
SYSTEMS ASPECTS OF

COMPUTER IMAGE SYNTHESIS

AND COMPUTER ANIMATION

James F. Blinn

Jet Propulsion Laboratory

California Institute of Technology

4800 Oak Grove Drive, MS 201-209

Pasadena, CA 91109

ABSTRACT

The production of complex computer generated images generally requires

the interaction of many different programs. This paper will describe

some of the different techniques which can be employed to carry this

out. Emphasis will be on the system developed by the author and used in

the production of several planetary flyby animations and some sequences

for the Cosmos series. Details of how this system was employed to produce

some of the scenes in these films will also be discussed.

1. INTRODUCTION

Over the past few years I have been involved in the production of several

computer animated sequences of various subjects. These have required the

use of quite a wide range of techniques and have motivated the

development of several different software packages. After completing

these projects I have then had the opportunity to review the mechanisms

developed in the "heat of production" for the various special purposes

required and to attempt to draw conclusions about how the image making

process can better be performed. Some patterns are beginning to emerge

and this paper is a first attempt to document the conclusions I have

come to. This is a somewhat empirical approach to systems design. That

is, several special case systems are put together motivated just by the

needs of some particular project. They are then are analyzed to see what

things they seem to have in common. In doing this sort of examination

it is important to realize that you cannot prove that your assertions

are correct in the same sense you can prove a mathematical theorem. The

best that can be said is that the mechanisms described below seem to

work well for the problems to which they have been applied.

1.1 Multiple Program Structure

The first conclusion is that you cannot expect to develop one program

that does everything. It is much better to have a collection of smaller

programs, each of which is relevant to some small portion of the whole

process. This allows the sections of the process to be thought about and

debugged individually without needing to consider all aspects of the

system at once. This conclusion is somewhat forced upon the current

system since it is implemented on a small computer (a PDP 11) and a

program cannot be very large and still fit inside the machine. This has

a hidden advantages however, in that it forces the designer to think

about the modularity of the system earlier in the game than if programs

were allowed to grow to very large sizes before reaching the limits of

the hardware. While we are now moving to a larger machine the principles

of modularity will still apply.

The next conclusion is that it is useful to have several programs that

do effectively the same things but in different ways. The different ways

refer to the degree of generality/specificity of the program to the image

being generated. On the one hand, one may employ a general purpose

program that has very general but low level primitives. The generation

of the desired image then requires a large amount of manual input of

data and parameters. On the other hand, one may employ a special purpose

program which "knows" how to make a class of images such as the one

desired. In this case much of the data input and positioning will be

done automatically by the program based on its knowledge of the "universe

of discourse". The general but labor intensive approach is applicable

to situations where only a few images are required of something not

previously drawn. The latter case is applicable to situations where many

images are required on a restricted class of subjects. For example, we

have a general purpose articulated object animation system which will

draw arbitrary articulated objects consisting of arbitrarily shaped

element. The user must define the shape and placement of each object

explicitly. On the other hand, there is a very special purpose simulation

system for scenes in the solar system. One need merely say something

like "draw a picture of Saturn as seen from the moon Mimas on Aug 28

1981". The program will automatically calculate the positions of the

objects, pick a good view, and call upon the appropriate databases to

produce the picture. An animation system benefits from having both these

types of tools.

1.2 Loose Coupling

Once we have accepted the necessity of a diverse collection of individual

programs in the system, the main problem becomes one of making them work

together properly. This is mainly a problem of getting the necessary

data to the appropriate program at the right time. Keeping track of which

programs know about what data and how it moves from program to program

is, I feel, the most important thing to know about a system in order to

understand it. It is more important, in fact, than knowing the details

of what the programs do with the data. The details of this process are,

in fact, the main subject of this paper.

To maintain flexibility, the concept of "loose coupling" is important.

This means that the system does not have to be "totally integrated".

Certain groups of programs may be able to interpret the same data base,

others just some subset of it, others none at all. Various similar things

may be done in different ways in different contexts. This may be contrary

to what one might think of as the "ideal system", that is where everything

is rigidly consistent and everything fits into one set of rules. The

problem is that this is very constraining. It assumes the initial design

was able to foresee all possible future needs and provide for them. Such

a system stultifies experimentation with new ideas. An analogy can be

made with various other natural and artificial systems, such as computer

operating systems, the telephone system or the human brain. In each case,

the most useful and flexible system is a conglomeration of (often

incompatible) bits and pieces developed at different times for different

purposes. We cannot allow the system to become too anarchistic, however.

