American Geophysical Union Fall Meeting, San Francisco, CA, Dec 12-16, 2016

Combined and isolated effects of pCO_2 and soil water content on carbon isotope discrimination during C₃ photosynthesis

Brian A. Schubert¹ and A. Hope Jahren²

¹School of Geosciences, University of Louisiana at Lafayette, Lafayette, LA 70504; ²Centre for Earth Evolution and Dynamics, University of Oslo, N-0315, Oslo, Norway

Biomass produced *via* C₃ photosynthesis dominates the terrestrial organic matter (TOM) found within the geologic record. Our previous work revealed an increase in net discrimination (Δ^{13} C) \approx +4‰ across an increase in *p*CO₂ level from ambient to RCO₂ = 6x within the model C₃ plant *Arabidopsis thaliana*, grown to maturity under constant conditions of light, moisture, and nutrient availability (Schubert and Jahren, 2012, *GCA*), leading us to suggest that changes in ancient *p*CO₂ level can be reconstructed from Δ^{13} C within terrestrial sediments. Others have observed an average change in Δ^{13} C \approx +4‰ when comparing the δ^{13} C value of herbarium samples collected from cool-cold forests to tropical environments against the MAP recorded (Diefendorf et al., 2010, *PNAS*), leading those authors to suggest that changes in the Δ^{13} C value of TOM recovered from the geological record can be interpreted as changes in precipitation level and/or water availability.

Because decreasing moisture availability and increasing pCO_2 level exert control over $\Delta^{13}C$ through distinctly different mechanisms (i.e., decreased stomatal conductance vs. inhibition of photorespiration, respectively), a simultaneous change in both pCO_2 level and moisture availability could combine to influence carbon isotope fractionation. Here we present experiments in which we grew 230 *A. thaliana* plants at each of 5 levels of pCO_2 : 390, 685, 1075, 1585, and 2175 ppmv. Within each growth chamber, soil moisture content (θ_m) was maintained at 1.50 g g⁻¹ for 11 days following germination. Afterwards, we allowed 170 of the plants to dry to $\theta_m = 0.83$, 0.44, and 0.38 g g⁻¹. After 3 weeks of total growth, tissues were analyzed for $\delta^{13}C$ value. We compare the isolated and combined effects of pCO_2 and soil moisture upon carbon isotope fractionation across the total range of pCO_2 levels reconstructed for the last 350 million years and across moisture levels associated with a ~4.5x change in plant biomass.