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ABSTRACT 

The production of complex computer generated images generally requires 

the interaction of many different programs. This paper will describe 

some of the different techniques which can be employed to carry this 

out. Emphasis will be on the system developed by the author and used in 

the production of several planetary flyby animations and some sequences 

for the Cosmos series. Details of how this system was employed to produce 

some of the scenes in these films will also be discussed. 

 

1. INTRODUCTION 

Over the past few years I have been involved in the production of several 

computer animated sequences of various subjects. These have required the 

use of quite a wide range of techniques and have motivated the 

development of several different software packages. After completing 

these projects I have then had the opportunity to review the mechanisms 

developed in the "heat of production" for the various special purposes 

required and to attempt to draw conclusions about how the image making 

process can better be performed. Some patterns are beginning to emerge 

and this paper is a first attempt to document the conclusions I have 

come to. This is a somewhat empirical approach to systems design. That 

is, several special case systems are put together motivated just by the 

needs of some particular project. They are then are analyzed to see what 

things they seem to have in common. In doing this sort of examination 

it is important to realize that you cannot prove that your assertions 

are correct in the same sense you can prove a mathematical theorem. The 

best that can be said is that the mechanisms described below seem to 

work well for the problems to which they have been applied. 

 

1.1 Multiple Program Structure 

The first conclusion is that you cannot expect to develop one program 

that does everything. It is much better to have a collection of smaller 

programs, each of which is relevant to some small portion of the whole 

process. This allows the sections of the process to be thought about and 

debugged individually without needing to consider all aspects of the 



system at once. This conclusion is somewhat forced upon the current 

system since it is implemented on a small computer (a PDP 11) and a 

program cannot be very large and still fit inside the machine. This has 

a hidden advantages however, in that it forces the designer to think 

about the modularity of the system earlier in the game than if programs 

were allowed to grow to very large sizes before reaching the limits of 

the hardware. While we are now moving to a larger machine the principles 

of modularity will still apply. 

The next conclusion is that it is useful to have several programs that 

do effectively the same things but in different ways. The different ways 

refer to the degree of generality/specificity of the program to the image 

being generated. On the one hand, one may employ a general purpose 

program that has very general but low level primitives. The generation 

of the desired image then requires a large amount of manual input of 

data and parameters. On the other hand, one may employ a special purpose 

program which "knows" how to make a class of images such as the one 

desired. In this case much of the data input and positioning will be 

done automatically by the program based on its knowledge of the "universe 

of discourse". The general but labor intensive approach is applicable 

to situations where only a few images are required of something not 

previously drawn. The latter case is applicable to situations where many 

images are required on a restricted class of subjects. For example, we 

have a general purpose articulated object animation system which will 

draw arbitrary articulated objects consisting of arbitrarily shaped 

element. The user must define the shape and placement of each object 

explicitly. On the other hand, there is a very special purpose simulation 

system for scenes in the solar system. One need merely say something 

like "draw a picture of Saturn as seen from the moon Mimas on Aug 28 

1981". The program will automatically calculate the positions of the 

objects, pick a good view, and call upon the appropriate databases to 

produce the picture. An animation system benefits from having both these 

types of tools. 

 

1.2 Loose Coupling 

Once we have accepted the necessity of a diverse collection of individual 

programs in the system, the main problem becomes one of making them work 

together properly. This is mainly a problem of getting the necessary 

data to the appropriate program at the right time. Keeping track of which 

programs know about what data and how it moves from program to program 

is, I feel, the most important thing to know about a system in order to 

understand it. It is more important, in fact, than knowing the details 

of what the programs do with the data. The details of this process are, 

in fact, the main subject of this paper. 

To maintain flexibility, the concept of "loose coupling" is important. 

This means that the system does not have to be "totally integrated". 



Certain groups of programs may be able to interpret the same data base, 

others just some subset of it, others none at all. Various similar things 

may be done in different ways in different contexts. This may be contrary 

to what one might think of as the "ideal system", that is where everything 

is rigidly consistent and everything fits into one set of rules. The 

problem is that this is very constraining. It assumes the initial design 

was able to foresee all possible future needs and provide for them. Such 

a system stultifies experimentation with new ideas. An analogy can be 

made with various other natural and artificial systems, such as computer 

operating systems, the telephone system or the human brain. In each case, 

the most useful and flexible system is a conglomeration of (often 

incompatible) bits and pieces developed at different times for different 

purposes. We cannot allow the system to become too anarchistic, however. 

In parallel to the addition of new ideas to the system, effort must be 

continually expended to more completely integrate existing elements. The 

determination of when to follow the existing rules and when to be 

radically different is not really quantifiable and is more a craft than 

a science. 