In parallel to the addition of new ideas to the system, effort must be

continually expended to more completely integrate existing elements. The

determination of when to follow the existing rules and when to be

radically different is not really quantifiable and is more a craft than

a science.

1.3 Unifying Techniques

There are two main unifying elements in the system discussed here. One

is the output device, the frame buffer, and the other is the input

mechanism, a common command language interpreter.

1.3.1 Frame Buffer Synergy

The fact that all image generation programs use the frame buffer as their

output device produces what I call the "Frame Buffer Synergy". This

occurs because the frame buffer enforces upon many programs a common

database for representation of images, namely the pixel array. Different

programs do different things to the frame buffer but the output of one

program is automatically suitable as the input of another if they all

operate on the frame buffer. A system, then, naturally accumulates a

collection of different programs that "do things" to the frame buffer.

They may be written at different times, by different people, without any

knowledge or expectation of each other’s existence. But they all can be

used to aid in the production of the same picture.

1.3.2 The Command Language Interpreter

The other major unifying mechanism is a common command language

interpreter which most programs use to process their input. While the

command syntax is very simple the interpreter system contains some subtle

mechanisms to greatly enhance the programmer’s ability to utilize various

previously defined code modules and subroutine libraries and integrate

them into a new main program. To begin with, commands consist of a

keyword followed by a list of parameters. The main program calls the

interpreter to get a command, branches to code specific to that command,

interprets parameters and goes back for the next command. Initially

commands come from the terminal but a built—in command can redirect input

to come from a file. Such file redirection can be nested. Parameter

interpretation optionally allows parameters to take on symbolic values

and provides for symbol/value assignment.

Finally and most importantly, the command language interpreter allows a

group of commands to be interpreted by a separate set of library

routines. By referencing the library, the programmer then automatically

provides the user with any input commands needed to manipulate the entity

that the library deals with. For example consider a library to manipulate

transformation matrices. Programmer callable routines exist for

maintaining a "current transformation", a matrix stack, and for applying

rotations, translations, scales, etc. to the current transformation. The

sub—command interpreter routine will then accept a command keyword

received from the CLI parser and generate a call to the appropriate

routine.

The command interpretation loop of the main program then includes a call

to this sub—command interpreter as well as its own commands to draw some

primitive object according to the current transformation. The user of

the program will generally first enter the transformation commands to

define the position of the object and then enter the drawing commands.

Such topical command groupings and their associated function libraries

and internal databases have, in fact become a major programming element

within the system. Such a structure corresponds in many respects with

the concept of a "class" in Smalltalk systems. Ultimately a main program

would simply consist of a series of initialization calls, the command

interpretation loop, and nothing else.

The communication of data between programs can take place in many ways.

Some methods are facilitated by certain operating systems. UNIX provides

the useful mechanism of pipes, Multics allows dynamic linking of

libraries, etc. Our system performs this communication with the logical

equivalents temporary files, usually in the format of command lists. One

program would then write out a command file in the appropriate format

for another. This is slower than some other schemes but it has the

advantage of leaving a record of the intermediate stages of picture

generation for easy retry and debugging purposes.

1.4 Document Overview

The following sections will discuss the details of various of the image

making tools and how they communicate. The programs are divided into

three rough categories.

1) Modeling

2) Simulation

3) Rendering

We will describe them more in the order in which they were developed

rather than the order of invocation or use.

2. RENDERING — LOW LEVEL

This section will deal with various low level rendering programs. The

term low level refers to the fact that they each deal with one type of

object and will typically be used in sequence by the high level rendering

programs of section 5 to build up a composite image.

We have, in our tool kit, the standard collection of rendering programs

which operate on databases consisting of polygons, quadric surfaces or

patches. In addition there are several rendering programs for special

cases of these shapes. For example there is a program that draws textured

spheres, used for drawing planets. There is another program for drawing

rings, etc. The special purpose programs take advantage of the special

properties of their specific object to increase the rendering speed or

improve the visual appearance.

2.1 General Operation of Rendering Programs

The particular technique used for high level image composition will

determine the general strategy which must be used by the low level

programs. In our case the high level image composition is performed by

temporal priority. To be compatible with this technique, each low lever

rendering program simply overlays its image in the frame buffer on top

of what is there already. Currently, all programs operate in scan line

order.

