values are <0.

Organic standards were introduced every 5 samples, and blanks were introduced every 50 samples. Each sample was analyzed in triplicate, and SEMs. Differences across quartiles in \(\delta^{13}C \) were published previously (10). Briefly, \(\delta^{13}C \) values are <0. isotope ratios are expressed using the \(\delta \) notation as units per mil \((\%_{\text{o}})\). The equation defining isotope ratios was published previously (13). The \(\%_{\text{o}} \) unit is approximately equivalent to 10 times the percentage difference of the \(^{13}C \)-to-\(^{12}C \) ratio of a sample from the \(^{13}C \)-to-\(^{12}C \) ratio of a standard reference. Because serum samples from this study have lower \(^{13}C \)-to-\(^{12}C \) than VPDB (Vienna Pee Dee Belemnite), sample \(\delta^{13}C \) values are <0.

Results

Baseline characteristics and SSB consumption. At baseline, SSB intake in PREMIER \(\delta^{13}C \) participants was 13.8 ± 14.2 fl oz/d, and mean \(\delta^{13}C \) value was −19.3 ± 0.6\(\%_{\text{o}} \). Table 1 displays demographic, dietary, and clinical characteristics by baseline SSB consumption and for the entire PREMIER \(\delta^{13}C \) population. There was a statistically significant difference in age, sex, and race across quartiles of SSB intake. Compared with participants in the lowest quartile, participants in the higher quartiles of SSB intake had higher body weight, BMI, and waist circumferences. There was also a trend of higher consumption of total calories but not for \(^{15}N \), a biomarker for protein intake. Mean values of \(\delta^{13}C \) were greater in the higher quartiles of SSB intake compared with the first quartile (\(P = 0.011 \)). The trends in SSB consumption over the 18-mo period and in \(\delta^{13}C \) values at each visit are shown in Figure 1. Compared with baseline, the mean reduction in \(\delta^{13}C \) was 0.15 ± 0.04\(\%_{\text{o}} \) at 6 mo (\(P < 0.0001 \)), \(\delta^{13}C \) values increased from 6 to 18 mo by 0.09 ± 0.04\(\%_{\text{o}} \) (\(P = 0.041 \)). The mean reduction in SSB consumption was 6.4 ± 1.3 fl oz/d at 6 mo (\(P < 0.0001 \)) and 4.6 ± 1.1 fl oz/d at 18 mo (\(P < 0.0001 \)) compared with baseline.

TABLE 1 Baseline characteristics of PREMIER \(\delta^{13}C \) study participants by quartile of SSB consumption\(^1\)

<table>
<thead>
<tr>
<th>Variables</th>
<th>All participants ((n = 144))</th>
<th>1 (0–0 fl oz/d; (n = 60))</th>
<th>2 (4.3–12.9 fl oz/d; (n = 12))</th>
<th>3 (13.0–24.5 fl oz/d; (n = 36))</th>
<th>4 (25.0–56.9 fl oz/d; (n = 36))</th>
<th>(P^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>50.7 ± 8.5</td>
<td>52.9 ± 8.3</td>
<td>46.2 ± 7.8</td>
<td>45.6 ± 8.0</td>
<td>46.9 ± 9.0</td>
<td>0.037</td>
</tr>
<tr>
<td>Sex, female (n (%)</td>
<td>95 (66.0)</td>
<td>41 (68.3)</td>
<td>10 (83.3)</td>
<td>28 (77.8)</td>
<td>16 (44.4)</td>
<td>0.010</td>
</tr>
<tr>
<td>Race, black (n (%)</td>
<td>81 (56.3)</td>
<td>22 (36.7)</td>
<td>10 (83.3)</td>
<td>27 (75.0)</td>
<td>22 (61.1)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>96.4 ± 19.6</td>
<td>90.8 ± 18.8</td>
<td>94.1 ± 15.1</td>
<td>98.3 ± 18.1</td>
<td>104.6 ± 21.2</td>
<td>0.007</td>
</tr>
<tr>
<td>BMI, kg/m(^2)</td>
<td>33.6 ± 6.0</td>
<td>31.8 ± 5.6</td>
<td>33.5 ± 5.7</td>
<td>35.7 ± 6.0</td>
<td>34.6 ± 6.1</td>
<td>0.011</td>
</tr>
<tr>
<td>Waist circumference, cm</td>
<td>109.1 ± 14.9</td>
<td>105.5 ± 14.8</td>
<td>103.9 ± 15.0</td>
<td>113.0 ± 15.1</td>
<td>112.9 ± 14.4</td>
<td>0.018</td>
</tr>
<tr>
<td>Total energy, kcal/d</td>
<td>1830 ± 624</td>
<td>1670 ± 593</td>
<td>1480 ± 522</td>
<td>2950 ± 700</td>
<td>2010 ± 512</td>
<td>0.002</td>
</tr>
<tr>
<td>Corn consumption, (n (%)</td>
<td>49 (34.0)</td>
<td>22 (36.7)</td>
<td>4 (33.3)</td>
<td>13 (36.1)</td>
<td>10 (27.8)</td>
<td>0.73</td>
</tr>
</tbody>
</table>

