
NoCOUG
P.O. Box 3282
Danville, CA 94526

FIRST-CLASS MAIL
U.S. POSTAGE

PAID
SAN FRANCISCO, CA

PERMIT NO. 11882

RSVP online at www.nocoug.org/rsvp.html

8:00 a.m.–9:00 Registration and Continental Breakfast—Refreshments served

9:00–9:30 Welcome: Hanan Hit, NoCOUG president

9:30–10:30 Keynote: Why Are There No Giants?—Neil Gunther

10:30–11:00 Break

11:00–12:00 Parallel Sessions #1

Auditorium: Performance Analysis For Those Who Can’t Wait—Neil Gunther

Tassajara: make.sql: Script Management for Oracle—Ahbaid Gaffoor, Amazon

Diablo: Cloud Computing Enabling Global Business Services Utilities—Bradley Brown, TUSC

12:00–1:00 p.m. Lunch

1:00–2:00 Parallel Sessions #2

Auditorium: Top Five Tips for Reducing Storage Cost While Improving Performance
—Jean-Pierre Dijcks, Oracle Corporation

Tassajara: Case Study on the Importance of Reaching Recent Rows First—Dan Tow

Diablo: Building a User Definable and Flexible UI with Apex—A Case Study
—Bradley Brown, TUSC

2:00–2:30 Break and Refreshments

2:30–3:30 Parallel Sessions #3

Auditorium: Best Practices for Data Loading with Oracle Database 11g Release 2
—Maria Colgan, Oracle Corporation

Tassajara: Measuring for Robust Performance—Robyn Sands, Cisco Systems

Diablo: The Challenge of Virtualizing Databases—Jedidiah Yueh, Delphix.com

3:30–4:00 Raffle

4:00–5:00 Parallel Sessions #4

Auditorium: Best Practices for Data Loading with Oracle 11g Release 2—Oracle Corporation

Tassajara: Next-Generation SOA Platform—Oracle Corporation

Diablo: What Every DBA Should Know About TCP/IP Networks—Chen Shapira, Hewlett-Packard

5:00– NoCOUG Networking and No-Host Happy Hour at Faz Restaurant, 5121 Hopyard Road, Pleasanton.

NoCOUG Winter Conference Schedule
Thursday, February 11, 2010, at CarrAmerica Conference Center, Pleasanton, CA

Please visit www.nocoug.org for updates and directions, and to submit your RSVP.
Cost: $50 admission fee for non-members. Members free. Includes lunch voucher.

Th
e

N
oC

O
UG

 Jo
ur

na
l d

es
ig

n
an

d
pr

od
uc

tio
n:

 G
ira

ffe
x,

 In
c.

, S
.F.

Fr
on

t c
ov

er
 p

ho
to

—D
el

ica
te

 A
rc

h,
 A

rc
he

s
N

at
io

na
l P

ar
k,

 U
ta

h—
Ph

ot
o

by
 T

om
 W

ag
ne

r.

Vol. 24, No. 1 · FEBRUARY 2010 $15

Oracle Performance
Survival Guide
A review of Guy Harrison’s
new book.

See page 7.

Not the SQL of My
Kindergarten Days
Iggy Fernandez waxes
nostalgic.

See page 17.

Much more inside . . .

Spotlight on Tuning
An interview with Guy
Harrison.

See page 4.

Find New Perspectives
at NoCOUG

��

� � � � � � �

NORTHERN CALIFO
R

N
IA

O
R

A
C

LE

USERS GROUP

�

Editor’s Pick

Is this your

last issue?

See page 16.

NoCOUG_201002cvr-PP.indd 4-5 1/28/10 12:08:35 PM

7The NoCOUG Journal

B O O K
R E V I E W

Oracle Performance
Survival Guide

A Book Review by Dave Abercrombie

Details

Author: Guy Harrison

ISBN-13: 978-0-13-701195-7

ISBN-10: 0-13-70119-54

Pages: 730

Publication Date: October 2009

Edition: 1

Price: $59.99 (list)

Publisher: Pearson Education
(Prentice Hall)

Summary

Overall review: An encyclopedic overview of all aspects of
Oracle performance, addressing all layers from high-level
application design through SQL tuning, PL/SQL, locks, and
contention, all the way down to memory configuration and
disk layout.