In each case, the general operation of the program is the same. The

operator gives commands to set various viewing parameters, surface

properties, and modeling transformations. Other commands cause the

appropriate primitive element to be generated. For some special case

programs, a single DRAW command will initiate the rendering of the

appropriate object according the currently set viewing/shading

parameters. For programs that deal with collections of more general

primitives, each primitive drawing command passes the data down the

pipeline to be accumulated in a buffer. The DRAW command then initiates

the sorting and rendering of this buffer. For debugging/testing these

commands may be entered manually on the keyboard. Alternatively, just

the initial view selection comes from the keyboard and the input is

redirected to a file to read a more complex model for rendering. When

used with the high level image rendering programs, the view selection

commands are automatically generated by another program.

2.2 Special Purpose Renderers

There are a wide variety of special purpose renderers in use for various

purposes. For the most part they are fairly simple programs that overlay

some fairly simple image in the frame buffer. Some examples are: a star

field drawing program that references a large star database and draws

anti—aliased dots on the screen, or a program that draws a two

dimensional blurred spot to represent the sun. Some of the special

purpose programs are more complex and deserve special mention.

2.2.1 PLANET (Draw Textured Ellipsoids)

An example special purpose rendering program is PLANET, which draws

textured spheres. Since it draws only one sphere at a time it doesn't

bother with Z sorting or testing. In addition to the the standard viewing

and lighting specification parameters it has some other special purpose

features necessary for space scenes. The most obvious is texture mapping.

The texture map is referenced while the image is scanned out to set the

surface color, normal vector perturbation, etc. Such maps are paged in

and out of disk files while the image is rendered using a LRU paging

strategy. Each "page" in this case is a 32x32 square pixel sub—array of

the map. This method of subdividing the map minimizes the chance of

thrashing in the texture file. Another special feature provides for

shadowing effects of a ring structure surrounding the planet. For each

pixel in the image the appropriate geometric calculations are performed

to intersect the line between the planet surface and light source with

the ring plane. The radius of this intersection is then used to index a

one dimensional texture map containing the radial density distribution

of ring particles. The brightness of the pixel is then reduced

appropriate to the blocking effect of the rings. Another special feature

is eclipse simulation. This is another shadowing effect dues in this

case, to another spherical body in front of the sun. In this case, for

each pixel, the programs determines the angular separation between the

occulting body and the sun. This is used to calculate the proportion of

the sun's disk which is blocked off by the eclipsing planet and again

reduces the intensity of the pixel appropriately. This has the effect

of simulating the umbra/penumbra properly for eclipses. Since these two

shadowing calculations slow down the rendering process they may be

enabled by a global switch within the program, and are thus only used

when necessary.

2.2.2 RINGS (Draw Textured Translucent Disks)

Another special purpose program is RINGS which draws an arbitrarily

oriented circular translucent disk. It will, in fact draw only half the

disks where the break occurs at the plane parallel to the viewing

direction which passes through the center of the disk. This split is

used to properly draw a ringed planet by running RINGS to draw the back

half, then PLANET to draw the disk of the planet, and RINGS again to

draw the front half. The intensity and transparency of the rings are

calculated using a reflection model appropriate to clouds of particles.

The density and albedo of the ring particles is taken from a one

dimensional texture pattern file which is indexed by the radius of the

visible point from the ring center. In addition, there is included a

procedural model for some radial structures in the rings which orbit the

planet at different rates at different radii.

2.2.3 TEXFLY (Square Texture Mapper)

Another useful special purpose program is TEXFLY, which has a single

textured square as its sole primitive. This is similar to a program

called TEXAS by A.R. Smith at NYIT. The square can be arbitrarily scaled

and oriented in three dimensions and rendered with various intensity and

transparency patterns. The very simple geometry of this shape makes it

run quite quickly. It has been used as a post processing step to overlay

some surface features on the Voyager spacecraft.

2.3 General Purpose Renderers

2.3.1 The Three Pass Process

More general programs which operate on collections of primitives

(polygons, patches etc.) in scan line order are usually separated into

three passes. The first pass simply interprets viewing/modeling

transformations, assigns shading parameters, and transforms the

primitive objects and accumulates them in a buffer. The second pass sorts

this buffer in Y order. The third pass renders the image from the Y

sorted list. To maximize available buffer size and thus the complexity

of objects we can draw these three passes are implemented as separate

programs. The V sorted buffer is implemented as a temporary file. The

I/0 operations on this temporary file do slow down the process a bit,

but not a great deal. The advantage gained is that the rendering pass

only needs maintain in main memory only those elements which are active

on the current scan line.