 

1.3 Unifying Techniques 

There are two main unifying elements in the system discussed here. One 

is the output device, the frame buffer, and the other is the input 

mechanism, a common command language interpreter. 

1.3.1 Frame Buffer Synergy 

The fact that all image generation programs use the frame buffer as their 

output device produces what I call the "Frame Buffer Synergy". This 

occurs because the frame buffer enforces upon many programs a common 

database for representation of images, namely the pixel array. Different 

programs do different things to the frame buffer but the output of one 

program is automatically suitable as the input of another if they all 

operate on the frame buffer. A system, then, naturally accumulates a 

collection of different programs that "do things" to the frame buffer. 

They may be written at different times, by different people, without any 

knowledge or expectation of each other’s existence. But they all can be 

used to aid in the production of the same picture. 

1.3.2 The Command Language Interpreter 

The other major unifying mechanism is a common command language 

interpreter which most programs use to process their input. While the 

command syntax is very simple the interpreter system contains some subtle 

mechanisms to greatly enhance the programmer’s ability to utilize various 

previously defined code modules and subroutine libraries and integrate 

them into a new main program. To begin with, commands consist of a 

keyword followed by a list of parameters. The main program calls the 

interpreter to get a command, branches to code specific to that command, 



interprets parameters and goes back for the next command. Initially 

commands come from the terminal but a built—in command can redirect input 

to come from a file. Such file redirection can be nested. Parameter 

interpretation optionally allows parameters to take on symbolic values 

and provides for symbol/value assignment. 

Finally and most importantly, the command language interpreter allows a 

group of commands to be interpreted by a separate set of library 

routines. By referencing the library, the programmer then automatically 

provides the user with any input commands needed to manipulate the entity 

that the library deals with. For example consider a library to manipulate 

transformation matrices. Programmer callable routines exist for 

maintaining a "current transformation", a matrix stack, and for applying 

rotations, translations, scales, etc. to the current transformation. The 

sub—command interpreter routine will then accept a command keyword 

received from the CLI parser and generate a call to the appropriate 

routine. 

The command interpretation loop of the main program then includes a call 

to this sub—command interpreter as well as its own commands to draw some 

primitive object according to the current transformation. The user of 

the program will generally first enter the transformation commands to 

define the position of the object and then enter the drawing commands. 

Such topical command groupings and their associated function libraries 

and internal databases have, in fact become a major programming element 

within the system. Such a structure corresponds in many respects with 

the concept of a "class" in Smalltalk systems. Ultimately a main program 

would simply consist of a series of initialization calls, the command 

interpretation loop, and nothing else. 

The communication of data between programs can take place in many ways. 

Some methods are facilitated by certain operating systems. UNIX provides 

the useful mechanism of pipes, Multics allows dynamic linking of 

libraries, etc. Our system performs this communication with the logical 

equivalents temporary files, usually in the format of command lists. One 

program would then write out a command file in the appropriate format 

for another. This is slower than some other schemes but it has the 

advantage of leaving a record of the intermediate stages of picture 

generation for easy retry and debugging purposes. 

 

1.4 Document Overview 

The following sections will discuss the details of various of the image 

making tools and how they communicate. The programs are divided into 

three rough categories. 



1) Modeling 

2) Simulation 

3) Rendering 

We will describe them more in the order in which they were developed 

rather than the order of invocation or use. 

 

2. RENDERING — LOW LEVEL 

This section will deal with various low level rendering programs. The 

term low level refers to the fact that they each deal with one type of 

object and will typically be used in sequence by the high level rendering 

programs of section 5 to build up a composite image. 

We have, in our tool kit, the standard collection of rendering programs 

which operate on databases consisting of polygons, quadric surfaces or 

patches. In addition there are several rendering programs for special 

cases of these shapes. For example there is a program that draws textured 

spheres, used for drawing planets. There is another program for drawing 

rings, etc. The special purpose programs take advantage of the special 

properties of their specific object to increase the rendering speed or 

improve the visual appearance. 

 

2.1 General Operation of Rendering Programs 

The particular technique used for high level image composition will 

determine the general strategy which must be used by the low level 

programs. In our case the high level image composition is performed by 

temporal priority. To be compatible with this technique, each low lever 

rendering program simply overlays its image in the frame buffer on top 

of what is there already. Currently, all programs operate in scan line 

order. 

In each case, the general operation of the program is the same. The 

operator gives commands to set various viewing parameters, surface 

properties, and modeling transformations. Other commands cause the 

appropriate primitive element to be generated. For some special case 

programs, a single DRAW command will initiate the rendering of the 

appropriate object according the currently set viewing/shading 

parameters. For programs that deal with collections of more general 

primitives, each primitive drawing command passes the data down the 

pipeline to be accumulated in a buffer. The DRAW command then initiates 

the sorting and rendering of this buffer. For debugging/testing these 

commands may be entered manually on the keyboard. Alternatively, just 

the initial view selection comes from the keyboard and the input is 

redirected to a file to read a more complex model for rendering. When 



used with the high level image rendering programs, the view selection 

commands are automatically generated by another program. 

