Safety of Intraoperative Transcranial Electrical Stimulation Motor Evoked Potential Monitoring

David B. MacDonald

Section of Clinical Neurophysiology, Department of Neurosciences, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia

Summary: This article reviews intraoperative transcranial electrical stimulation (TES) motor evoked potential (MEP) monitoring safety based on comparison with other clinical and experimental brain stimulation methods and clinical experience in more than 15,000 cases. Comparative analysis indicates that brain damage and kindling are highly unlikely. There have been remarkably few adverse events. Pulse train TES-induced or coincidental seizures \((n = 5)\) are rare, probably because of very brief \((<0.03 \text{ second})\) stimuli, anesthesia, and the general absence of predisposing cerebral conditions. Soft bite blocks may prevent tongue or lip laceration \((n = 29)\) or mandibular fracture \((n = 1)\). Rare cardiac arrhythmia \((n = 5)\) and intraoperative awareness \((n = 1)\) may be coincidental. Minor scalp burns \((n = 2)\) are rare. Although possible, no spinal epidural recording electrode complications or injuries resulting from TES-induced movement were found. There have been no recognized adverse neuropsychological effects, headaches, or endocrine disturbances. Comprehensive relative contraindications include epilepsy, cortical lesions, convexity skull defects, raised intracranial pressure, cardiac disease, proconvulsant medications or anesthetics, intracranial electrodes, vascular clips or shunts, and cardiac pacemakers or other implanted biomedical devices. Otherwise unexplained intraoperative seizures and possibly arrhythmias are indications to abort TES. With appropriate precautions in expert hands, the well-established benefits of TES MEP monitoring decidedly outweigh the associated risks. Key Words: Intraoperative monitoring—Transcranial electrical stimulation—Motor evoked potentials—Adverse effects—Safety.

Transcranial electrical stimulation (TES) motor evoked potential (MEP) monitoring involves repetitive brain stimulation and spinal epidural recording electrodes or patient movement, raising safety concerns. Based on comparison with other cerebral stimulation methods and a review of published reports and unpublished experience, this article assesses TES MEP monitoring risks within the context of its benefits.

BENEFITS OF TRANSCRANIAL ELECTRICAL STIMULATION MOTOR EVOKED POTENTIAL MONITORING

Paralysis complicating surgery causes enormous suffering and costs. Monitoring may prevent this by identifying reversible neurologic compromise (American Academy of Neurology, 1990; Nuwer et al., 1995). However, motor compromise can occur without sensory evoked potential warning (Ben-David et al., 1987; Dawson et al., 1991; Lesser et al., 1986; Nuwer et al., 1995; MacDonald and Janusz, 2002; Meylaerts et al., 1999), and sensory evoked potential deterioration can occur without motor deficits (Calancie et al., 2001; Dawson et al., 1991; Forbes et al., 1991; Kothbauer et al., 1997;
Nuwer et al., 1995). Thus, specific MEP methods are needed.

Spinal cord stimulation activates motor tracts but also produces antidromic sensory potentials and lower motor neuron excitation through Ia afferent segmental synapses (Deletis, 1993; Rose, 1996; Su et al., 1992). Therefore, even muscle responses cannot be attributed to motor tracts alone. Some reports suggest that mixed peripheral nerve potentials after cord stimulation provide MEPs attributable to motor tracts (Owen et al., 1988). Others indicate a predominantly sensory content (Leppanen et al., 1999; Toleikis et al., 2000). Spinal-elicited neurogenic responses can be recorded from the purely sensory sural nerve (Delecrin et al., 2000), and have missed motor deficits in experimental animals (Kai et al., 1994) and paraplegia during scoliosis surgery (Minahan et al., 2001).

Transcranial electrical stimulation or transcranial magnetic stimulation (TMS) activates corticofugal motor pathways without antidromic sensory contamination (Barker et al., 1987; Merton and Morton, 1980). Transcranial electrical stimulation is practical and may be more effective intraoperatively (Thompson et al., 1991; Ubags et al., 1999). Single pulses produce a corticospinal “D wave” from direct cortical neuron axonal depolarization that can be recorded in the spinal epidural space and can be used to monitor motor tract integrity, but usually fails to depolarize lower motor neurons (Boyd et al., 1986; Burke et al., 1992; Deletis, 1993). Fig. 1 illustrates very brief, high-frequency pulse train (“multiple pulse”) TES producing muscle responses through temporal summation of several corticospinal volleys to depolarize spinal motor neurons (Jones et al., 1996; Pechstein et al., 1996; Rodi et al., 1996). Myogenic MEPs may be more sensitive to cord ischemia because alpha motor neurons are more rapidly disabled by ischemia than tracts (de Haan et al., 1996; MacDonald and Janusz, 2002). They may also detect unilateral motor pathway compromise that could be missed by monitoring the spinal “D wave” alone. Both methods have been shown to be valuable for specific motor deficit detection and prevention (Calancie et al., 1998, 2001; Cioni et al., 1999; de Haan et al., 1998; Deletis and Sala, 2001; Jacobs et al., 2000; Jones et al., 1996; Kothbauer et al., 1997, 1998; MacDonald and Janusz, 2002; MacDonald et al., 2001; Meylaerts et al., 1999; Morota et al., 1997; Sala et al., 2001).