Three sets of programs have currently been implemented using this

strategy. They deal with polygons, bicubic patches, and "blobby

molecules" used in the Cosmos DNA sequence. The databases to describe

shapes to these programs are then simply command files which can be

generated in a variety of ways. In addition, for speed, pass 1 of the

polygon processor can also interpret a binary version of a command file.

A simple pre—processor reads the text command file and generates the

binary file. Thus objects which are going to be drawn repeatedly may be

debugged via the text version of the model and then "compiled" into the

binary version.

2.3.2 Special Purpose Pass 1 Processors

The use of temporary files for the Y list allows another degree of

flexibility. For certain cases the geometry of a particular object allows

a simpler internal representation than explicitly defining each

individual primitive. In this case a special program can use this

representation to generate the Y list file directly in sorted order.

This would then replace the general purpose pass 1 program and eliminate

the need to run the pass 2 sorter.

One example of this technique was used in the DNA simulation. In this

case, the large macro—molecule is made of a relatively few monomers of

25 to 30 atoms each. A large storage and time reduction can be achieved

by representing the molecule in terms of the locations and orientations

of these monomers and storing the definition of a monomer only once. The

V list of the individual atoms may be generated directly by sorting the

monomers first. This list is then scanned in order of their Y appearance,

expanding the monomers into the explicit atom list.

Another example concerns a simple terrain rendering scheme. The altitudes

of a region of terrain are generated assuming a regular grid spacing.

These can be stored in an appropriately scaled byte array. Pointers into

this array are then sorted in Y. A global Y scan then directly generates

a Y sorted polygon list by assuming the connectivity of the points due

to the regular grid spacing. This technique was used to simulate a fly—

over of a crater on the moon Mimas for the second Voyager Saturn encounter

movie.

3. MODELING

The modeling process is basically that of database generation. Such

databases generally consist of text files of commands to the various

rendering programs, and binary files of texture maps.

3.1 Geometric Modeling

The most often used modeling program in the system is the text editor.

Quite a few of the modeled objects were generated essentially manually

by reading and measuring blueprints or other diagrams and simply typing

the coordinates into a file, along with the appropriate commands for the

renderer. This approach is not as unpleasant as it may seem however. In

many cases, the actual coordinates or sizes of objects are already marked

on the blueprints. In additions certain "medium level" primitive commands

are provided in the pass 1 portion of the rendering program. These

consist of single commands for such frequently encountered shapes as

boxes, surfaces of revolution, or tubular struts. The medium level

primitives are then automatically expanded into the proper set of low

level primitives when the pass 1 executes. In addition, the inclusion

of comments within this database file provides a valuable documentation

for future modifications to the model. Finally, the use of symbolic

parameters for various quantities is already built in to the command

language interpreter. Parametrized models are therefore easy to create.

It must be noted, however, that if this technique is used, any programs

processing the model might need to keep these parameters in unexpanded

form to properly process the now implicitly procedural model.

In addition to manual editing, there are a few simple menu/tablet driven

modeling programs. These programs all allow more natural "drawing" modes

of input to edit the location, sizes and types of object primitives. In

each case the programs can read in a text file containing commands to

the rendering program, build an appropriate internal data structure,

allow the user to edit the structure interactively and finally write out

a new command file. Such programs currently exist for patch design,

polygon digitizing, and composite object design using a list of arbitrary

primitive shapes. In the latter case the user is not so much designing

shapes as a "tree of transformations" as discussed below.

Various special purpose design programs have also been written for

various projects. For example several molecule generators were devised

for the DNA project which placed Hydrogen atoms in appropriate places

on molecules or which generated randomly positioned blobs to define an

enzyme. Basically, given the definition of the format of the text

commands for a particular rendering program it is fairly easy to quickly

put together programs to generate data in that format via some desired

algorithm.

3.2 Texture Pattern Generation

In addition to designing shapes it is also necessary to generate texture

patterns for the various texture mapping programs.

Simple one dimensional textures (e.g. rings) are generated via a general

purpose curve manipulation command. This provides a means of performing

various simple arithmetic operations on tables of numbers derived from

previously digitized images.

Two dimensional texture patterns are derived in a variety of ways.

Generally, a texture pattern is taken from a region of the frame buffer

so that any image synthesis or image processing program can be used to

generate or alter a pattern. We have a collection of general purpose

random number drawers, image rotation and stretching programs, image

filtering programs, etc. In additions some special purpose programs have

been written to process images of moons into maps. These effectively run

the image synthesis process in reverse, distorting the image into a map

projection.