 

2.2 Special Purpose Renderers 

There are a wide variety of special purpose renderers in use for various 

purposes. For the most part they are fairly simple programs that overlay 

some fairly simple image in the frame buffer. Some examples are: a star 

field drawing program that references a large star database and draws 

anti—aliased dots on the screen, or a program that draws a two 

dimensional blurred spot to represent the sun. Some of the special 

purpose programs are more complex and deserve special mention. 

2.2.1 PLANET (Draw Textured Ellipsoids) 

An example special purpose rendering program is PLANET, which draws 

textured spheres. Since it draws only one sphere at a time it doesn't 

bother with Z sorting or testing. In addition to the the standard viewing 

and lighting specification parameters it has some other special purpose 

features necessary for space scenes. The most obvious is texture mapping. 

The texture map is referenced while the image is scanned out to set the 

surface color, normal vector perturbation, etc. Such maps are paged in 

and out of disk files while the image is rendered using a LRU paging 

strategy. Each "page" in this case is a 32x32 square pixel sub—array of 

the map. This method of subdividing the map minimizes the chance of 

thrashing in the texture file. Another special feature provides for 

shadowing effects of a ring structure surrounding the planet. For each 

pixel in the image the appropriate geometric calculations are performed 

to intersect the line between the planet surface and light source with 

the ring plane. The radius of this intersection is then used to index a 

one dimensional texture map containing the radial density distribution 

of ring particles. The brightness of the pixel is then reduced 

appropriate to the blocking effect of the rings. Another special feature 

is eclipse simulation. This is another shadowing effect dues in this 

case, to another spherical body in front of the sun. In this case, for 

each pixel, the programs determines the angular separation between the 

occulting body and the sun. This is used to calculate the proportion of 

the sun's disk which is blocked off by the eclipsing planet and again 

reduces the intensity of the pixel appropriately. This has the effect 

of simulating the umbra/penumbra properly for eclipses. Since these two 

shadowing calculations slow down the rendering process they may be 

enabled by a global switch within the program, and are thus only used 

when necessary. 

2.2.2 RINGS (Draw Textured Translucent Disks) 

Another special purpose program is RINGS which draws an arbitrarily 

oriented circular translucent disk. It will, in fact draw only half the 

disks where the break occurs at the plane parallel to the viewing 



direction which passes through the center of the disk. This split is 

used to properly draw a ringed planet by running RINGS to draw the back 

half, then PLANET to draw the disk of the planet, and RINGS again to 

draw the front half. The intensity and transparency of the rings are 

calculated using a reflection model appropriate to clouds of particles. 

The density and albedo of the ring particles is taken from a one 

dimensional texture pattern file which is indexed by the radius of the 

visible point from the ring center. In addition, there is included a 

procedural model for some radial structures in the rings which orbit the 

planet at different rates at different radii. 

2.2.3 TEXFLY (Square Texture Mapper) 

Another useful special purpose program is TEXFLY, which has a single 

textured square as its sole primitive. This is similar to a program 

called TEXAS by A.R. Smith at NYIT. The square can be arbitrarily scaled 

and oriented in three dimensions and rendered with various intensity and 

transparency patterns. The very simple geometry of this shape makes it 

run quite quickly. It has been used as a post processing step to overlay 

some surface features on the Voyager spacecraft. 

 

2.3 General Purpose Renderers  

2.3.1 The Three Pass Process 

More general programs which operate on collections of primitives 

(polygons, patches etc.) in scan line order are usually separated into 

three passes. The first pass simply interprets viewing/modeling 

transformations, assigns shading parameters, and transforms the 

primitive objects and accumulates them in a buffer. The second pass sorts 

this buffer in Y order. The third pass renders the image from the Y 

sorted list. To maximize available buffer size and thus the complexity 

of objects we can draw these three passes are implemented as separate 

programs. The V sorted buffer is implemented as a temporary file. The 

I/0 operations on this temporary file do slow down the process a bit, 

but not a great deal. The advantage gained is that the rendering pass 

only needs maintain in main memory only those elements which are active 

on the current scan line. 

Three sets of programs have currently been implemented using this 

strategy. They deal with polygons, bicubic patches, and "blobby 

molecules" used in the Cosmos DNA sequence. The databases to describe 

shapes to these programs are then simply command files which can be 

generated in a variety of ways. In addition, for speed, pass 1 of the 

polygon processor can also interpret a binary version of a command file. 