\(^1\)Values are means ± SDs or medians [ranges] unless noted otherwise. SSB, sugar-sweetened beverage; \(\delta^{13}C \), \(^{13}C \)-to-\(^{12}C \) serum carbon isotope ratio; \(\delta^{15}N \), \(^{15}N \)-to-\(^{14}N \) nitrogen stable isotope ratio.

\(^2\)Differences across quartiles were tested using \(\chi^2 \) test for categorical variables and using 1-factor ANOVA for continuous variables.
Relation between change in SSB consumption and change in serum δ^{13}C values. Change in SSB consumption was associated with mean serum δ^{13}C values after adjusting for total calories, corn consumption, δ^{15}N values, age, sex, race, and visit (Table 2). In model 1, a reduction of 1 serving per day (12 fl oz) in SSB consumption was associated with a 0.17‰ ($95\% \text{ CI: } 0.08, 0.25$) decrease in serum δ^{13}C values. The association between SSB intake and δ^{13}C value was unchanged after adjusting for concurrent change in total energy (kilocalories per day), corn consumption, and δ^{15}N values (model 1: 0.20; 95% CI: 0.08, 0.31; $P = 0.001$) (Table 2). With additional adjustment for age, race, and sex (model 2), the association between SSB intake and δ^{13}C was attenuated but remained statistically significant, with a reduction of 1 serving per day (12 fl oz/d) in SSB consumption being associated with a decrease in δ^{13}C of 0.12‰ ($95\% \text{ CI: } 0.01, 0.22; P = 0.025$). Adjusting for intervention arm had no effect on the estimate (data not shown).

Discussion

In this study, we showed that a mean reduction in SSB intake by 1 serving per day (12 fl oz/d) was associated with a reduction in serum δ^{13}C over 18 mo. Although this reduction is small compared with the magnitude of variability in δ^{13}C within sweetened foods (17), it is more than twice the analytical uncertainty of the measurement. To our knowledge, this is the first study to evaluate the change in serum δ^{13}C values that are associated with change in SSB intake. These results are consistent with recent findings by Nash et al. (11), who showed that self-reported intake of corn and cane sugar–based market foods were associated with high δ^{13}C values relative to other foods. We also reported previously, in cross-sectional analyses, that δ^{13}C values increased by 0.20‰ for every additional serving per day of SSBs ($P < 0.01$) (10). The results of this study provide additional evidence for a strong association between SSB consumption and δ^{13}C values. Importantly, our analyses demonstrate that serum δ^{13}C values are dynamic, can reflect changes in SSB consumption over time, and are sensitive to relatively minor, but sustained, changes in dietary patterns.

