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Abstract

The recent exchange on Error Correction Models in Political Analysis and elsewhere dealt
with several important issues involved in time series analysis. While there was much dis-
agreement in the symposium, one common theme was the lack of power due to the few
number of observations for much of this work. As is well known, one result of low power is
inflated standard errors. One issue low powered time series often face is that the confidence
interval on a lagged dependent variable, even when the series is stationary, includes values
≥ 1. This is particularly problematic when calculating the confidence interval of the long
run multiplier. If the confidence interval of the lagged dependent variable includes 1, the
standard error of the long run multiplier will be explosive. As a solution, we suggest using a
Bayesian approach which formalizes the stationarity assumption by using a beta prior that is
strictly less than 1. As a result, we obtain theoretically informed estimates of the confidence
regions for the lagged of the distribution of the long run multiplier.
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1. INTRODUCTION

The recent exchange on the utility of and concerns with error correction models did not
generate much consensus on the appropriateness of those models (e.g., Enns et al, 2016;
Grant and Lebo, 2016; Keele, Linn, and Webb, 2016). What is notable, however, that there
were at last two places of agreement between the authors that have implications for users
of time series models. First, as most clearly articulated by DeBoef and Keele (2008), it
is important for practitioners to calculate the long run multiplier (LRM) and its standard
error to present a complete picture of the effect of an independent variable. Second, many
of our time series applications are short and the small number of observations limits the
power of the estimation of specification tests and important parameters.1 In the case of an
autoregressive distributed lag (ADL) model, one potential problem is that the lack of power
in the estimation may lead to the estimation of the coefficient for the lagged dependent
variable, even if the series is stationary, where the confidence interval includes 1.2 In that
case, the estimation of the variance of the LRM will be “mildly explosive”3 (which is bad).

In this paper, we examine the effects of having a short series on the estimation of the
LRM in particular and suggest a simple fix that will provide more accurate estimates of the
uncertainty in the LRM. Specifically, we propose placing a prior on the lagged dependent
variable in an ADL model that constrains the coefficient of the lagged dependent variable
to be strictly between zero and one. This prior simply incorporates the decision to treat
the series as stationary and, as we will show, leads to much more accurate estimates of
the uncertainty in the LRM and the specification of the ADL. In the next section, we
discuss the general problem, outlining the main methods for calculating the LRM and its
uncertainty. We then present a series of Monte Carlos that illustrate the problems with each
of theses approaches and the improvements due to the inclusion of a Beta prior on the lagged
dependent variable.

2. THE UNCERTAINTY OF THE LRM

The ADL model is standard approach to modeling stationary series.4 The standard set up
for an ADL(1,1;1) is:

Yt = α0 + α1Yt−1 + β0Xt + β1Xt−1 + ǫt (1)

1Freeman (2016) provides a counter to this ubiquity of small T time series.
2One may suggest that if the confidence interval for α1 contains 1, then the researcher should not treat the

series as stationary. While this might seem like a reasonable suggestion, there may be cases where stationarity
is still appropriate for small samples. Undoubtedly, if a the coefficient on the lagged dependent variable is
not significantly different than 1, that series is unlikely to reject the null of a unit root in stationarity
tests. Researchers, however, often have more knowledge about the properties of their dependent variable
beyond the small set of observations used. Researchers who are limited by the timespan of their independent
variables, for instance, may have a series that is stationary with larger T than they can use in their analyses.
The small T also means that that the stationarity tests themselves are often weak.

3We borrow this phrase from Hill and Peng (2014, 293) and Hill, Li, and Peng (2016, 126).
4We explicitly assume that the researcher is treating the dependent variable as stationary. That is, we

set aside all concerns about the small sample properties of stationarity tests, and issues of fractional or near
integration. If the researcher is not going to treat the dependent variable as stationary, none of the issues
we discuss here necessarily apply.
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In this design, the LRM is calculated as lrmADL = β0+β1

1−α1

and captures the cumulative effect of
a one unit change in Xt on Yt summed across the timespan. As such, it provides a summary
of the substantive effect of X. While they are not always reported in times series analysis,
they have become more standard in the literature. Unfortunately, the variance associated
with the estimate of the LRM seems to be much less likely to be reported.