A simple pre—processor reads the text command file and generates the 

binary file. Thus objects which are going to be drawn repeatedly may be 

debugged via the text version of the model and then "compiled" into the 

binary version. 



2.3.2 Special Purpose Pass 1 Processors 

The use of temporary files for the Y list allows another degree of 

flexibility. For certain cases the geometry of a particular object allows 

a simpler internal representation than explicitly defining each 

individual primitive. In this case a special program can use this 

representation to generate the Y list file directly in sorted order. 

This would then replace the general purpose pass 1 program and eliminate 

the need to run the pass 2 sorter. 

One example of this technique was used in the DNA simulation. In this 

case, the large macro—molecule is made of a relatively few monomers of 

25 to 30 atoms each. A large storage and time reduction can be achieved 

by representing the molecule in terms of the locations and orientations 

of these monomers and storing the definition of a monomer only once. The 

V list of the individual atoms may be generated directly by sorting the 

monomers first. This list is then scanned in order of their Y appearance, 

expanding the monomers into the explicit atom list. 

Another example concerns a simple terrain rendering scheme. The altitudes 

of a region of terrain are generated assuming a regular grid spacing. 

These can be stored in an appropriately scaled byte array. Pointers into 

this array are then sorted in Y. A global Y scan then directly generates 

a Y sorted polygon list by assuming the connectivity of the points due 

to the regular grid spacing. This technique was used to simulate a fly—

over of a crater on the moon Mimas for the second Voyager Saturn encounter 

movie. 

 

3. MODELING 

The modeling process is basically that of database generation. Such 

databases generally consist of text files of commands to the various 

rendering programs, and binary files of texture maps. 

 

3.1 Geometric Modeling 

The most often used modeling program in the system is the text editor. 

Quite a few of the modeled objects were generated essentially manually 

by reading and measuring blueprints or other diagrams and simply typing 

the coordinates into a file, along with the appropriate commands for the 

renderer. This approach is not as unpleasant as it may seem however. In 

many cases, the actual coordinates or sizes of objects are already marked 

on the blueprints. In additions certain "medium level" primitive commands 

are provided in the pass 1 portion of the rendering program. These 

consist of single commands for such frequently encountered shapes as 

boxes, surfaces of revolution, or tubular struts. The medium level 

primitives are then automatically expanded into the proper set of low 



level primitives when the pass 1 executes. In addition, the inclusion 

of comments within this database file provides a valuable documentation 

for future modifications to the model. Finally, the use of symbolic 

parameters for various quantities is already built in to the command 

language interpreter. Parametrized models are therefore easy to create. 

It must be noted, however, that if this technique is used, any programs 

processing the model might need to keep these parameters in unexpanded 

form to properly process the now implicitly procedural model. 

In addition to manual editing, there are a few simple menu/tablet driven 

modeling programs. These programs all allow more natural "drawing" modes 

of input to edit the location, sizes and types of object primitives. In 

each case the programs can read in a text file containing commands to 

the rendering program, build an appropriate internal data structure, 

allow the user to edit the structure interactively and finally write out 

a new command file. Such programs currently exist for patch design, 

polygon digitizing, and composite object design using a list of arbitrary 

primitive shapes. In the latter case the user is not so much designing 

shapes as a "tree of transformations" as discussed below. 

Various special purpose design programs have also been written for 

various projects. For example several molecule generators were devised 

for the DNA project which placed Hydrogen atoms in appropriate places 

on molecules or which generated randomly positioned blobs to define an 

enzyme. Basically, given the definition of the format of the text 

commands for a particular rendering program it is fairly easy to quickly 

put together programs to generate data in that format via some desired 

algorithm. 

 

3.2 Texture Pattern Generation 

In addition to designing shapes it is also necessary to generate texture 

patterns for the various texture mapping programs. 

Simple one dimensional textures (e.g. rings) are generated via a general 

purpose curve manipulation command. This provides a means of performing 

various simple arithmetic operations on tables of numbers derived from 

previously digitized images. 

Two dimensional texture patterns are derived in a variety of ways. 

Generally, a texture pattern is taken from a region of the frame buffer 

so that any image synthesis or image processing program can be used to 

generate or alter a pattern. We have a collection of general purpose 

random number drawers, image rotation and stretching programs, image 

filtering programs, etc. In additions some special purpose programs have 

been written to process images of moons into maps. These effectively run 

the image synthesis process in reverse, distorting the image into a map 

projection. 



Finally, frame buffer painting programs can be considered as a database 

generation tool for texture mapping. Certain special features have also 

been added here that are useful for spherical mapping. One interesting 

example concerns the generation of the terrain map for Mimas. A 

photograph of the moon gives a good general feel for the topography of 

the surface. Automatic methods for extracting this topography from the 

sighting parameter were not successful, however. A topographic map was 

finally obtained by using a painting—style program in "pantograph" mode. 