Target audience: Application developers and DBAs

Would you recommend this to others? Yes.

Who will get the most from this book? Application develop-
ers who want to do the right thing, and performance experts
or DBAs who want to broaden their knowledge.

Is this book platform specific? Yes: 10g, 11g, 11gR2 (with con-
text from 8i and 9i)

Why did I obtain this book? Guy Harrison has been a re-
spected author in this field for more than a decade. Back in the
days of version 8, his writing opened my eyes to the world of
Oracle performance tuning. When I learned that he published
this new book—updated and greatly expanded in scope—I
was determined to read it.

Overall Review

This book is an encyclopedic overview of all aspects of
Oracle performance. Guy Harrison takes a layered approach,
starting at the top with application and data model design,
where the focus is minimizing the demand for database re-
sources. He then moves down into database code internals,

where the focus is maximizing concurrency through reduction
of lock, latch, and mutex contention. The next step is to opti-
mize memory usage to minimize the need for physical I/O.
Finally, he moves to the bottom layer, where the focus is on
optimizing physical I/O at the disk layer.

Each of these layers is worthy of its own book, so to com-
bine all of these topics in a single book is an ambitious goal.
Indeed, experienced readers will often want a bit more detail
or wonder why their favorite optimization is not mentioned.
However, Harrison strikes a very good balance between depth
and coverage. He also provides a very useful bibliography, in-
cluding Oracle documentation, books, and Internet sites and
blogs.

For each chapter, Harrison provides extraordinarily clear,
concise, and helpful introductions and summaries. He also
uses boxed borders to highlight particularly important points
within the text. You can learn a great deal by simply reading
these summaries and boxed items, and these can also be used
to help the reader find relevant sections, which is especially
valuable in a book of this length.

Part I: Methods, Concepts, and Tools

In recent years, Oracle performance experts have moved
away from “ratio-based“ tuning techniques toward use of the
wait interface, and this has brought radical improvements in
our ability to diagnose and tune. Harrison begins this book
by warning us not to rely too much on wait event analysis. He
warns that by concentrating only on the largest wait events, we
may fall into the trap of treating symptoms rather than causes,
we may be tempted to waste money on hardware-based solu-
tions, and we may not reach permanent, scalable solutions.

Harrison’s methodical tuning-by-layers approach. which
forms the foundation of this book, helps us to avoid these
traps. Harrison describes the four layers of an Oracle applica-
tion: Application, Database, Memory, and Disk. Tuning by
layers starts at the top-level Application layer, where the goal
is to minimize the application workload by tuning application
code (optimizing SQL, client-side caching, reducing request
rate, etc.) or modifying the physical implementation (indexes,
denormalization, partitioning, etc.). Once the application
workload has been reduced, we move down to the next layer,
Database, where the focus shifts to reducing contention and
bottlenecks (transaction locks, latches, mutexes, etc.). The next

8 February 2010

step is to optimize Oracle’s Memory usage (block buffer cache,
PGA, etc.) to reduce physical I/O. Only after problems in the
preceding layers have been addressed does focus shift to the
Disk layer, where we work to ensure adequate bandwidth and
balance I/O demands. Interestingly, Harrison’s tuning-by-lay-
ers approach does not explicitly cover CPU utilization issues
such as the number or speed of CPUs.

Harrison devotes the next chapter to an overview of Ora-
cle’s basic architecture. Obviously, this huge topic cannot be
thoroughly described in a single chapter, so some subtleties
are glossed over and many aspects are greatly simplified.
Experts may quibble with some passages, but a concise over-
view like this is both welcome and essential.

Harrison’s next chapter covers the basic tools used for as-
sessing and improving Oracle performance. Although several
commercial tools are available for purchase, he focuses on
those that come with Oracle. Here, and throughout the book,
Harrison does an admirable job of pointing out tools like
Active Session History (ASH) and Active Workload Repository
(AWR) that are built in and begging to be used, but that re-
quire Oracle’s extra Diagnostic Pack license for legal use.