Finally, frame buffer painting programs can be considered as a database

generation tool for texture mapping. Certain special features have also

been added here that are useful for spherical mapping. One interesting

example concerns the generation of the terrain map for Mimas. A

photograph of the moon gives a good general feel for the topography of

the surface. Automatic methods for extracting this topography from the

sighting parameter were not successful, however. A topographic map was

finally obtained by using a painting—style program in "pantograph" mode.

A map projected image of the surface was placed on the bottom half of

the display and the operator traced out the visible craters. The craters

were simultaneously applied to the actual map on the top of the screen

by means of a special "carving" brush mode. This mode added or subtracted

values from the image to raise or lower the generated terrain.

4. SIMULATION

A simulation program is basically the prime mover of the animation. Its

main function is to alter various numerical parameters that define the

appearance of the frame. A subsidiary, but very important, function is

to provide a schematic preview of the animation on some fast output

device. This is typically a line drawing display, the preview is

effectively a "line test" of the animation.

4.1 Techniques

There are two general categories of parameters which change from frame

to frame. They are 1) transformation parameters and 2) anything else.

Transformation parameters are singled out especially here because they

are so important. Typically a scene will be defined in terms of a "tree

of transformations". This consists of the set of nested rotations,

translations and scales that place each object in its correct position

at its correct size. The nesting of these transformations allows objects

to be arbitrarily articulated. The numerical values assigned to these

transformations can then be varied to give a wide variety of motions.

Many animations require no more than this. Other more general types

require, in addition, alteration of brightnesses, texture patterns etc.

There are, in turns two general ways of specifying the way parameters

vary, called here incremental and absolute. In the absolute mode, the

value of each parameter is specified in a table for each key frame. When

an intermediate frame is to be generated, some form of interpolation is

performed on the surrounding table values. In the incremental mode, the

program maintains the current state of the scene and is instructed to

perform incremental modifications to it according to some rules. Absolute

mode is usually more convenient to use when designing animation since

it allows previewing of frames in arbitrary order or repeated playbacks

of frame number ranges within the script. Incremental mode is necessary,

however, for situations in which the connectivity of some data structure

must be modified or in "particle pushing" types of physical simulations.

4.2 Tools

4.2.1 System Commands

One animation tool that everyone with a computer has immediately is the

command language of the operating system. Most operating systems allow

for commands to come from files and, in addition, allow for looping and

symbolic variable manipulation within the command file. This mechanism

has a tremendous advantage in that it is interpretive. Changes to the

sequence of events necessary to make an image can therefore be made

quickly with the text editor. No programs need to be changed. A

disadvantage of using just the system command language is that it is

quite difficult to perform line tests to verify that the animation will

come out as desired. Also, since the command language was not designed

for this purpose, its use sometimes becomes somewhat inelegant. The

advantages in generality provided by the interpretive nature are

substantial however and the method described below allows its use in

combination with more specialized simulation programs.

4.2.2 General Purpose Articulation Program

Perhaps the most useful programming tool designed specifically for

animation is the general purpose transformation tree articulator. This

program internally stores a transformation tree and a set of line drawing

of the primitives. The transformation tree structure can have

"subroutines", i.e. higher order primitives defined in terms of

transformation trees of lower order primitives. The program can then

generate line drawings of the resulting environment by interpreting this

structure. It allows the user to manipulate the parameter values for the

various transformations in the tree and redraw the resultant image. Such

parameters are assigned symbolic names. A named variable can be set

either via keyboard commands, can be adjusted under knob control, or can

be interpolated between keyframe values. Systems of this sort, dealing

purely with line drawings, have been implemented by DeFanti, O'Donnell

and Olson, and probably several others.

In order to interface to the rendering programs such a system needs just

a few more 'hooks' to dump out the transformation tree with all parameter

assignments made and with all tree 'subroutines' expanded explicitly.

Garland Stern's BOOP system at NYIT has these capabilities as does the

ARTIC program at SPL. In order to be applicable to the widest range of

situations certain things must be done. The first of these refers to the

definitions of the primitives. In order to be applicable to a wide range

of primitive types (e.g. polygons, patches, blobby molecules or something

new not invented yet) the ARTIC program makes no assumptions about the

solid modeling scheme for the primitive. It sees only a definition

containing a schematic line drawing version of the shape. The user is

responsible for creating this file in any one of several ways. Most

easily, there are several pre-processors for the various standard

modeling primitives (polygons, surfaces of revolution, patches) which

read the solid model file (which is going to be passes to the rendering

program) and generates a line drawing version. Here, the solid model

file is the "main" version of the database and the line drawing version

is just a derived version of it. Alternatively, the user could generate

a simplified form of the line drawing purely manually.