SAFETY CONCERNS

Safety concerns include the possibilities of brain damage, seizures, kindling, epidural complications, accidental injury resulting from patient movement, bite injuries, adverse cognitive or affective sequelae, and other complications such as cardiac arrhythmia, intraoperative awareness, scalp burns, pain or headache, and disturbances of hormonal or hematologic homeostasis. An assessment of these potential risks must compare TES with other clinical and experimental methods considering stimulus parameters, published results, and unpublished clinical experience.

J Clin Neurophysiol, Vol. 19, No. 5, 2002
Parameters of Electrical Stimulation

Electrical stimulation is bipolar—between a positive anode and a negative cathode. One pulse may be monophasic, or biphasic when there is second phase of equal duration (duration or D is measured in milliseconds) but opposite polarity. Stimuli are rectangular, sinusoidal, or decay exponentially (capacitor discharge) according to \(I_t = I \times e^{-t/TC} \) where \(I_t \) is the current in milliamperes at time \(t \), I is the peak current, and TC is a time constant at which \(I_t \) falls to \(I \times e^{-1/e} \). Charge (Q) in microcoulombs per phase (\(\mu C/ ph \)) is defined as \(I \times D \) for rectangular pulses, \(0.637 \times I \times D \) for sine waves, and \(I \times TC \) for exponentially decaying pulses. Charge density (QD) in microcoulombs per square centimeter per phase is defined as \(Q \times \) electrode geometric area (A, in square centimeters), and decreases rapidly according to the square of the distance and the resistance of tissues between the electrodes and the neural target. Pulse trains are repetitive pulses of a selected frequency (f, in Hertz) and duration or time in seconds. Total charge (Qt) and total charge density (QDt) are defined as \(Q \) or QD times the number of phases (2 \(\times \) the pulse number for biphasic stimuli) in a pulse train.

Voltage (V) = I \(\times \) R, where R is the resistance in Ohms. Energy in Joules = V \(\times \) Q and produces heat. Constant voltage stimulators adjust the current to maintain voltage; constant current stimulators adjust the voltage to maintain current.

Several stimulators are used currently for TES MEP monitoring. The constant-voltage D185 and D180A use 0.05-msec rectangular pulses and 0.05 or 0.1-msec time constants respectively (Digitimer Ltd., Welwyn Garden City, UK). These brief monophasic pulses reduce scalp discomfort (Merton and Morton, 1980) but require higher intensity than longer pulses to produce a similar charge. The D180A generates single pulses at less than 0.5 Hz. The D185 generates trains of one to nine pulses (maximum, three pulses at highest intensity) with a frequency of 101 to 1,000 Hz (interstimulus interval, 9.9 to 1 msec) and measures delivered current. More than 300 D185 stimulators are in use in more than 25 countries, and this device is approved in Europe, Japan, and recently in the United States (Benedict, HJ, Digitimer Ltd., personal communication). Kothbauers et al. (1997, 1998) and Deletis et al. (2001a, b) reported a customized constant current stimulator using up to 0.5-msec rectangular monophasic pulses which enhanced D wave recovery time compared to shorter pulses. Bartley et al. (2002) examined 0.05 to 1-ms pulses and found that the threshold charge to elicit MEPs increased with longer pulse widths but pointed out that this does not imply that longer pulses are less safe. Other stimulators can be effective using 0.5-msec monophasic pulses, such as the Viking (Nicolet Biomedical Inc., Madison, Wisconsin, USA). Although limited to 100 mA in constant current mode, current could approach 200 mA at the 400-V-maximum constant voltage setting (unpublished data) and can approach 500 to 750 Ohm resistance during TES as reported by Calancie et al. (1998). Table 1 (Deletis et al., 2001a, b; Gordon et al., 1993; McCreey et al., 1990; Levy et al., 1994; Stephens et al., 1991; Taniguchi et al., 1993a; Wada et al., 1978; Yuen et al., 1981) compares maximum intensity of these stimulators to other brain stimulation methods. Calculations are based on 9-mm cup stimulating electrodes, five-pulse (three-pulse for the D185) 250-Hz trains (Deletis et al., 2001a, b), and averages 10 trials for epidural MEP (using the D180A).

Neuronal Damage

Excitotoxicity is considered the major neuronal injury mechanism (McCreery et al., 1988, 1990; Pudenz et al., 1975, 1977; Yuen et al., 1981). Toxic electrochemical and electrolytic reactions at the electrode–tissue interface during direct (but not transcranial) stimulation are avoided partially by biphasic pulses (Agnew and McCreery, 1987; Girvin, 1978; Gordon et al., 1990). Tissue heating is negligible in the forms of stimulation discussed in this article (Wasserman, 1998; Yuen et al., 1981).

Based on histology after prolonged, continuous 50-Hz biphasic rectangular pulse direct cortical stimulation in cats, charge density and charge per phase are excitotoxic cofactors such that higher charge density can be tolerated with lower charge per phase and visa versa (McCreery et al., 1990; Yuen et al., 1981). Increasing total charge and total charge density augments severity (Agnew and McCreery, 1987). Damage has been limited to neurons immediately adjacent to stimulating electrodes.