Harrison first shows how to use EXPLAIN PLAN to gener-
ate a SQL execution plan, and he briefly illustrates how to use
DBMS_XPLAN to view the plan. However, he does not go into
detail about how the plan produced by EXPLAIN PLAN may
vary from the “real” plan nor how to deal with this limitation.
Harrison briefly hints at the use of setting STATISTICS_
LEVEL to ALL but he does not illustrate this powerful tech-
nique. He misses a wonderful opportunity here to introduce
the amazingly useful “tuning by cardinality feedback” ap-
proach popularized by Wolfgang Breitling. Harrison also ne-
glects to emphasize the need for representative datasets when
tuning: I’m sure we’ve all seen queries that worked fine in de-
velopment but were problematic in production due to the lack
of test data that adequately resembles production.

Harrison next illustrates basic SQL execution tracing and
shows how to format trace files with Oracle’s tkprof. He also
provides tips on finding your trace files, including the use of
the nifty TRACEFILE_IDENTIFIER session parameter
trick. He explains when you might need to merge multiple
trace files using Oracle’s trcsess tool and shows how to use
it. Harrison also introduces using DBMS_MONITOR to initiate
traces by using the end-to-end metr ics (aka DBMS_
APPLICATION_INFO) tags MODULE and ACTION, al-
though he does not illustrate the many other wonderful
benefits of using these session-level tags. Of course, Harrison
devotes several pages to interpretation of trace data. He con-
cludes this concise and useful overview of tracing with point-
ers to tkprof alternatives.

Harrison walks us through the use of the AUTOTRACE tool
with in SQL*Plus. This tool combines execution plan infor-
mation from DBMS_XPLAN with a subset of session-level
statistics from V$SESSTAT. This useful AUTOTRACE sum-
mary would have been improved, however, through mention
of the benefits of querying V$MYSTAT, which provides per-
formance details ignored by AUTOTRACE.

Harrison spends only a couple of pages summarizing
Oracle’s V$ view interface, with an emphasis on the subset that

exposes the wait interface. These topics are huge and compli-
cated, with hundreds of V$ views, wait events, and perfor-
mance statistics, so he is only able to scratch the surface within
the scope of this book. This book is not primarily a trouble-
shooting book, so it is no surprise that these topics are covered
so briefly. However, it is perhaps surprising that no mention is
made of Oracle’s free STATSPACK or its enhancement AWR
(which requires a Diagnostic Pack license). Systemwide tools
like STATSPACK and friends can be essential in finding and
prioritizing problems that can be solved with Harrison’s tun-
ing-by-layers approach.

Part II: Application and Database Design

Harrison emphasizes the need for sound database design,
since the data model determines the ultimate performance
limits of the application. He makes a clear distinction between
logical and physical database design. Traditional logical design
ensures that “all necessary data is correctly, completely, and
unambiguously represented” while generally ignoring perfor-
mance considerations. Design then proceeds to the physical
stage, where performance and scalability goals may cause the
logical design to shift. Harrison walks us through many com-
mon physical design optimizations, including denormaliza-
tion, star schemas, and materialized views.

Since the scope of this book allows only one chapter for this
overall topic, some details are necessarily skipped. For exam-
ple, he does not define “primary key” or “foreign key,” so the
novice could become confused by his discussion of “artificial
keys.” However, Harrison does an excellent job of pointing out
potential risks of denormalization and provides a nice discus-
sion of “vertical” partitioning (moving infrequently used col-
umns of a frequently scanned table into a separate table). Still,
Harrison devotes only a few pages to the very powerful tech-
niques of range, hash, and list partitioning. His brief coverage
of star schemas does a good job of whetting our appetites, and
he kindly provides a reference to Bert Scalzo’s book on the
topic. Likewise, Harrison’s coverage of PCTFREE, PCTUSED,
and LOB storage is very brief but clear and concise.

Harrison’s overview of B*-Tree indexing is aided by some
very helpful graphics. He correctly points out that “creating
widely applicable and selective concatenated (i.e., multi-col-
umn) indexes should be a top priority of your indexing strat-
egy.” However, he devotes only three pages to this topic, and
the extraordinarily powerful trick of including enough
columns to eliminate the need to read table blocks (i.e., a
“covering index”) receives only one sentence. In my experi-
ence, ignorance of these techniques is one of the biggest con-
tributors to performance troubles, and just a few more pages
here would have been very beneficial. However, he provides
very helpful advice about finding unused indexes. He also
provides a very useful overview of other index issues such as
bitmap indexes, DML overhead, index organized tables, clus-
tering, and nested tables. Interestingly, he does not discuss the
index clustering factor; this factor is one of the main reasons
an index might not be used, and it often contributes to differ-
ences in execution plan between test datasets and production.
I would have preferred to see more discussion about the im-
portance of data distributions and clustering factors.