A map projected image of the surface was placed on the bottom half of 

the display and the operator traced out the visible craters. The craters 

were simultaneously applied to the actual map on the top of the screen 

by means of a special "carving" brush mode. This mode added or subtracted 

values from the image to raise or lower the generated terrain. 

 

4. SIMULATION 

A simulation program is basically the prime mover of the animation. Its 

main function is to alter various numerical parameters that define the 

appearance of the frame. A subsidiary, but very important, function is 

to provide a schematic preview of the animation on some fast output 

device. This is typically a line drawing display, the preview is 

effectively a "line test" of the animation. 

 

4.1 Techniques 

There are two general categories of parameters which change from frame 

to frame. They are 1) transformation parameters and 2) anything else. 

Transformation parameters are singled out especially here because they 

are so important. Typically a scene will be defined in terms of a "tree 

of transformations". This consists of the set of nested rotations, 

translations and scales that place each object in its correct position 

at its correct size. The nesting of these transformations allows objects 

to be arbitrarily articulated. The numerical values assigned to these 

transformations can then be varied to give a wide variety of motions. 

Many animations require no more than this. Other more general types 

require, in addition, alteration of brightnesses, texture patterns etc. 

There are, in turns two general ways of specifying the way parameters 

vary, called here incremental and absolute. In the absolute mode, the 

value of each parameter is specified in a table for each key frame. When 

an intermediate frame is to be generated, some form of interpolation is 

performed on the surrounding table values. In the incremental mode, the 

program maintains the current state of the scene and is instructed to 

perform incremental modifications to it according to some rules. Absolute 

mode is usually more convenient to use when designing animation since 

it allows previewing of frames in arbitrary order or repeated playbacks 

of frame number ranges within the script. Incremental mode is necessary, 



however, for situations in which the connectivity of some data structure 

must be modified or in "particle pushing" types of physical simulations. 

 

4.2 Tools 

4.2.1 System Commands 

One animation tool that everyone with a computer has immediately is the 

command language of the operating system. Most operating systems allow 

for commands to come from files and, in addition, allow for looping and 

symbolic variable manipulation within the command file. This mechanism 

has a tremendous advantage in that it is interpretive. Changes to the 

sequence of events necessary to make an image can therefore be made 

quickly with the text editor. No programs need to be changed. A 

disadvantage of using just the system command language is that it is 

quite difficult to perform line tests to verify that the animation will 

come out as desired. Also, since the command language was not designed 

for this purpose, its use sometimes becomes somewhat inelegant. The 

advantages in generality provided by the interpretive nature are 

substantial however and the method described below allows its use in 

combination with more specialized simulation programs. 

4.2.2 General Purpose Articulation Program 

Perhaps the most useful programming tool designed specifically for 

animation is the general purpose transformation tree articulator. This 

program internally stores a transformation tree and a set of line drawing 

of the primitives. The transformation tree structure can have 

"subroutines", i.e. higher order primitives defined in terms of 

transformation trees of lower order primitives. The program can then 

generate line drawings of the resulting environment by interpreting this 

structure. It allows the user to manipulate the parameter values for the 

various transformations in the tree and redraw the resultant image. Such 

parameters are assigned symbolic names. A named variable can be set 

either via keyboard commands, can be adjusted under knob control, or can 

be interpolated between keyframe values. Systems of this sort, dealing 

purely with line drawings, have been implemented by DeFanti, O'Donnell 

and Olson, and probably several others. 

In order to interface to the rendering programs such a system needs just 

a few more 'hooks' to dump out the transformation tree with all parameter 

assignments made and with all tree 'subroutines' expanded explicitly. 

Garland Stern's BOOP system at NYIT has these capabilities as does the 

ARTIC program at SPL. In order to be applicable to the widest range of 

situations certain things must be done. The first of these refers to the 

definitions of the primitives. In order to be applicable to a wide range 

of primitive types (e.g. polygons, patches, blobby molecules or something 

new not invented yet) the ARTIC program makes no assumptions about the 

solid modeling scheme for the primitive. It sees only a definition 



containing a schematic line drawing version of the shape. The user is 

responsible for creating this file in any one of several ways. Most 

easily, there are several pre-processors for the various standard 

modeling primitives (polygons, surfaces of revolution, patches) which 

read the solid model file (which is going to be passes to the rendering 

program) and generates a line drawing version. Here, the solid model 

file is the "main" version of the database and the line drawing version 

is just a derived version of it. Alternatively, the user could generate 

a simplified form of the line drawing purely manually. 