4.2.3 Special Purpose Space Simulator

For various applications the values of the transformation parameters may

need to be generated by some functional calculation rather than by

explicit numeric settings. An example of this is the space simulation

program used for the Voyager fly-by movies. This is a special purpose

program for simulating planetary astronomy. Its two main features are

the mathematical modelling of the paths of the planets, moons and

spacecraft according to Kepler's laws and a fairly sophisticated view

selection algorithm for determining viewing position and direction in

terms of some visually meaningful parameters.

4.2.3.1 Physical Simulation

The main structure of the modeled environment consists of a built-in

transformation tree for the planetary system. This positions the moons

and spacecraft relative to the planet, orients the planet and moons with

their pole vectors pointing in the appropriate directions and spins them

about their poles at the correct rates. In addition the spacecraft is

oriented and articulated in an analog of the manner done by the onboard

computer of the spacecraft. The values of positions, and rotation angles

are made dependent upon the single parameter TIME. Whenever time is

altered the appropriate calculations are performed to update these

values.

4.2.3.2 View Selection

Since the positions and orientations of the objects are completely

specified by the time of the simulation, the only freedom we have in

specification of the image is the viewing location and direction. There

are several viewing modes which may be employed to generate these two

parameters.

Omniscient Mode

The main viewing mode is for an omniscient observer situated at some

vector offset from any one of the simulated bodies, called the 'from'

body. This vector may be specified in one of two ways, as a fixed x,y,z

vector or as a fixed distance and an automatically calculated direction.

The latter mode determines what direction relative to the 'from' body

the observer must be in in order for the 'from' body to appear on the

screen at a given x,y location. The viewing direction is also determined

according to one of two modes. It may be explicitly specified in terms

of its x,y,z coordinates. Alternatively it may be specified in terms of

another simulated body, the 'at' body. In this mode the viewing direction

is automatically calculated to be that which causes the 'at' body to

appear at a given x,y screen location. For certain combinations of

from/at modes there is no closed form equation to satisfy all the

constraints. A solution is then determined numerically.

Camera Mode

An alternative viewing mode is to simulate a view through the onboard

cameras of the spacecraft. In this case the spacecraft modeling

parameters are examined and the appropriate view is generated according

to the pointing direction of the camera and the spacecraft orientation.

Planet Surface Mode

This mode simulates a viewer sitting on the surface of one of the

simulated bodies. The viewing position is specified in terms of the

latitude, longitude and altitude above the surface. The viewing direction

is specified in terms of the azimuth and elevation of the view direction

relative to the local horizon and north direction.

4.2.3.3 Switching Viewing Modes

The various viewing modes provide a great deal of flexibility in finding

interesting views in a given situation. One important feature is also

necessary for smooth animation. Whenever the user switches modes the

program will automatically calculate the appropriate numerical

parameters for the new mode which will generate the >same< view. This

allows easy transitions from one mode to another without introducing

jumps in the picture.

4.2.3.4 Animation Commands

The animation of space scenes is carried out in absolute mode. There is

a table of the values of the various viewing parameters as well as a few

spacecraft articulation parameters, for each key frame. A new key frame

is usually generated by adjusting various parameters under knob control.

A command is then given to record the current parameters in the animation

keyframe table at a certain keyframe number. When an animated sequence

is played back, all the table values are interpolated appropriately and

given back to the view generation routines.

When the space simulation program is instructed to make a color frame

it writes out the values of all the internal parameters and invokes the

frame buffer scene scheduler program described in section 5.

4.2.4 Special Purpose DNA simulation

The DNA simulation system is another special purpose articulation program

which has many built—in parameter calculations and transformation tree

structures. In this case, the physical simulation is quite complex while

the view selection is quite simple.

4.2.4.1 View Selection

The interpolation of viewing parameters is done in a manner similar to

the space simulation, but with a considerably simpler method of

specifying viewing parameters. The view is specified simply by a field

of view, center of interest point, distance from view point angular

direction of observer and tilt of camera. These parameters may be

adjusted via knob control. When a desired view was found they were stored

in a keyframe table which was used for interpolation upon playback.

4.2.4.2 Physical Simulation

The DNA simulation program represents the molecular system as a

collection of modules which are each rigid bodies and are connected

together at rotatable joints. Each monomer is defined in terms of the

location and orientation of its joints and as a list of the locations

of its constituent atoms. Whenever a particular monomer is moved or

rotated, a recursive connection tracer applies the same transformation

to all other modules bonded to it. Each connected structure is assigned

a velocity and tumbling speed which, upon each frame time simulation,

are added to the current position and applied to the current orientation,

respectively.