9The NoCOUG Journal

Harrison provides a nice overview of application use of
bind variables. His advice to use the FORCE_MATCHING_
SIGNATURE column of V$SQL to find statements that
should be using bind variables was quite welcome. He neatly
describes how setting CURSOR_SHARING to FORCE will
bring the benefits of bind variables to applications that cannot
be rewritten to include them, but he does not warn about the
plan instability that commonly arises from bind variables
peeking into histograms in such an environment.

Of course, the most efficient SQL statement is one that is
not executed, and so Harrison discusses caching, including
many potential pitfalls. His overview of the 11g feature “client-
side result caching” is very helpful.

Harrison’s discussion of array fetches is most welcome. He
shows how to set the array size within Java application code
and claims that it “can provide approximately an order of
magnitude improvement for bulk queries.”

Harrison provides an excellent overview of isolation levels:
read committed (Oracle’s default), read only, and serializable.
This is combined with an excellent introduction to locking
strategies, pessimistic and optimistic, and how they can be
implemented. For example, he provides a clear example of
using the pseudo-column ORA_ROWSCN and the table DDL
keyword ROWDEPENDENCIES to implement optimistic lock-
ing strategies. His advice on how to choose a locking strategy
is most helpful, since this issue can be quite confusing.

Harrison suggests using PL/SQL-stored procedures to im-
prove performance by reducing network roundtrips. However,
this discussion could have benefitted from a few words on other
benefits (e.g., more reliable transaction management) and
management issues (e.g., dependencies and recompilations).

Part III: SQL and PL/SQL Tuning

Harrison introduces the Oracle optimizer, pointing out
that it “makes good decisions across a wide range of circum-
stances, but it has not become self-aware yet, and human in-
tervention is often still required.” He neatly summarizes the
optimizer’s decision-making process. He mentions the static
DBA_* views that expose table and column statistics, but curi-
ously does not mention the USER_* versions that are often
more available to the typical developer. He very briefly sum-
marizes the optimizer cost calculations: although Jonathan
Lewis’s work on this topic is recommended in the bibliogra-
phy, a reminder to the reader here too would have been nice.
Harrison’s discussion of histograms, 10g plan instability from
bind variable peeking, and the 11g fix for this called “Adaptive
Cursor Sharing” is very helpful.

Harrison provides very useful guidance for using DBMS_
STAT to gather table, column, and index statistics. His
description of stale statistics is very helpful (see the ALL_
TAB_MODIFICATIONS view), as is his advice on how to set
systemwide defaults. Harrison does a good job of explaining
how to gather histogram statistics, including warnings about
some of their pitfalls, but he does not explicitly describe how
to remove a histogram or why you might need to do so.
Harrison neatly discusses “multicolumn extended statistics,”
but unless you read very carefully, you might not realize that
this is an 11g feature only.

Harrison reminds us that optimizer hints are actually strict
directives, but they can only be obeyed if they arise in the
proper context. He advises us that we should use them “only
after you have exhausted less direct methods.” The scope of
this book does not allow a thorough discussion of hints, but
Harrison does a good job of summarizing the most important
points.

He also does a remarkable job of contrasting outlines and
profiles. Outlines are used to guarantee plan stability despite
changes in statistics or database configuration, while profiles
“are intended to increase optimizer flexibility.” Profiles are
SQL-specific statistics that “are created by a SQL tuning task
and that can then be used by the SQL tuning advisor to deter-
mine an optimum plan.” Harrison points out many advan-
tages of the SQL tuning advisor: it can spend more time
optimizing than the real-time optimizer, it can actually run the
SQL to help it optimize, it can tell when indexes are missing,
and it can create a profile. Harrison points out that use of
profiles requires a Tuning Pack license. He then provides a very
nice summary of the new 11g feature called “SQL Baselines”
that “are intended to supplement SQL profiles and eventually
replace stored outlines.”