Yuen et al. (1981) identified an injury threshold of 40 \(\mu C/cm^2 \cdot ph \) at 0.4 \(\mu C/ph \) when administered in 50-Hz biphasic pulse trains for 15 hours (see Table 1, Exp.1). Although intended to evaluate chronic direct stimulation, this has been used to judge TES safety (Agnew and McCreery, 1987). Subsequently, McCreery et al. (1990) showed that 7 hours of 50-Hz biphasic stimulation at 10 \(\mu C/cm^2 \cdot ph \) and 5 \(\mu C/ph \) was noninjurious whereas 12 \(\mu C/cm^2 \cdot ph \) at 6 \(\mu C/ph \) produced mild damage at some sites (see Table 1, Exp.2). The effect of shorter pulse trains has not been explored by these experiments.

In humans, Gordon et al. (1993) found no histologic damage after 50-Hz biphasic pulse train subdural grid stimulation (3.175-mm disks) at as much as 57 \(\mu C/cm^2 \).
The image contains a page from a scientific document discussing the safety of transcranial electrical stimulation (TES) MEP monitoring. The text references various studies and methodologies, including the use of different stimulator brands and parameters. A table is also included, comparing clinical and experimental brain stimulation methods. The table is structured as follows:

<table>
<thead>
<tr>
<th>Variable</th>
<th>TES MEP</th>
<th>Direct cortical stimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I, mA</td>
<td>1,500</td>
<td>20</td>
</tr>
<tr>
<td>D, ms</td>
<td>0.05</td>
<td>0.5</td>
</tr>
<tr>
<td>A/cm²</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>f, Hz</td>
<td>250</td>
<td>50</td>
</tr>
<tr>
<td>Time, sec</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Phases</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Scalp Q, μC/ph</td>
<td>75</td>
<td>—</td>
</tr>
<tr>
<td>QD, μC/cm² · ph</td>
<td>118</td>
<td>—</td>
</tr>
<tr>
<td>Qt, μC</td>
<td>225</td>
<td>500</td>
</tr>
<tr>
<td>Brain Q, μC/ph</td>
<td>5.8</td>
<td>—</td>
</tr>
<tr>
<td>QD, μC/cm² · ph</td>
<td>5.9</td>
<td>—</td>
</tr>
<tr>
<td>Qt, μC</td>
<td>11</td>
<td>30</td>
</tr>
<tr>
<td>Qt, μC</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>

The table compares parameters such as current intensity (I), duration (D), area (A), frequency (f), time (Time), phases (Phases), scalp charge (Scalp Q), total charge (QD), and cortical charge (Brain Q) for TES MEP and direct cortical stimulation. The document also discusses the safety aspects of TES MEP monitoring, including the risk of seizures and neuronal damage. It references various studies by authors such as Deletis, Viking, D180A, ECT, TMS, rTMS, cMEP, Grid, Probe, Kindle, Exp. 1, and Exp. 2. The text emphasizes the importance of understanding the charge and density used in these procedures to ensure safety.
Although Agnew and McCreery (1987) used the 1:30 estimate by Levy et al. (1984), the cortical charge values listed in Table 1 are based on a more cautious dispersion factor of 1:20. Even with this, all charge densities should be less than 12 μC/cm² · ph, and total charge values should be five to seven orders of magnitude less than those of prolonged stimulation in animal experiments, and two to four orders of magnitude less than those of safe grid or probe cortical stimulation in humans. This makes brain damage resulting from even maximum-intensity TES MEPs exceedingly unlikely. Larger or multiple scalp electrodes to reduce charge density further appear unnecessary. At normal submaximal operating intensities, charge densities are likely to be comparable with TMS.

Estimated electroconvulsive therapy (ECT) cerebral current density can be less than 12 μC/cm² × ph with large scalp electrodes, but charge per phase remains relatively high (see Table 1). Total charge and total charge density are two to three orders of magnitude more than TES for MEP monitoring but are well below prolonged stimulation experiments. That even ECT is not thought to cause brain damage (Marangell et al., 1999) also makes neuronal injury unlikely during much less intense TES for MEP monitoring.

That current might concentrate through low-resistance paths such as the optic foramen, auditory canal, or skull defects (Agnew and McCreery, 1987) is not supported by reports of visual or auditory symptoms after TES. Convexity subdural air reduces TES effectiveness in sitting position posterior fossa surgeries (Kombos et al., 2000b, b), indicating that current does not concentrate through the suboccipital craniectomy to activate the brainstem. Digitimer Ltd. (2002) currently advises against TES with convexity skull fracture or craniotomy because of the possibility of high local current density. However, ECT has been administered safely with antecedent craniotomy (Krahn et al., 1993), and I have applied TES during prefrontal craniotomy for anterior communicating artery aneurysm without MEP change after opening and without clinical adverse effects (unpublished data). Transcranial electrical stimulation is not possible during craniotomy for central hemisphere surgery when direct cortical stimulation is indicated (Taniguchi et al., 1993a). Although TMS can be safe with implanted intracerebral electrodes (Kumar et al., 1999; Wasserman, 1998), there appears to be no TES experience with this or other devices such as cochlear implants. Digitimer Ltd. (2002) currently advises against TES with implanted biomedical devices or intracranial vascular clips.