4.2.3 Special Purpose Space Simulator 

For various applications the values of the transformation parameters may 

need to be generated by some functional calculation rather than by 

explicit numeric settings. An example of this is the space simulation 

program used for the Voyager fly-by movies. This is a special purpose 

program for simulating planetary astronomy. Its two main features are 

the mathematical modelling of the paths of the planets, moons and 

spacecraft according to Kepler's laws and a fairly sophisticated view 

selection algorithm for determining viewing position and direction in 

terms of some visually meaningful parameters. 

4.2.3.1 Physical Simulation 

The main structure of the modeled environment consists of a built-in 

transformation tree for the planetary system. This positions the moons 

and spacecraft relative to the planet, orients the planet and moons with 

their pole vectors pointing in the appropriate directions and spins them 

about their poles at the correct rates. In addition the spacecraft is 

oriented and articulated in an analog of the manner done by the onboard 

computer of the spacecraft. The values of positions, and rotation angles 

are made dependent upon the single parameter TIME. Whenever time is 

altered the appropriate calculations are performed to update these 

values. 

4.2.3.2 View Selection 

Since the positions and orientations of the objects are completely 

specified by the time of the simulation, the only freedom we have in 

specification of the image is the viewing location and direction. There 

are several viewing modes which may be employed to generate these two 

parameters. 

Omniscient Mode 

The main viewing mode is for an omniscient observer situated at some 

vector offset from any one of the simulated bodies, called the 'from' 

body. This vector may be specified in one of two ways, as a fixed x,y,z 

vector or as a fixed distance and an automatically calculated direction. 

The latter mode determines what direction relative to the 'from' body 

the observer must be in in order for the 'from' body to appear on the 



screen at a given x,y location. The viewing direction is also determined 

according to one of two modes. It may be explicitly specified in terms 

of its x,y,z coordinates. Alternatively it may be specified in terms of 

another simulated body, the 'at' body. In this mode the viewing direction 

is automatically calculated to be that which causes the 'at' body to 

appear at a given x,y screen location. For certain combinations of 

from/at modes there is no closed form equation to satisfy all the 

constraints. A solution is then determined numerically. 

Camera Mode 

An alternative viewing mode is to simulate a view through the onboard 

cameras of the spacecraft. In this case the spacecraft modeling 

parameters are examined and the appropriate view is generated according 

to the pointing direction of the camera and the spacecraft orientation. 

Planet Surface Mode 

This mode simulates a viewer sitting on the surface of one of the 

simulated bodies. The viewing position is specified in terms of the 

latitude, longitude and altitude above the surface. The viewing direction 

is specified in terms of the azimuth and elevation of the view direction 

relative to the local horizon and north direction. 

4.2.3.3 Switching Viewing Modes 

The various viewing modes provide a great deal of flexibility in finding 

interesting views in a given situation. One important feature is also 

necessary for smooth animation. Whenever the user switches modes the 

program will automatically calculate the appropriate numerical 

parameters for the new mode which will generate the >same< view. This 

allows easy transitions from one mode to another without introducing 

jumps in the picture. 

4.2.3.4 Animation Commands 

The animation of space scenes is carried out in absolute mode. There is 

a table of the values of the various viewing parameters as well as a few 

spacecraft articulation parameters, for each key frame. A new key frame 

is usually generated by adjusting various parameters under knob control. 

A command is then given to record the current parameters in the animation 

keyframe table at a certain keyframe number. When an animated sequence 

is played back, all the table values are interpolated appropriately and 

given back to the view generation routines. 

When the space simulation program is instructed to make a color frame 

it writes out the values of all the internal parameters and invokes the 

frame buffer scene scheduler program described in section 5. 

 

 



4.2.4 Special Purpose DNA simulation 

The DNA simulation system is another special purpose articulation program 

which has many built—in parameter calculations and transformation tree 

structures. In this case, the physical simulation is quite complex while 

the view selection is quite simple. 

4.2.4.1 View Selection 

The interpolation of viewing parameters is done in a manner similar to 

the space simulation, but with a considerably simpler method of 

specifying viewing parameters. The view is specified simply by a field 

of view, center of interest point, distance from view point angular 

direction of observer and tilt of camera. These parameters may be 

adjusted via knob control. When a desired view was found they were stored 

in a keyframe table which was used for interpolation upon playback. 

4.2.4.2 Physical Simulation 

The DNA simulation program represents the molecular system as a 

collection of modules which are each rigid bodies and are connected 

together at rotatable joints. Each monomer is defined in terms of the 

location and orientation of its joints and as a list of the locations 

of its constituent atoms. Whenever a particular monomer is moved or 

rotated, a recursive connection tracer applies the same transformation 

to all other modules bonded to it. Each connected structure is assigned 

a velocity and tumbling speed which, upon each frame time simulation, 

are added to the current position and applied to the current orientation, 

respectively. 