Harrison then goes on to describe how the optimizer de-
cides when to use an index and when to do a full table scan. He
goes into a fair amount of useful detail, partially replicating
optimizer math, but again seems to ignore CLUSTERING_
FACTOR. However, his section on avoiding accidental full
table scans is excellent, with relevant advice regarding NOT
EQUALS conditions, searching for NULL values, and avoiding
accidentally disregarding an index by incorrectly using a func-
tion. A useful supplement to this section would have been Tom
Kyte’s often repeated advice on using a function-based index
to quickly search for a needle in a haystack.

Harrison wonderfully points out that an “inexperienced
SQL programmer often uses EXPLAIN PLAN to determine
that a full table scan has been avoided. If there is no full table
scan, the programmer might conclude that the plan is a good
one. In fact, there are usually a wide variety of index-based
retrievals possible, and merely ensuring that one of these ac-
cess plans is used does not mean that the SQL is optimized.”
He then repeats the excellent advice to use a concatenated
index, that such an index is optimized if its column order
“supports the widest range of queries” and, if possible, that it
completely avoids the need for any table access.

Harrison then provides many useful tips on—and possible
problems arising from—searching for ranges using the LIKE
operator and multivalve single-column lookups. Sometimes
we need to do full table scans, so Harrison provides many use-
ful tips for optimizing necessary full table scans. These include
lowering the high-water mark, optimizing PCTFREE and
PCTUSED, reducing row length, compressing the table, and
optimizing use of the block buffer cache. Especially intriguing
is the idea of using the SAMPLE clause for queries where ap-
proximate answers are acceptable. For example, if you need to
calculate an average value of an attribute, a sample of only 5%
of the rows may provide a result that is just as useful as the
correct answer, but it will run about 20 times faster.

Harrison provides an excellent and widely accessible over-

10 February 2010

view of Oracle’s join methods: nested loops, sort-merge, and
hash. He follows this with a very good description of how the
optimizer chooses a join method. The reader is then well pre-
pared to understand how these methods can be optimized, for
example by tuning indexes or properly sizing memory. Finally,
he provides useful guidance on methods to avoid joins: denor-
malization, index clusters, materialized views, and bitmap join
indexes.

Harrison brings up some interesting facts about special
joins. For example, he points out that left and right outer joins
will force a join order, which can greatly impact performance.
He provides an excellent overview of STAR joins. He briefly
discusses hierarchical join methods, but more details would be
most welcome here. One very interesting trick he describes is
how to use the PARTITION BY feature of analytic functions
to avoid expensive correlated subqueries. He also has very in-
teresting advice for anti-joins (finding rows in one table that
do not match rows in another table): “you should almost never
use a NOT IN sub-query when any of the columns involved is
nullable—for this type of query, you either want to define the
columns as NOT NULL, or add IS NOT NULL clauses to the
WHERE clause.”

Harrison provides an excellent overview of Oracle sorting,
including optimal, one-pass, and multi-pass sorts. He de-
scribes how to estimate memory needs by looking at the
TempSpc output from DBMS_XPLAN. He explains how to do
a 10032 trace event to obtain sort details. He describes the
advantages and disadvantage of indexes used to avoid sorts.
Harrison’s discussion on sort- and set-related topics is thor-
ough and practical: maximums, minimums, top-N (RANK and
DENSE_RANK), and counting rows. He provides a great dis-
cussion of GROUP BY, with useful advice that “you should
never use a HAVING in place of a WHERE.” He has useful ad-
vice about UNION and UNION ALL, although his discussion
of MINUS and INTERSECT is a little skimpy.

Harrison is clearly a fan of the focused use of PL/SQL to
improve performance, and his chapter on it provides an excel-
lent overview of its advantages. He briefly discusses the time
model views and V$SQL as ways of assessing PL/SQL resource
consumption, but he does not mention other useful instru-
mentation techniques such as those based on DBMS_
APPLICATION_INFO or V$MYSTAT, nor does he address
potential dependencies and recompilation issues relevant for
maintaining a live production system. Harrison introduces the
use of DBMS_PROFILER and its 11g enhancement, the hier-
archical profiler DBMS_HPROF. He provides a decent over-
view of BULK COLLECT array processing, pointing out, for
example, that the 10g complier will default to an array size of
100 for a simple SELECT loop even if you do not code it that
way. However, this automatic array processing does not hap-
pen with DML, since he suggests to “use the FOREALL state-
ment to perform bulk inserts, updates, deletes and merges.” He
has charts demonstrating the performance benefit of array
processing, but a general discussion of all advantages and dis-
advantages is lacking. For example, Tom Kyte has written that
inserts done with periodic commits generate more redo than
single-commit versions, so it would be interesting to have a
fuller discussion on this topic.