There are no reports of clinical symptoms suggesting neuronal damage among thousands of patients who have undergone TES MEP monitoring. More analogous animal models and precise cortical charge density measurements would be of confirmatory interest.

Seizures

Electrical brain stimulation can provoke a sequence of abnormal neuronal discharges that may persist as afterdischarges sometimes progressing to a clinical seizure. Interacting factors include stimulus parameters, anesthesia, subject predisposition, and the chance of spontaneous seizures unrelated to stimulation.

Several brain stimulation methods use 50 to 60-Hz pulse trains of 1 to 1 second (see Table 1). Afterdischarges are routine during traditional cortical stimulation in awake or locally anesthetized humans predisposed by cortical lesions and/or epilepsy (Luciano et al., 1993). Although intensity is adjusted normally to less than afterdischarge thresholds, seizures occur in 5 to 20% and are sometimes sought for diagnostic purposes (Chauvel et al., 1993; Sartorius and Berger, 1998). Kindling and chronic stimulation experiments generate seizures readily in unanesthetized animals (Goddard et al., 1969; Pudenz et al., 1975; Wada and Sata, 1974; Wada et al., 1978; Yuen et al., 1981). Electroconvulsive therapy causes seizures in anesthetized unpredisposed subjects and generates high total scalp charge, which is the dosing parameter. Seizure thresholds range from 36 to 869 × 10³ μC (Sackeim et al., 1991)—two to three orders of magnitude above maximum TES for MEPs (see Table 1). Fifty to 60-Hz trains of 1 to 1 second are highly seizurogenic and, with sufficient intensity and duration, require neither an unanesthetized state nor a predisposition to generate seizures.

Three to 25-Hz pulse trains of 0.75 to 10 seconds have provoked seizures in several unpredisposed awake subjects during rTMS, prompting the development of safety guidelines (Chen et al., 1997; Conca et al., 2000; Wasserman, 1998). For comparative purposes, stimulus parameters for one of these cases are listed under rTMS in Table 1. These stimulus characteristics are moderately seizurogenic in unpredisposed subjects but have not been studied under anesthesia.

In contrast, seizures are rare with low-frequency (<0.5 Hz) pulses or very brief (<0.03 second) high-frequency pulse trains. The only published reports have involved single-pulse TMS in a few unanesthetized patients with predisposing brain lesions—a small fraction of many thousands of studies (Wasserman, 1998). At 150% MEP threshold, 1-Hz rTMS of more than 50 seconds and 25-Hz rTMS of as long as 0.24 second are
considered safe in awake, unpredisposed subjects (Wassermann, 1998).

Table 2 lists 68 publications involving 2,915 anesthetized patients without seizures during low-frequency single-pulse (n = 1,201) or very brief high-frequency pulse train (n = 1,714) MEP monitoring, including direct cortical stimulation in predisposed subjects (n = 289) (Aglio et al., 2002; Andersson and Ohlin, 1999; Bartley et al., 2002; Boyd et al., 1986; Burke et al., 1992, 2000; Calancie et al., 1998, 2001; Cederholm et al., 2000a, b; de Noordhout et al., 1996; Firsching et al., 1991; Glassman et al., 1995; Gokaslan et al., 1997; Herdman et al., 1993; Hicks et al., 1991; Horikoshi et al., 2000; Jacobs et al., 1999, 2000; Jellinek et al., 1991a, b; Jones et al., 1996; Kakimoto et al., 2000; Kalkman et al., 1991, 1992; Katayama et al., 1988; Kawaguchi et al., 1996, 2000; Kitagawa et al., 1995; Kothbauer et al., 1998, 1999; Krombach et al., 1998; Kothbauer et al., 1998; Morota et al., 1997, 1998; Pechstein et al., 1996; Pelosi et al., 2001; Röhr et al., 1996; Sihle-Wissel et al., 2000; Stephen et al., 1996; Tabaraud et al., 1993; Taniguchi et al., 1993a, b; Thompson et al., 1991; Ubags et al., 1996, 1999; van Dongen, 1999a, b; Zentner 1989, 1991; Zentner et al., 1989; Zhou and Zhu, 2000).

Table 2. Published reports of low-frequency (<0.5 Hz) single-pulse and very brief (<0.03 second) high-frequency pulse train MEP monitoring