Since the animation of the molecular motion consisted of breaking and

relinking bonds repeatedly, the absolute mode of simulation is not

appropriate. Instead, the animation is driven by commands that 1) set

the velocities 2) break and re—form bonds and 3) run the simulation

forward by some number of time steps. The "script" for a sequence is,

then, a list of such commands. First, commands to set some velocities,

and break and reform bonds. Then a simulate command. Then more

velocity/bond alterations. Then another simulate command, etc. The

animation is then performed as the file is read. This makes moving

directly to any given frame a bit difficult. If the desired frame is

later than the current one, the file just continues to be read. If the

desired frame is earlier than the current ones the program must be

reinitialized from the beginning frame and run forward to the desired

frame.

In fact, doing the entire film by this technique would be very difficult

due to the complexity of the motion. Since much of the motion is actually

initiated by the two enzymes in the film, two enzyme simulation routines

were added to the program. Each of these routines consisted of a finite

state machine which counts simulation time steps, performs some velocity

alteration and/or bond relinking operation, resets the time step counter

to a new value, and then changes to a new state. For example, the helicase

simulation has two states, 1) prying apart and 2) moving down. At each

time steps the first state rotates the two separate strands about their

bonds by a small incremental angle and rotates the main double helix in

the reverse direction by the same amount. The second state moves the

helicase down one base pair. The polymerase simulation has four states

involving 1) waiting for a nucleotide, 2) pushing the nucleotide in

place, 3) retracting and moving to the next nucleotide position and 4)

removing an erroneously matched nucleotide. The transition from state 3

to state 1 for example, generates a new incoming nucleotide by adding

it to the database in such a position and at such a speed that it would

fly into place just as state 1 expires and changes to state 2.

The randomly floating background nucleotides were driven by a simple

program that generates their paths randomly, but in such a manner that

they do not collide with the main DNA strand. The output of this program,

when interspersed with enzyme directing commands then forms the main

script of the movie.

When the simulator program is instructed to make a color frame, it writes

the locations and orientations of the modules to a temporary file and

invokes the module expansion program described in section 2.3.2.

5. RENDERING - HIGH LEVEL

High level rendering techniques concern themselves with building up

images consisting of several disparate low level primitive types. The

idea here is that the low level rendering programs do not need to know

anything, or at least very little, about each other’s operation. The

high level rendering technique causes them to be invoked in the proper

manner.

5.1 Techniques

The main problem the high level rendering system must solve is the

occlusion problem. There are several strategies which may be employed,

of which the two most popular are Z buffers and Temporal priority (also

called the Painter's algorithm).

5.1.1 Z Buffers

With Z buffers, the low level primitives must all reference a common Z

buffer and will presumably have their Z values scaled into the same

coordinate space. Otherwise they do not need to know about each other.

Using this scheme, the high level scheduler can invoke the low level

programs in virtually any order. This is convenient for complex texture

mapping since all objects painted with a particular pattern can be

rendered at once. Thus only one texture needs to be referenced at a time.

Z buffers also solve the problem of arbitrarily intersecting primitives

easily.

Z buffers, however, have some severe problems for the space images

considered here. For space scenes, the very large range of values in Z

would require a Z buffer with very many bits of precision to have the

resolution necessary to keep things properly hidden. In addition, anti-

aliasing calculations are inconvenient with this scheme.

5.1.2 Temporal Priority

The basic idea behind temporal priority is to draw the objects in the

scene in the order back to front. The later objects simply overlay the

earlier objects. Temporal priority works well for space scenes because

the different objects do not intersect (or at least are not supposed

to).

5.2 Space Simulation Global Scheduler

The high level rendering scheduler for space scenes is a fairly

specialized program which takes the frame state information file from

the space simulator program and generates the command files to render

the image on the frame buffer. It consists of four phases:

1) Global clipping — An enclosing sphere about each object (moon or

spacecraft) is tested against the viewing volume. Those objects

completely outside this volume are removed from further consideration.

2) Global Z sort — This then sorts the remaining probably visible objects

in back to front order.

3) Generation of individual command files — A command file is generated

for each visible object consisting of the transformation commands for

placing it in viewing space, various surface lighting and texture map

definition commands, etc. At this point some mutual shadowing

calculations are performed. If a moon is in shadow behind the planet its

brightness parameter, written out here, is decreased by 1/4.