Harrison provides excellent advice on tuning PL/SQL—in-
sisting, for example, that the SQL first be optimized. He offers
plenty of useful tips regarding loop optimization, short cir-
cuiting expressions, expression order in IF and CASE state-
ments, and the NOCOPY clause.

Harrison provides an excellent chapter on parallel SQL,
starting with an explanation of Oracle’s parallel architecture,
including its slave pool and its use of direct I/O (bypassing the
buffer cache). He gives thorough advice on when to use paral-
lel processing, how to configure it, and how to monitor it (e.g.,
V$PQ_TQSTAT). His section on optimizing parallel perfor-
mance wonderfully ties all these concepts together. He con-
cludes this chapter with welcome details on a miscellany of
other parallel topics, including RAC and CREATE TABLE
AS SELECT.

Harrison includes a wide-ranging chapter on DML tuning.
Basic factors include optimization of the WHERE clause and
the amount of index maintenance overhead. However, most of
his discussion uses logical reads as the main metric, ignoring
the amount of REDO or UNDO generated. For example, he does
not mention the use of global temporary tables to eliminate
REDO for those parts of the application where it is appropriate.
Nevertheless, his discussion of the following topics is quite
excellent: direct path inserts, multi-table inserts, deletions,
update joins (aka “correlated updates”), MERGE, COMMIT (as
seldom as possible!) and NOWAIT (use very cautiously!).

Part IV: Minimizing Contention

Harrison starts his section on contention with a very useful
summary of transaction locks, including types and modes (e.g.
TX “transaction” type in “exclusive” mode X). He continues
with a neat summary of lock controls such as FOR UPDATE,
SKIP LOCKED, NOWAIT, and WAIT. He mentions use of
V$SYSTEM_EVENT to assess the impact of locks, but he sug-
gests instead to use one of his downloadable scripts that takes
snapshots and calculates deltas. He, of course, mentions that
Oracle’s built-in ASH will do this for you automatically, but
requires special licensing. Although he does not mention it, the
V$EVENT_HISTOGRAM view can also be very helpful too,
especially if you compute periodic deltas, as STATSPACK does.
Harrison provides several real-time queries that you can use
during a transaction pileup. Especially useful is a CONNECT
BY query into V$SESSION that shows the lock pileup “tree.”
This information is so valuable that it has been implemented
as V$WAIT_CHAINS in version 11g.

Harrison’s discussion of latches and mutexes is fairly short.
He describes the use of one of his downloadable scripts to take
snapshots and compute deltas for latch/mutex waits. He does,
however, provide useful explanation and advice for some of
the most commonly encountered latch and mutex problems.
His bibliography suggests sources for more details on these
topics. Harrison is a proponent of altering the hidden param-
eter _SPIN_COUNT, and he discusses a commercial product
that can be used to optimize it. However, he clearly acknowl-
edges the controversial nature of this advice while recognizing
its limits: he states that “if the average CPU queue length is
approaching or greater than 1, increasing _SPIN_COUNT is
unlikely to be effective.”

11The NoCOUG Journal

Harrison concludes this section with a brief overview of the
buffer cache architecture. He discusses issues surrounding free
buffer waits, recovery writer waits, buffer busy waits, and redo
log buffer waits. Again, his bibliography suggests sources for
more details on these topics.

Part V: Optimizing Memory

Proceeding down into the next layer, Harrison shifts his at-
tention to minimizing physical I/O through optimization of
memory allocation. He begins with a short summary of buffer
cache principles. This sets the stage for buffer cache configura-
tion and tuning, including dealing with Automatic Shared
Memory Management (ASMM), introduced in 10g. His cover-
age of these topics is thorough, helpful, and obviously ground-
ed in practical experience.