<table>
<thead>
<tr>
<th>Author</th>
<th>n</th>
<th>Method</th>
<th>Author</th>
<th>n</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Noordhout</td>
<td>19</td>
<td>Direct</td>
<td>Cederholm et al.</td>
<td>74</td>
<td>Direct</td>
</tr>
<tr>
<td>Horikoshi</td>
<td>50</td>
<td></td>
<td>Kawaguchi et al.</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Katayama</td>
<td>20</td>
<td></td>
<td>Krombach et al.</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>89</td>
<td></td>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Andersson</td>
<td>38</td>
<td>TES</td>
<td>Taniguchi et al.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Boyd</td>
<td>11</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Burke</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gokaslan</td>
<td>16</td>
<td></td>
<td>Calancie et al.</td>
<td>561</td>
<td></td>
</tr>
<tr>
<td>Hicks</td>
<td>40</td>
<td></td>
<td>Deletis et al.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Jellinek</td>
<td>43</td>
<td></td>
<td>Jacobs et al.</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>Kalkman</td>
<td>22</td>
<td></td>
<td>Jones et al.</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Kothbauer</td>
<td>87</td>
<td></td>
<td>Kakimoto et al.</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Lang</td>
<td>40</td>
<td></td>
<td>Kawaguchi et al.</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Levy</td>
<td>98</td>
<td></td>
<td>Krombach et al.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Morota</td>
<td>32</td>
<td></td>
<td>Kothbauer et al.</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Stephen</td>
<td>160</td>
<td></td>
<td>MacDonald et al.</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Tabaraud</td>
<td>27</td>
<td></td>
<td>Meylaert et al.</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Thompson</td>
<td>6</td>
<td></td>
<td>Pechstein et al.</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Ubags</td>
<td>25</td>
<td></td>
<td>Pelosi et al.</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Yang</td>
<td>12</td>
<td></td>
<td>Röhr et al.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Zentner</td>
<td>105</td>
<td>TMS</td>
<td>Ubags et al.</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>787</td>
<td></td>
<td>van Dongen et al.</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zhou et al.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Algio et al.</td>
<td>27</td>
<td>TMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firsching</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glassman et al.</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herdman et al.</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kitagawa</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee et al.</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sihle-Wissel</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taniguchi et al.</td>
<td>77</td>
<td>1,314</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>325</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand total</td>
<td>1,201</td>
<td></td>
<td></td>
<td></td>
<td>1,714</td>
</tr>
<tr>
<td></td>
<td>2,915</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Direct, direct cortical stimulation; TES, transcranial electric stimulation; TMS, transcranial magnetic stimulation; n, number of patients reported by each author in one or more studies. The only published adverse events are three instances of tongue biting (Jones et al., 1996; Kothbauer et al., 1998) and one mandibular fracture (Calancie et al., 2001) associated with pulse train TES.

Copyright © by the American Clinical Neurophysiology Society. Unauthorized reproduction of this article is prohibited.
fied one unpublished seizure with the D185 in more than 10,000 documented cases. Deletis (personal communication) has encountered three unpublished seizures using a custom-made pulse train stimulator among 5,000 cases—one related in time to stimulation and the other two not related. In more than 200 unpublished cases, I encountered one generalized seizure during skull base surgery under propofol and fentanyl anesthesia in a nonepileptic patient predisposed by an occipital ventriculoperitoneal shunt. It occurred 2 minutes after the last stimulation (Viking, 175-V, 500-Hz, five-pulse trains) on breaching dura near the temporal lobe, which could have induced the seizure. Transcranial electrical stimulation was stopped, phenytoin administered, and there were no further seizures.

There is currently no identifiable seizure risk with low-frequency single pulses under anesthesia, but based on the previous five events in more than 15,000 cases, pulse train TES has a rare but not negligible association with seizures. Spontaneous seizures may complicate intracranial surgeries (Ravussin and Wilder–Smith, 2001; Suri et al., 1998). Some anesthetics can exhibit proconvulsant properties during induction, surgery, or recovery, including cortical seizures with an EEG expression and subcortical seizure-like motor phenomena with no EEG correlate. Clinical proconvulsant effects have occurred with nitrous oxide, enflurane, etomidate, ketamine, propofol, morphine, meperidine, fentanyl, sufentanil, alfentanil, and local anesthetics; EEG seizures have occurred with enflurane, sevoflurane, etomidate, meperidine, and local anesthetics (Modica et al., 1990a, b; Woodforth et al., 1997; Yasukawa and Yasukawa, 1999). In epileptic patients, spike activation or seizure activity has occurred with enflurane, sevoflurane, methohexital, etomidate, benzodiazepines, ketamine, propofol, alfentanil, and remifentanil (Cascino et al., 1993; Komatsu et al., 1994; Modica et al., 1990a, b; Wass et al., 2001). Therefore, some seizure-like events could be coincidental unless EEG demonstrates TES-induced seizure patterns. Since afterdischarges can build up over seconds or minutes before symptomatic expression a cortical seizure that does not immediately follow stimulation could still be due to TES. Transcranial electrical stimulation should be discontinued in the rare event of clinical or EEG seizure activity unless shown to be unrelated to stimulation. Woodforth et al. (1997) applied single-pulse TES safely after a sevoflurane EEG seizure.

The convulsions of ECT can produce pulmonary, cardiac, and traumatic complications (Ali and Tidmarsh, 1997; Tecoult and Nathan, 2001). Intubation should prevent pulmonary complications, but intraoperative convulsions could cause serious morbidity. Fortunately, this has not occurred during the few observed events associated with TES.