4) Generation of global system command file — This is a system command

file that runs the appropriate rendering programs in the z sorted order

and tells them to read their commands from the appropriate file written

during step 3. The appropriate rendering program to use for a particular

body is taken from a table which is set up upon initialization of the

high order renderer. Here also some shadowing calculations are performed.

If a line from the sun to a moon intersects the planet on the sunlit

side an extra command is added to the global file to run a program that

places a black dot at the appropriate screen location.

Finally, control is given to the system to read commands, not from the

file in step 4 but from another static file. This file in turn references

the step 4 file and then does some clean—up operations, such as saving

the image. The overhead for all this file manipulation may seem excessive

but, in practice, it is negligible compared to the running time of the

primitive renderers.

There are several useful features to this approach. First it allows for

easy retry or debugging of an image since the commands and data files

remain after the program terminates. Secondly it allows for some after—

the—fact changes to the step 4 file by inserting suitable commands before

or after its invocation by the global file. Two cases where this was

used were during the title sequence of the Voyager Saturn movie. In these

cases an explicit run of TEXFLY, for a record overlay, or the polygon

renderer, for the title letters, was inserted just after the invocation

of the step 4 file.

6. PRODUCTION

When the programs, databases and script definitions have all been

prepared we are then ready to do production of the frames of the film.

This essentially involves placing the simulator program in a loop

generating frame information, passing it to the rendering program and

saving the frames away somewhere.

6.1 Buffering Schemes

After a frame is generated it may be stored on various different media.

The decision on where to save the frames depends on a set of trade-offs

based on the resolution of the image (number of bytes to store), size

of available mass memory (how much room you have to store it) and the

need to recover from errors or make last minute changes to certain

frames.

The available options are:

1) record directly on film as images are generated

2) record directly on video tape as images are generated

3) save images on disk/tape for later play-back to hard copy device

4) buffer intermediate data files for later image calculation

Note that any of these can be selected by editing the command file which

controls the image saving. Option 4 is not so much a buffering scheme

as a parallel processing scheme. It was used in the DNA sequence to

accumulate Y sorted atom lists on tape for later farming out to several

different computers.

To evaluate the other three options we first list some representative

memory requirements and capacities

Video resolution 8 bit run length encoded frame .10 to .25 Mbyte

Video resolution RGB run length encoded frame .25 to .75 Mbytes

High resolution (2000x2000) RGB image 4.0 to 12. Mbytes

2400' Magnetic tape @ 1600 BPI 39.0 Mbytes

High density disk pack 256.1 Mbytes

From these figures we can form some conclusions:

Option 1 is dangerous since it provides the least opportunity to recover

from errors. A single bad frame in a run that may last days can ruin the

entire run. For the highest resolution images, however, it may be the

only reasonable solution. It is hardly reasonable to require 8 tapes or

one disk pack per second of running time. Later developments of higher

density storage may alter this situation, however.

Option 2 is relatively safe since single frame video recorders have the

capability to go back and insert replacement frames for bad ones. The

disadvantage is the extra cost of the equipment and the fact that NTSC

video is somewhat lower resolution than 16 mm film recorded in RGB.

Option 3 is quite safe since it allows digital editing of bad frames,

i.e., a frame is recalculated and saved in a file which replaces the bad

frame. It is somewhat slow, however due to the massive amounts of data

transfer required. This happens to be the method currently used for our

system at JPL. There are some convenient side effects to this mode.

Frames are stored one per file, in files named with some prefix string

followed by the frame number. We can then generate the frames in non-

sequential order and play them back in the proper order. One convenient

usage of this technique is to generate widely spaced frames first to

check the global appearance of the animation. By doing every 64 frames,

then filling in the frames halfway between them, then filling in the

frames halfway between them, etc. we will generate a sort of binary

search for the movie. At any time we will have the entire movie done,

just at different levels of jerkiness. On the next to last step, when

all even numbered frames have been generated, it is possible to proceed

to the odd numbered frames only for those scenes for which it is

necessary. Thus saving time on slowly moving portions of the film.

Note that this frame/file naming convention allows the directory look

up mechanism of the file system to do the frame sorting for us implicitly.

6.2 Checking and Filming

While frames are being generated a log file is maintained to keep track

of which frames are finished and where they are stored. At various times

during the production runs completed frames are played back on the frame

buffer to verify that they are correct and erroneous frames are re—

generated. Finally, the whole sequence is played back in sequence before

a stop motion animation camera to create the finished film.