The absence of these uncertainty estimates is due, in part, to the difficulty in calculating
variance of a ratio of parameters. In fact, existing measures of uncertainty are for the LRM
are typically calculated from an error correction model (ECM), which DeBoef and Keele
(2008: 189-190) have shown can be written as mathematically equivalent to the ADL. Equa-
tion 1 in ECM form is:

∆Yt = α0 + (α1 − 1)Yt−1 + β0∆Xt + (β0 + β1)Xt−1 + ǫt (2)

and the LRM is calculated as lrmECM = β0+β1

α1−1
. As DeBoef and Keele (2008: 191) note,

neither the ADL nor the ECM provide a direct estimate of the LRM. Instead, since the
ECM is a ratio of coefficients, the calculation of the variance of the ratio of coefficients with
known variances can be used. The formula is:

Var
(a

b

)

=

(

1

b2

)

Var(a) +

(

a2

b4

)

Var(b)− 2
( a

b3

)

Cov(a, b). (3)

An alternative calculation of the LRM from an ECM is to use the Bewley (1979) trans-
formation, which estimates the variance of the LRM directly.5 The Bewley transformation
is:

Yt = α0φ− α1φ∆Yt + φ (β0 + β1)Xt + φβ1∆Xt + φǫt (4)

where φ =
(

1

α1−1

)

and an instrument for ∆Yt is calculated as the predicted values from the

equation ∆Yt = γ0 + γ1Yt−1 + γ2Xt + γ3∆Xt + ǫt. The LRM is the coefficient on Xt from
equation 4. These two approaches are asymptotically equivalent.

In small samples, however, both of these techniques face difficulties. When the T is small,
the estimate of α1 can be imprecise. Normally, this lack of power will simple lead to inflated
standard errors and not many other issues. In this case, however, there is an additional
potential pitfall. If the confidence interval of α1 includes 1, the variance calculation will be
“slightly explosive”. This can be seen in the calculation of the LRM. If the value of α1 has
probability mass at 1. the LRM is undefined for that point. If there is mass where α1 > 1,
the denominator will be negative. In each case, the calculation of the variance breaks down.

3. BAYESIAN APPROACH

Our approach to this problem is to use a Bayesian framework. This allows us to fully
integrate the stationarity of the dependent variable by adding a prior on the coefficient that
will constrain it to be strictly between 0 and 1. In the example presented here, we use the
prior such that α1 ∼ B(1, 1) to accomplish this. This is a diffuse prior that places equal

5The Bewley transformation is a computational convenience and is not a theoretical model.
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probability on all values between 0 and 1. A more informed prior, which places more weight
to values closer to 1 may be practical, but for this example we illustrate the influence of this
design with a flat prior.6

One way to think about this prior is that it is simply the formalization of stationarity.
When a researcher treats a series a stationary, she is assume that the root of the characteristic
equation of the time series is less than one. The use of this prior constrains the estimate of α1

to be less than 1, precisely the implication of treating the dependent variable as stationary.
The actual estimation of the model is carried out via a Markov chain Monte Carlo

(MCMC). This allows us to calculate the distribution of the posterior for all of the coefficients
directly. Rather than using an asymptotic equivalent to the confidence interval of the LRM
or relying on a formula that is not easily available in most statistical output, we can calculate
the LRM for each of the draws from the posterior in the MCMC and using this distribution
to summarize the credible region of the LRM.7

4. MONTE CARLO ANALYSIS

To compare the properties of this approach versus the standard techniques, we conduct
two Monte Carlos. We generate data following an ADL(1,1;1). To explore the small sample
properties, we set T = 50. We generate the exogenous variable so that Xt = γXt−1+ηt where
γ = 0.5.8 We generate the endogenous variable so that Yt = α0+α1Yt−1+β0Xt+β1Xt−1+ ǫt
where α0 = 0, β0 = 0.5, and β1 = 0.25. ηt and ǫt are drawn from a standard normal
where cov(ηt, ǫt = 0). We vary α1 = {0.5, 0.9}. In the case where α1 = 0.5, the LRM is
0.5+0.25
1−0.5

= 1.5; when α1 = 0.5, the LRM is 0.5+0.25
1−0.9

= 7.5.
We estimate an ADL, ECM, and Bayesian ADL (B-ADL) model.9 Priors for the Bayesian

ADL are: βj ∼ N (0, 20), α0 ∼ N (0, 20), α1 ∼ B(1, 1), and ǫ ∼ G(1, 10). The Beta prior has
a uniform probability mass function (PMF) strictly between 0 and 1. Each Bayesian ADL
uses 10,000 MCMCs after a 2,500 burnin. Estimates are based on 250 simulations for each
value of α1.

5. RESULTS

Table 1 reports the results from the Monte Carlos. Each of the models recovers the expected
coefficients when α1 = 0.5. Moreover, the LRM is also correctly estimated by each of the
models. When α1 = 0.9, we again find that each of the models is able to recover the correct
coefficients. The LRM is the same for the ADL and ECM (both using the calculation of
the variance of the ratio of coefficients, or ECM-ratio, and the Bewley transformation, or
ECM-Bewley), while the B-ADL somewhat underestimates the LRM. The latter result stems

6If one has theoretical reasons to expect the coefficient on the lagged dependent variable to approach 1,
a Beta prior assuming a pmf massed near 1, such as B(5, 2), could be used. For the sake of demonstrating
the approach, however, we use B(1, 1), which will calculate a more conservative LRM.