Again, based on unpublished experience, the chance of seizures may be somewhat higher with direct, very brief pulse train stimulation during cortical lesion surgery under anesthesia. Among 50 brain tumor cases, Sala (personal communication) has encountered seizures in three, two with a history of seizures. In a subset of 138 cases, Cioni (personal communication) encountered one partial leg motor seizure using five-pulse train stimulation of the hand area in a brain tumor patient with epilepsy. The Bonn group (Neuloh and Schramm, personal communication) has encountered two seizures in more than 100 unpublished cases; one had preoperative seizures and precentral astrocytoma and the other had a frontal arteriovenous malformation. Considering these observations along with the 200 published cases without seizures (see Table 2), there appears to be a substantially lower chance of seizures in these patients than traditional 50 to 60-Hz, more than 1-second cortical stimulation during local anesthesia. This is likely the result of both the different stimulus parameters and anesthesia. This method may represent an advance because MEP monitoring can be performed in addition to motor mapping under anesthesia with a lower chance of seizures, but may risk electrolytic neuronal toxicity resulting from direct monophasic stimuli. Based on these observations, a cortical lesion should be a relative TES contraindication that must be weighed against the level of motor deficit risk involved in the surgery to be monitored.

Epilepsy may predispose to transcranial stimulation-provoked seizures (Classen et al., 1995). However, studies of rTMS in epileptic patients do not support this idea, possibly because of anticonvulsant therapy (Wasserman, 1998), and there is even evidence for an anticonvulsive effect of rTMS (Ebert and Ziemann, 1999; Fleischmann et al., 1999). Although Digitimer Ltd. (2002) advises against TES with epilepsy, this is not always considered a contraindication (Burke, personal communication). When the risk of paraplegia was great, de Haan (personal communication) used TES in 21 epileptic patients without inducing seizures. Gugino and Schwartz (2001) stated that TES can be safe with epilepsy, but advised exclusion of patients with recent-onset seizures. Raised intracranial pressure or severe heart disease contraindicate ECT because of serious seizure complications (Marangell et al., 1999) and should be considered TES contraindications, but these patients should not be cleared for surgery. Tricyclic antidepressants and neuroleptics are possible cofactors in rTMS-provoked seizures (Wasserman, 1998) and may be considered as relative TES contraindications. Similarly, it

may be reasonable to avoid particularly proconvulsant anesthetics such as etomidate or enflurane (Digitimer Ltd., 2002; Modica et al., 1990b). EEG monitoring can detect afterdischarges during rTMS (Boutros et al., 2000; Wasserman, 1998); however, in my view this should be optional for TES MEP monitoring because of the rare association with seizures. If used, the monitorist should be a competent interpreter prepared to differentiate TES and seizures from anesthetic patterns or seizures.

Kindling

Kindling is an animal model consisting of progressive and persistent reductions of afterdischarge and seizure thresholds to periodic focal brain stimulation and sometimes the emergence of spontaneous seizures. One-second 60-Hz rectangular or sine wave pulse trains at 1-day intervals appear to be optimal, and the amygdala is targeted because other cerebral structures are less susceptible (Goddard et al., 1969; Wada and Sata, 1974; Wada et al., 1978; Wasserman, 1998). Kindling is difficult in higher species and has not been conclusively demonstrated in humans (Wada et al., 1978; Wasserman, 1998).

Provoked seizures are not thought to produce subsequent epilepsy. Seizures resulting from traditional direct cortical stimulation are not believed to be epileptogenic, and seizures provoked by rTMS have not been followed by spontaneous seizures (Wassermann, 1998). The only human application resembling kindling is ECT, which induces convulsions with 60-Hz pulse trains of more than 1 second every 2 to 3 days. Six to 12 administrations are given whereas an average of 196 daily stimulations are required to kindle rhesus monkeys (Marangell et al., 1999; Wada et al., 1978). Blackwood et al. (1980) found no difference from control subjects in the incidence of epilepsy after ECT. Devinsky and Duchowny (1983) found the incidence of spontaneous seizures after convulsive therapy to be five times higher than nonpsychiatric control subjects but concluded this was the result of individual predisposition. The stimulus parameters, target, and effects of TES MEP monitoring are very different than kindling experiments or ECT (see Table 1), and clinical experience involving thousands of patients has not identified an example resembling kindling.

Epidural Complications

Single-pulse TES MEPs involve spinal epidural electrodes inserted by the surgeon after opening or inserted percutaneously by an anesthesiologist (Burke and Hicks, 1998; Deletis, 1993). Radicular irritation and epidural hematoma or infection could cause serious morbidity. Epidural catheterization for anesthesia is a common procedure, and epidural electrodes are also used for cord stimulation or sensory evoked potential monitoring (Halonen et al., 1990; Matsui et al., 1994; Schwartz et al., 1996; Wilson–Holden et al., 2000).

Neurologic complications of epidural catheterization for anesthesia are rare and mostly related to injected substance toxicity (Brown, 2000; Gieber et al., 1997; Kane, 1981). Radicular irritation usually resolves after catheter removal (Gieber et al., 1997). In a comprehensive review spanning 90 years, Vandermeulen et al. (1994) noted the incidence of epidural hematoma to be 1:150,000 and identified only 61 reported incidents, mostly associated with traumatic insertion or clotting disorders. With precautions, epidural catheterization is considered safe even with intraoperative anticoagulation (Brown, 2000; Vandermeulen et al., 1994).