Harrison moves next to optimizing PGA memory, which is
mostly used for sorts and hashes. The basic goal is to do these
operations in memory, avoiding physical I/O. He thoroughly
discusses PGA memory management and measuring its usage
and efficiency. He provides complete advice on sizing the PGA
with V$PGA_TARGET_ADVICE. He also does an excellent
job of describing how to use the 11g Automatic Memory
Management (AMM) feature. His discussion of shared pool
sizing with V$SHARED_POOL_ADVICE is very helpful.

Part VI: I/O Tuning and Clustering

Proceeding down into his fourth and final layer, Harrison
shifts his attention to optimizing physical I/O. He begins with
an overview of disk I/O concepts and Oracle’s I/O architecture.
He has extensive and useful advice on measuring and monitor-
ing Oracle I/O, but again neglects mention of STATSPACK.

Regarding optimizing file I/O, he brings up the interesting
point that to reduce latency, disks should be run at less than
full—perhaps only 50% to 70% full. He also bemoans the fact
that disk vendors publish throughput metrics at 100% utiliza-
tion (where latency suffers), and publish latency metrics at 0%
utilization (which is unrealistic).

Harrison provides a nice overview of the various RAID
levels. He advises against RAID5 due to its write penalty.
Vendors often tout using their write caches to minimize this
problem, but Harrison points out that these help only for
bursts of write activity, with sustained write activity likely
leading to performance degradation.

Harrison provides several useful tips for optimizing physi-
cal I/O, especially with the goal of maintaining predictable
response time under bursts of activity such as sorts. He strong-
ly suggests dedicated non-RAID5 for redo files.

Harrison moves on to discuss advanced I/O techniques
such as Automatic Storage Management (ASM; this is a huge
topic—see his bibliography), solid state disks, and Oracle’s
Exadata Storage Server. He thoroughly discusses changing
the database block size from its default 8 KB, but advises
against it.

Harrison concludes his book by discussing RAC. He starts
with a wonderful overview of its architecture and provides
useful advice on measuring cluster overhead. One major goal
is to reduce global cache latency. He provides clear, basic ad-
vice on how to achieve this goal by optimizing the intercon-

nect, balancing the cluster, and—especially—minimizing
global cache requests.

Conclusion

Guy Harrison’s new book has a very ambitious scope: it ad-
dresses all aspects of Oracle performance, from data model
and application design through traditional query tuning and
database configuration—all the way down to disk subsystem
design. As it takes the reader step by step through these layers,
Harrison’s book demonstrates the wisdom of tuning the
higher layers first before proceeding down into the lower lay-
ers. Due to its comprehensive scope, it cannot delve deeply

into details at every step. Each chapter could potentially be
expanded into its own book. In fact, books have been written
around some of these chapters and Harrison kindly refers to
them in the bibliography. Therefore, this book is not the last
word on SQL tuning, optimizer internals, Oracle trouble-
shooting, the SGA, or latch contention. However, its coherent
approach, useful summaries and highlights, and efficient
organization, make Oracle Performance Survival Guide—A
Systematic Approach to Database Optimization a valuable and
essential guide to anyone wishing to expand and deepen their
Oracle performance skill set.

Links

Author’s website and blog: www.guyharrison.net
Main book website, including scripts and tools: www.infor-

mit.com/store/product.aspx?isbn=0137011954

Dave Abercrombie has worked at Convio (with a “v,” not an
“f ”) for about ten years, having helped to found GetActive
Software before its merger with Convio. This company’s busi-
ness model is rather like a distributed denial of service attack
against itself. Its customers are nonprofit membership organiza-
tions who want to use the Web to engage and activate their
members. So each day, Convio sends tens of millions of emails
to these members, and then tracks the ensuing member transac-
tions and activities, such as donations, advocacy, and click-
throughs. Dave has honed his troubleshooting and scalability
skills by keeping these very busy databases happy. He has pre-
sented at Hotsos and is becoming a regular presenter at
NoCOUG. He can be reached at dabercrombie@convio.com.

Copyright © 2010, Dave Abercrombie

“Its coherent approach, useful
summaries and highlights, and

efficient organization, make
[Harrison’s book] a valuable and
essential guide to anyone wishing

to expand and deepen their Oracle
performance skill set.”

