Near Earth Propagation with Arbitrary Antenna Patterns

Kyle L. Labowski
Christopher W. Penney
R. Ryan Ohs
Ruth S. Belmonte
Background on MWFDTD

• Moving Window Finite Difference Time Domain
 – Applies material properties to 2-D Yee cell problem space
 • Terrain Profile, dielectrics, etc
 – Solves Maxwell’s Equations over entire problem space
 – Excites model and records response
• This presentation describes work performed under sponsorship of NRL to develop the capability to model arbitrary transmitting antennas within MWFDTD
Issues

• FDTD is mainly used to physically model an antenna
 – 2-D or 3-D model set up with dielectric properties
 – Model analyzed for time domain response
 • SWR, Input resistance, Far Field Pattern, Near Field, etc.

• MWFDTD does not account for non-dipole antennas
 – Would require actual antenna to be modeled
 – Very fine grid required
 – Time lost making sure antenna is ‘correct’ before propagation down range

• The imported pattern is gain at an angle
 – Antenna model not present to shape the energy distribution
 – Near field data not present
Approach

- Apply Woodward Lawson Array Synthesis technique to 2-D FDTD space
- Approach is well documented in antenna literature for pattern synthesis
- Basic idea:
 - Take in an antenna pattern slice
 - Process the pattern strength at each angle off of the vertical axis to determine the current at the transmitter location over some aperture length (further explanation will follow)
 - Set the fields along a vertical line at the transmitter location based on the calculated current
Woodward-Lawson Sampling

- The sampling of the pattern is determined by the desired aperture size
 - Larger than one wavelength
 - Testing revealed decent results at three wavelengths
 - L – length of aperture in wavelengths
 - Number of samples = $2L + 1$

- $\theta_m = \arccos(m\lambda/L)$; $m=0, 1, 2, \ldots$
 - θ_m - Pattern sample angle
 - B_m - Value of pattern at angle

- For example:
 - $L=3\, \lambda$ aperture; 7 samples
 - $\theta_m = \arccos(m\, \lambda/(3\, \lambda))$
 - $\theta_m = 0, 48.79, 70.53, 90, 109.47, 131.81, 180$
Woodward-Lawson Aperture

- B_m-match point at angle θ_m (green line)
- The resulting pattern (magenta line) is thought of as a summation of individual sinc functions (red Lines)
- Sampling focuses on main beam
 - Larger aperture means more main beam samples
- The equation for the estimated resulting pattern $S_m(\theta)$ is:

$$S_m(\theta) = \sum_{m=-M}^{M} B_m \left(\frac{\sin \left(\frac{k l}{2} \left(\cos \theta - \cos \theta_m \right) \right)}{\frac{k l}{2} \left(\cos \theta - \cos \theta_m \right)} \right)$$
Current Distribution

- The sampled points determine the current across the aperture, which is the source excitation:

\[I(z') = \frac{1}{l} \sum_{m=-M}^{M} B_m e^{-j k z' \cos(\theta_m)} \]
Strengths and Weaknesses

Pros:
- Method established in the literature
- Recreates the main beam well without requiring a huge aperture
 - Initial testing shows good results with 3 λ array
 - Assuming main beam primary concern for down range propagation
- Relatively simple to implement

Cons:
- Does not reconstruct side lobes well
- Requires a larger aperture for more resolution
- Creates an aperture larger than original antenna
XFDTD Results Rectangular Horn

Woodward Results - Red

Desired Pattern - Blue

- Woodward Lawson method implemented in XFDTD 7
- Simulation Implemented using waveguides (aperture antenna)
- Half Wavelength separation
- Total length of array 10λ
XFDTD Results Rectangular Aperture

Woodward Results - Red

Desired Pattern - Blue

- Woodward Lawson method implemented in XFDTD 7
- Simulation Implemented using waveguides (aperture antenna)
- Half Wavelength separation
- Total length of array 10λ
XFDTD Results Circular Aperture

Woodward Results - Red

Desired Pattern - Blue

- Woodward Lawson method implemented in XFDTD 7
- Simulation Implemented using waveguides (aperture antenna)
- Half Wavelength separation
- Total length of array 10λ
MWFDTD Results Antenna on Humvee

Woodward Results - Red

Desired Pattern - Blue

- Woodward Lawson method implemented in 2-D MWFDTD
- Simulation implemented using 2-D waveguides (aperture antenna)
- Half Wavelength separation
- Total length of array 10 \(\lambda \)
MWF DTD Results Circular Aperture

Woodward Results - Red
Desired Pattern - Blue

- Woodward Lawson method implemented in 2-D MWF DTD
- Simulation Implemented using 2-D waveguides (aperture antenna)
- Half Wavelength separation
- Total length of array 10 \(\lambda \)
MWF DTD Results Rectangular Horn

Woodward Results - Red

Desired Pattern - Blue

- Woodward Lawson method implemented in 2-D MWF DTD
- Simulation Implemented using 2-D waveguides (aperture antenna)
- Half Wavelength separation
- Total length of array 10λ
MWFDTD Results Rectangular Aperture

Woodward Results - Red
Desired Pattern - Blue

- Woodward Lawson method implemented in MWFDTD
- Simulation Implemented using 2-D waveguides (aperture antenna)
- Half Wavelength separation
- Total length of array 10λ
Summary

• There are standard approaches to applying an arbitrary far field antenna pattern to a 2-D FDTD grid

• Antenna Synthesis methods allow the reproduction of arbitrary antenna patterns in the 2-D FDTD framework
 – Main beam gain is reproduced
 • Important for down range propagation
 – Side lobes not reproduced as well
 • Depends on aperture size – larger aperture = more sample points