7Implementing this approach can be easily accomplished in common statistical programs, such as R or
Stata.

8The initial X is drawn from a standard normal distribution.
9The LRM for the B-ADL is calculated by recovering the median posterior. We also calculate the LRM

for the ECM using the Bewley transformation.
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Table 1: B-ADL, ADL, ECM Estimates.

α1 = 0.5 α1 = 0.9
Variable B-ADL ADL ECM Variable B-ADL ADL ECM
Yt−1 0.46 0.46 -0.54 Yt−1 0.87 0.87 -0.13

(0.11) (0.11) (0.11) (0.05) (0.05) (0.05)
Xt 0.49 0.49 Xt 0.48 0.48

(0.17) (0.17) (0.17) (0.17)
Xt−1 0.28 0.28 0.77 Xt−1 0.29 0.28 0.77

(0.20) (0.19) (0.16) (0.17) (0.17) (0.13)
∆Xt 0.49 ∆Xt 0.48

(0.17) (0.17)
Const. 0.00 0.00 0.00 Const. 0.03 0.03 0.03

(0.15) (0.15) (0.15) (0.16) (0.16) (0.16)
LRM 1.47 1.47 1.47 LRM 7.08 7.29 7.29

(0.81) (0.29) (3.41) (5.53)
T 49 49 49 T 49 49 49

Note: Bewley LRM(βα1=0.5)=1.47, LRM(SEα1=0.5)=0.15 and Bew-
ley LRM(βα1=0.5)=7.29, LRM(SEα1=0.5)=0.39. B-ADL LRM: HDP
95%CIα1=0.5=[0.89, 2.20], HDP 95%CIα1=0.9=[2.27,32.02].

from the inclusion of the flat prior in the lower power context. Overall, each of the models
performs well in terms of bias.

Turning to the estimates of uncertainty, we find that the standard errors on the coefficients
are consistent across models for both α1 = 0.5 and α1 = 0.9. With small sample sizes, none
of the models indicate that β1 is statistically significant, even though it is a predictor of Yt in
the true data generating process. This is potentially problematic, as applied researchers often
disregard insignificant lags of independent variables, which would result in biased estimates
of the LRM.

Figure 1: Standard Error on Long Run Multiplier
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Figure 2: Upper C.I. on Lagged DV when α1 = 0.9
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Note: 1 is the theoretical upper bound.

Uncertainty estimates for the LRM differ substantially across models. Figure 1 report
the estimated standard errors for the B-ADL, ECM-ratio, and ECM-Bewley for α1 = 0.5 and
α1 = 0.9. When α1 = 0.5, the B-ADL model has a SE that over twice as large as the ECM-
ratio, and the ECM-ratio is almost twice as large as ECM-Bewley. The former is accounted
for by the influence of the prior given the small sample size. The latter result reflects the
fact that ECM-Bewley is an instrumental approach and thus tends to underestimate the
level of uncertainty in a small sample setting. The difference between the ECM-ratio and
ECM-Bewley techniques demonstrates that, while they recover the same asymptotic results,
they differ in small samples.

When α1 = 0.9, differences in the estimates of the SE are even more stark. SEs for the
LRM are approximately half the size of the coefficient for B-ADL, while the SEs for ADL
are over 5.5, reflecting the fact that ADL contains some simulations where the confidence
interval are “mildly explosive,” or greater than 1. Figure 2 makes this point more clear.
The prior on B-ADL forces estimates of the standard errors to remain within the range of
theoretically possible outcomes, whereas a non-insignificant proportion of the upper 95%
confidence intervals for ADL are greater than 1. In contrast, the SEs for ECM-Bewley are
much smaller than those of either the B-ADL or ADL models.

6. CONCLUSION

Our results demonstrate that when the coefficient on the lagged DV is moderate to small,
each approach is able to recover correct parameter estimates, including for the LRM. When
the coefficient on the lagged DV is large, however, B-ADL is preferable, as it is the only
approach that provides theoretically appropriate estimates of the uncertainty on the LRM;
ECM-ratio suffers from “explosive” SEs and ECM-Bewley underestimates the degree of
uncertainty when sample sizes are small.

In addition, the results reveal that, in small samples, analysts may underestimate the
LRM because the coefficient for Xt−1 is not statistically significant in any of the models
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at either value of α. This suggests that applied researchers should be especially careful
when selecting the lag structure of the independent variables, as the coefficients on such
variables may be incorrectly identified as lacking statistical significance owing to low power.
Discarding such variables, of course, would lead to inaccurate estimates of the LRM.
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