Since the animation of the molecular motion consisted of breaking and 

relinking bonds repeatedly, the absolute mode of simulation is not 

appropriate. Instead, the animation is driven by commands that 1) set 

the velocities 2) break and re—form bonds and 3) run the simulation 

forward by some number of time steps. The "script" for a sequence is, 

then, a list of such commands. First, commands to set some velocities, 

and break and reform bonds. Then a simulate command. Then more 

velocity/bond alterations. Then another simulate command, etc. The 

animation is then performed as the file is read. This makes moving 

directly to any given frame a bit difficult. If the desired frame is 

later than the current one, the file just continues to be read. If the 

desired frame is earlier than the current ones the program must be 

reinitialized from the beginning frame and run forward to the desired 

frame. 

In fact, doing the entire film by this technique would be very difficult 

due to the complexity of the motion. Since much of the motion is actually 

initiated by the two enzymes in the film, two enzyme simulation routines 

were added to the program. Each of these routines consisted of a finite 

state machine which counts simulation time steps, performs some velocity 

alteration and/or bond relinking operation, resets the time step counter 



to a new value, and then changes to a new state. For example, the helicase 

simulation has two states, 1) prying apart and 2) moving down. At each 

time steps the first state rotates the two separate strands about their 

bonds by a small incremental angle and rotates the main double helix in 

the reverse direction by the same amount. The second state moves the 

helicase down one base pair. The polymerase simulation has four states 

involving 1) waiting for a nucleotide, 2) pushing the nucleotide in 

place, 3) retracting and moving to the next nucleotide position and 4) 

removing an erroneously matched nucleotide. The transition from state 3 

to state 1 for example, generates a new incoming nucleotide by adding 

it to the database in such a position and at such a speed that it would 

fly into place just as state 1 expires and changes to state 2. 

The randomly floating background nucleotides were driven by a simple 

program that generates their paths randomly, but in such a manner that 

they do not collide with the main DNA strand. The output of this program, 

when interspersed with enzyme directing commands then forms the main 

script of the movie. 

When the simulator program is instructed to make a color frame, it writes 

the locations and orientations of the modules to a temporary file and 

invokes the module expansion program described in section 2.3.2. 

 

5. RENDERING - HIGH LEVEL 

High level rendering techniques concern themselves with building up 

images consisting of several disparate low level primitive types. The 

idea here is that the low level rendering programs do not need to know 

anything, or at least very little, about each other’s operation. The 

high level rendering technique causes them to be invoked in the proper 

manner. 

 

5.1 Techniques 

The main problem the high level rendering system must solve is the 

occlusion problem. There are several strategies which may be employed, 

of which the two most popular are Z buffers and Temporal priority (also 

called the Painter's algorithm). 

5.1.1 Z Buffers 

With Z buffers, the low level primitives must all reference a common Z 

buffer and will presumably have their Z values scaled into the same 

coordinate space. Otherwise they do not need to know about each other. 

Using this scheme, the high level scheduler can invoke the low level 

programs in virtually any order. This is convenient for complex texture 

mapping since all objects painted with a particular pattern can be 

rendered at once. Thus only one texture needs to be referenced at a time. 



Z buffers also solve the problem of arbitrarily intersecting primitives 

easily. 

Z buffers, however, have some severe problems for the space images 

considered here. For space scenes, the very large range of values in Z 

would require a Z buffer with very many bits of precision to have the 

resolution necessary to keep things properly hidden. In addition, anti-

aliasing calculations are inconvenient with this scheme. 

5.1.2 Temporal Priority 

The basic idea behind temporal priority is to draw the objects in the 

scene in the order back to front. The later objects simply overlay the 

earlier objects. Temporal priority works well for space scenes because 

the different objects do not intersect (or at least are not supposed 

to). 

 

5.2 Space Simulation Global Scheduler 

The high level rendering scheduler for space scenes is a fairly 

specialized program which takes the frame state information file from 

the space simulator program and generates the command files to render 

the image on the frame buffer. It consists of four phases: 

1) Global clipping — An enclosing sphere about each object (moon or 

spacecraft) is tested against the viewing volume. Those objects 

completely outside this volume are removed from further consideration. 

2) Global Z sort — This then sorts the remaining probably visible objects 

in back to front order. 

3) Generation of individual command files — A command file is generated 

for each visible object consisting of the transformation commands for 

placing it in viewing space, various surface lighting and texture map 

definition commands, etc. At this point some mutual shadowing 

calculations are performed. If a moon is in shadow behind the planet its 

brightness parameter, written out here, is decreased by 1/4. 