Of the studies published in Table 2, 794 patients had epidural MEP recordings without complications, including 19 during heparinized thoracoabdominal aneurysm surgery (MacDonald and Janusz, 2002). Nor have there been any unpublished complications in two institutions with notable experience (Burke and Deletis, personal communication). Nevertheless, the possibility exists and requires consideration if paraplegia occurs after surgery monitored with epidural electrodes (Burke, personal communication).

Muscle MEP monitoring will reduce epidural recordings, particularly percutaneous electrode insertions (MacDonald and Janusz, 2002). However, the fluctuant nonlinear transfer of corticospinal volleys to motor units causes substantial trial-to-trial muscle response variability (Jones et al., 1996; Kothbauer et al., 1998). Consequently, there is no agreement on warning criteria, which have ranged from a more than 100-V threshold increase (Calancie et al., 2001) to amplitude reductions less than 50% (Pelosi et al., 2001) or 25% (Jacobs et al., 1999) of baseline, to disappearance (Kothbauer et al., 1998; MacDonald and Janusz, 2002). The greater stability of epidural MEPs facilitates quantitative monitoring (Bartley et al., 2002; Deletis, 1993). Applying both enhances intramedullary spinal cord surgery (Kothbauer et al., 1997, 1998) and possibly other spinal surgeries (Bartley et al., 2002). Consequently, there continue to be valid indications for epidural MEP despite this risk.

Movement-Related Injury

There is a chance of accidental injury if patient movement occurs when a surgical instrument is on a neural structure. The lack of muscle response to single-pulse TES (Burke and Hicks, 1998; Deletis, 1993) precludes
such an injury. With pulse trains and incomplete neuromuscular blockade, there will be some induced or occasionally spontaneous movement. This is not dangerous during thoracoabdominal aneurysm or orthopedic surgery omitting neuromuscular blockade (MacDonald and Janusz, 2002; MacDonald et al., 2001). In my experience, these surgeons become accustomed to the intermittent patient twitch and do not find that this interferes with performing the surgery. There may be greater interference and risk during neurosurgery (Calancie et al., 1998, 2001; Kothbauer et al., 1998) although no injuries have been identified.

One preventive strategy is to adjust stimulus intensity to threshold (Calancie et al., 1998, 2001) or to minimal, or to no movement in the surgical field. There may be more movement when monitoring leg muscles that usually have higher thresholds than hand muscles (Calancie et al., 1998). C1/2 or C3/4 stimulus montages promote this strategy because of predominantly anode-contralateral limb movement (Calancie et al., 1998; Deletis et al., 2001a, b; MacDonald and Janusz, 2002). Left and then right MEPs are obtained with right and then left scalp anodal stimulation. Bilateral, stronger twitches may occur with a vertex anode-to-basal cathode array (Ubags et al., 1996).

Occasionally, careful timing of more intermittent stimuli becomes necessary, but reduces the rapidity of surgical feedback (Kothbauer et al., 1998). Monitoring the microscope image or other video of the surgical field assists stimulus timing (Calancie et al., 1998).

Another approach is to use higher intensity but dampen movement with controlled and monitored partial neuromuscular blockade (Lang et al., 1996; van Dongen et al., 1999c). This may reduce muscle MEP variability when relaxation is stable (Pelosi et al., 2001), but the added complexity is avoided by some investigators (Calancie et al., 1998, 2001; Deletis et al., 2001a, b; Jones et al., 1996; Kothbauer et al., 1998; MacDonald and Janusz, 2002).

A novel approach is to precede single-pulse TES by foot sole stimulation, priming tibialis anterior spinal motor neurons through the withdrawal reflex to respond to a single corticospinal volley. This spatial facilitation can limit movement to the legs (Andersson and Ohlin, 1999).

Transcranial magnetic stimulation and spinal cord stimulation myogenic MEP monitoring methods are also subject to this risk. Spontaneous patient movement is always a neurosurgical risk, and a higher level of vigilance is required when neuromuscular blockade is incomplete.

Bite Injuries

Jones et al. (1996) reported one bitten tongue as a result of jaw muscle contraction during D185 pulse train TES and advised bite blocks. Kothbauer et al. (1998) reported two bitten tongues using a custom-made stimulator and advised padded Guedel tube protection. They noted particularly strong temporalis muscle contraction with C3/4 stimulation resulting from direct muscular depolarization, which can also occur with single pulses. This may be a reason to favor C1/2 stimulation. Gugino and Schwartz (2001) noted five bitten tongues, one requiring surgical repair among 8,200 cases using the D185. Digitimer Ltd. has identified a total of 27 known incidents of tongue or lip laceration in more than 10,000 cases using the D185, distributes caution labels to its customers, and advises the use of soft bite blocks. Calancie et al. (2001) reported a unique mandibular fracture using C3/4 D185 stimulation in one patient without a bite block.

Cognitive and Affective

Confusion and memory loss after ECT usually last about 30 minutes, sometimes more (Marangell et al., 1999; Tecoult and Nathan, 2001). Prevailing psychiatric opinion holds that there are no permanent deficits attributable to modern ECT (Brodaty et al., 2001; Marangell et al., 1999). This makes adverse cognitive effects unlikely with the much less intense nonconvulsive stimuli of TES MEP monitoring.