Consumption of SSBs is associated with excess weight gain and obesity (18–20), increased risk of diabetes (19,21,22), elevated plasma TG concentrations (23,24), increased blood pressure (14,25–27), and increased risk of cardiovascular diseases (27,28). Small reductions in SSB consumption can positively influence health (14). However, our ability to accurately and objectively measure small changes in SSB consumption is compromised by measurement error in self-reported dietary assessment methods (e.g., reliance on only 1 24-h recall measurement and FFQs to measure SSB intake) and systematic bias due to underreporting of SSB intake among certain subgroups (3,4,21,29,30). These issues in SSB intake assessment can be resolved by using a biomarker that can objectively measure caloric sweeteners consumption and can accurately quantify and evaluate intervention-associated changes.

TABLE 2	Association of δ^{13}C with SSB consumption in the PREMIER δ^{13}C study population 1					
Predictors	Crude	Model 1 2	Model 2 3			
	Coefficients (95% CI)	P	Coefficients (95% CI)	P	Coefficients (95% CI)	P
SSB 4 per 12 fl oz/d	0.17 (0.08, 0.25)	<0.0001	0.20 (0.08, 0.31)	0.001	0.12 (0.01, 0.22)	0.025
Total calories per 1000 kcal	−0.15 (−0.32, 0.03)	0.11	−0.14 (−0.32, 0.03)	0.11		
Corn consumption	0.07 (−0.08, 0.23)	0.36	0.06 (−0.09, 0.21)	0.43		
δ^{15}N ($\%_{\text{iso}}$)	0.45 (0.15, 0.74)	0.003	0.45 (0.19, 0.70)	0.001		
Age (y)	−0.01 (−0.02, 0.00)	0.021	−0.11 (−0.33, 0.01)	0.30		
Sex	−0.11 (−0.33, 0.01)	0.30	−0.45 (−0.65, −0.25)	<0.0001		

1 n = 140. All models were adjusted for visit (baseline, 6 mo, and 18 mo). SSB, sugar-sweetened beverage; δ^{13}C, 13C-to-12C serum carbon isotope ratio; δ^{15}N, 15N-to-14N nitrogen stable isotope ratio.

2 Analyses were adjusted for total energy calories, corn consumption, and δ^{15}N values.

3 Analyses were additionally adjusted for age, sex, and race.

4 The regression coefficient for SSB is interpreted as the mean change in δ^{13}C values with every 12-oz increase in SSB consumption across the population, taking into account the correlation of repeated measurements.
Given the previously detected relation between animal protein and δ^{13}C, we treat animal protein as a potential confounder in our examination of the relation between SSBs and δ^{13}C. We are limited in our ability to determine causation, but our results remained unchanged after adjustment for this important confounder.

A limitation of our study is that the PREMIER study was not designed or powered for repeated-measure analysis of δ^{13}C value. However, dietary intake of SSBs was well characterized in the PREMIER study, which was essential for our evaluation of the time course of change of serum δ^{13}C value. A limitation of serum δ^{13}C as a biomarker of caloric sweeteners consumption is that it can only capture consumption of corn and sugar-based sweeteners but no other forms of sugar, such as beet sugar (beet is a C3 plant).

In conclusion, we show that a measurable change in serum carbon isotope value can be detected months after dietary change in SSBs occurs. This study does not allow us to understand what timeframe of dietary intake influences δ^{13}C values. Using serum δ^{13}C as a surrogate for caloric sweeteners consumption is promising; however, future better-powered studies with more granular time-course analyses are needed to ascertain the specificity of δ^{13}C values to intake of caloric sweeteners. If our results are validated, the use of this biomarker will prove to be an invaluable tool in objectively quantifying caloric sweeteners consumption and in evaluating intervention-associated changes in SSB intake.

Acknowledgments
T.H.I.F. and C.A.M.A. contributed to the concept development and manuscript preparation; T.H.I.F. analyzed the data; T.H.I.F. and C.A.M.A. contributed to the concept development and manuscript preparation; T.H.I.F. and C.A.M.A. wrote the paper; T.H.I.F., C.A.M.A., A.H.J., L.J.A., L.C., and R.A. reviewed the manuscript. R.A. and A.J.H. contributed to data collection. All authors read and approved the final manuscript.

Literature Cited