4) Generation of global system command file — This is a system command 

file that runs the appropriate rendering programs in the z sorted order 

and tells them to read their commands from the appropriate file written 

during step 3. The appropriate rendering program to use for a particular 

body is taken from a table which is set up upon initialization of the 

high order renderer. Here also some shadowing calculations are performed. 

If a line from the sun to a moon intersects the planet on the sunlit 

side an extra command is added to the global file to run a program that 

places a black dot at the appropriate screen location. 

Finally, control is given to the system to read commands, not from the 

file in step 4 but from another static file. This file in turn references 



the step 4 file and then does some clean—up operations, such as saving 

the image. The overhead for all this file manipulation may seem excessive 

but, in practice, it is negligible compared to the running time of the 

primitive renderers. 

There are several useful features to this approach. First it allows for 

easy retry or debugging of an image since the commands and data files 

remain after the program terminates. Secondly it allows for some after—

the—fact changes to the step 4 file by inserting suitable commands before 

or after its invocation by the global file. Two cases where this was 

used were during the title sequence of the Voyager Saturn movie. In these 

cases an explicit run of TEXFLY, for a record overlay, or the polygon 

renderer, for the title letters, was inserted just after the invocation 

of the step 4 file. 

 

6. PRODUCTION 

When the programs, databases and script definitions have all been 

prepared we are then ready to do production of the frames of the film. 

This essentially involves placing the simulator program in a loop 

generating frame information, passing it to the rendering program and 

saving the frames away somewhere. 

 

6.1 Buffering Schemes 

After a frame is generated it may be stored on various different media. 

The decision on where to save the frames depends on a set of trade-offs 

based on the resolution of the image (number of bytes to store), size 

of available mass memory (how much room you have to store it) and the 

need to recover from errors or make last minute changes to certain 

frames. 

The available options are: 

1) record directly on film as images are generated 

2) record directly on video tape as images are generated 

3) save images on disk/tape for later play-back to hard copy device 

4) buffer intermediate data files for later image calculation 

Note that any of these can be selected by editing the command file which 

controls the image saving. Option 4 is not so much a buffering scheme 

as a parallel processing scheme. It was used in the DNA sequence to 

accumulate Y sorted atom lists on tape for later farming out to several 

different computers. 



To evaluate the other three options we first list some representative 

memory requirements and capacities 

Video resolution 8 bit run length encoded frame    .10 to .25 Mbyte 

Video resolution RGB run length encoded frame      .25 to .75 Mbytes 

High resolution (2000x2000) RGB image              4.0 to 12. Mbytes 

2400' Magnetic tape @ 1600 BPI                   39.0 Mbytes 

High density disk pack                          256.1 Mbytes 

From these figures we can form some conclusions: 

Option 1 is dangerous since it provides the least opportunity to recover 

from errors. A single bad frame in a run that may last days can ruin the 

entire run. For the highest resolution images, however, it may be the 

only reasonable solution. It is hardly reasonable to require 8 tapes or 

one disk pack per second of running time. Later developments of higher 

density storage may alter this situation, however. 

Option 2 is relatively safe since single frame video recorders have the 

capability to go back and insert replacement frames for bad ones. The 

disadvantage is the extra cost of the equipment and the fact that NTSC 

video is somewhat lower resolution than 16 mm film recorded in RGB. 

Option 3 is quite safe since it allows digital editing of bad frames, 

i.e., a frame is recalculated and saved in a file which replaces the bad 

frame. It is somewhat slow, however due to the massive amounts of data 

transfer required. This happens to be the method currently used for our 

system at JPL. There are some convenient side effects to this mode. 

Frames are stored one per file, in files named with some prefix string 

followed by the frame number. We can then generate the frames in non-

sequential order and play them back in the proper order. One convenient 

usage of this technique is to generate widely spaced frames first to 

check the global appearance of the animation. By doing every 64 frames, 

then filling in the frames halfway between them, then filling in the 

frames halfway between them, etc. we will generate a sort of binary 

search for the movie. At any time we will have the entire movie done, 

just at different levels of jerkiness. On the next to last step, when 

all even numbered frames have been generated, it is possible to proceed 

to the odd numbered frames only for those scenes for which it is 

necessary. Thus saving time on slowly moving portions of the film. 

Note that this frame/file naming convention allows the directory look 

up mechanism of the file system to do the frame sorting for us implicitly. 

 

 

 

 



6.2 Checking and Filming 

While frames are being generated a log file is maintained to keep track 

of which frames are finished and where they are stored. At various times 

during the production runs completed frames are played back on the frame 

buffer to verify that they are correct and erroneous frames are re—

generated. Finally, the whole sequence is played back in sequence before 

a stop motion animation camera to create the finished film.  