There is a beneficial affective response to ECT in depression. Whether similar benefits occur with nonconvulsive rTMS is currently under investigation (Wasserman, 1998). A short-term trend to improved verbal recall or a decrease in logical memory after rTMS has been reported, and the long-term neuropsychologic effects of rTMS are under investigation (Wassermann, 1998). There are no lasting neuropsychologic alterations with single-pulse TMS (Bridgers, 1991), and although not studied formally, there are no reports of neuropsychologic symptoms after TES MEP monitoring.

Other Adverse Effects

Gugino and Schwartz (2001) discontinued pulse train TES in one unpublished case of premature ventricular contractions 1 minute after stimulation in a patient with a mild cardiac history. Digitimer Ltd. has recently distributed information indicating a total of five reversible cardiac arrhythmias including three sudden bradycardias without sequelae in more than 10,000 cases using the D185. It seems likely that these rare events were coin-
cidental. Syncope has rarely occurred during TMS, but has not been attributed to brain stimulation (Wasserman, 1998). Arrhythmias resulting form hypothalamic stimulation or as an isolated expression of a seizure discharge are remote possibilities. Cardiac pacemakers are considered a relative contraindication to rTMS because of the possibility of magnetic field disruption of the control circuitry. According to Gugino and Schwartz (2001), TES can be performed safely with cardiac pacemakers; however, Digitimer Ltd. (2002) advises against TES for these patients.

Cioni (personal communication) encountered one unreported case of intraoperative awareness, which is the only instance of which I know. This is an anesthetic rather than a TES complication, but it may be relevant because intravenous anesthesia is currently favored for muscle MEP monitoring (Kawaguchi et al., 2000; Pecheonstein et al., 1996, 1998; Pelosi et al., 2001; Ubags et al., 1998; van Dongen et al., 2000). I am not aware of any evidence that awareness is more likely than with inhalational anesthesia. Similar considerations apply to cortical sensory evoked potential monitoring, which also benefits from intravenous anesthesia (MacDonald, 2001).

There are no published reports of scalp burns with TES using 9-mm cup, adhesive, or spiral needle electrodes. Larger electrodes to reduce scalp charge density appear unnecessary. However, de Haan (personal communication) encountered two unpublished second-degree scalp burns at a Cz anode among 845 cases. The scalp discomfort of TES is irrelevant under anesthesia. Headache attributed to scalp muscle contraction can follow rTMS (Wasserman, 1998), but there are no reports of headache resulting from TES MEP monitoring.

Transient disturbances of hormonal homeostasis after seizures or ECT and transient alterations of thyroid-stimulating hormone, prolactin, and T-lymphocyte subsets after rTMS can occur (Marangell et al., 1999; Wassermann, 1998). Such effects have not been studied with TES MEP monitoring, but do not appear to have any harmful potential.

CONCLUSIONS

The specific motor assessment of TES MEP monitoring clearly benefits patients undergoing surgery jeopardizing motor function. Regarding safety concerns, comparative analysis indicates that brain damage and kindling are unlikely. Under anesthesia, seizures with less than 0.5-Hz single pulses are currently unknown and very brief (<0.03 second) high-frequency transcranial pulse trains appear to have a very low but not negligible association with seizures. It is unclear whether this is greater than the chance of spontaneous intraoperative seizures, but clear that seizures are very rare compared with other clinical brain stimulation methods, probably as a result of the very brief stimuli, anesthesia, and the general absence of predisposing factors. Expert EEG afterdischarge monitoring should be optional. Although possible, there have been no known complications from spinal epidural recording electrodes or accidental injuries resulting from TES-induced patient movement during neurosurgery. Preventive strategies for the latter include stimulus adjustment, careful timing, video monitoring, and possibly controlled partial relaxation or spatial facilitation. Soft bite blocks may prevent infrequent and rarely severe bite injuries. Rare cardiac irregularities may have been coincidental. Burns at scalp stimulating electrode sites appear to be very rare. No adverse neuropsychologic effects, headache, or homeostatic disturbances have been recognized, but formal studies are lacking. Comprehensive relative contraindications include epilepsy, cortical lesions, convexity skull defects, raised intracranial pressure, cardiac disease, proconvulsant medications or anesthetics, intracranial electrodes, vascular clips or shunts, and cardiac pacemakers or other implanted biomedical devices. Otherwise unexplained intraoperative seizures and possibly cardiac arrhythmias are indications to abort TES. Table 3 summarizes all adverse events identified in this review. Unless more frequently realized adverse effects begin to emerge, none of these risks should outweigh the benefits of this method when indicated and used with informed consent and appropriate precautions in expert hands.

REFERENCES

Aglio LS, Romero R, Desai S, Ramirez M, Gonzalez AA, Gugino LD. The use of transcranial magnetic stimulation for monitoring de-

Blackwood DH, Cull RE, Freeman CP, Evans JI, Mawdsley C. A study of the incidence of epilepsy following ECT. J Neurol Neurosurg Psychiatry 1980;43:1098–102.

Deletis V, Sala F. The role of intraoperative neurophysiology in the protection or documentation of surgically induced injury to the spinal cord. Ann N Y Acad Sci 2001;534:137–44.

SAFETY OF TES MEP MONITORING

