New Exporter Dynamics

Kim J. Ruhl
Stern School of Business, New York University

Jonathan L. Willis
Federal Reserve Bank of Kansas City

June 2014
Exporters are great!

- Exporting plants: larger, pay higher wages, more productive
- Not very many of them
 - 25 percent of manufacturing plants export
 - Lead to models of selection (Melitz 2003)
 - Typical: heterogeneous firms, fixed entry costs
- Estimates of entry costs are large
 - Implication: Being an exporter is great, need big entry costs to keep plants out of foreign markets
 - Implication: Are there policies to decrease entry costs?
The export entry problem

- Expected, discounted future profits versus entry cost

\[\mathbb{E}_s \left\{ \sum_{t=s} d_{t,t+1} \left(\pi_x (e_{it,q_t,\tau_t}) - f_1 \right) \right\} > f_0 \]

- Export entry cost: \(f_0 \)
 - Distribution networks, market research, regulatory compliance, product reformulation, search costs, etc.

- Export continuation cost: \(f_1 \)
 - Per-period fixed costs of maintaining export operations
What do we know about these models?

- Discrete choice models successes
 - Cross-sectional facts
 - Aggregate/macro flows
- Key innovation: export entrants
- This paper:
 How well do these models account for new exporter dynamics?
Overview of results

- Model estimation
 - Export entry costs are large and important
- Standard model cannot account for new exporter dynamics
 - New exporters grow too large too fast
 - Not enough shakeout of new exporters
 - Discreteness of export demand is too strong
- Extend standard model
 - Slow growing export demand + stochastic entry costs
 - Exporting is risky and only pays off in the long run
 - Exporting is not so great: entry costs shrink

- Colombian census of manufacturing
 - Plants with more than 15 employees
 - Employment, sales, exports, investment
 - Same time period sample as Das, Roberts, and Tybout (2007)

- Balance panel (no plant birth/death), accounts for
 - 75 percent of sales
 - 65 percent of employment
 - 66 percent of exports
The discrete nature of entry

- Model: fixed entry cost induces a discrete choice between exporting and not exporting
- Evidence from export volume
 - 70–80 percent of plants export nothing
 - Initial growth is discrete
 - Smooth adjustment afterward
- Evidence from export persistence
 - 89 percent of plants exporting in t export in $t+1$
 - New exporter survival much lower
- Robust to industry, cohort effects (in paper)
Average export to total sales ratio

Continuing exporter average (data)

New exporter average (data)
Conditional survival rate

Years since export entry vs. conditional survival rate for new exporters and all exporters (data).

New exporters (data)

All exporters (data)
An exporting choice model

- Plant level, partial equilibrium
- Idiosyncratic shocks, ϵ
- Real exchange rate shocks, Q
- Export fixed costs
 - Export entry, f_0
 - Export continuation, f_1
Uncertainty

- Idiosyncratic shock process

\[\ln \epsilon_t = \rho_\epsilon \ln \epsilon_{t-1} + \omega_{\epsilon,t}, \quad \omega_\epsilon \sim N \left(0, \sigma_\epsilon^2 \right) \]

- Real exchange rate shock process

\[\ln Q_t = \rho_Q \ln Q_{t-1} + \omega_{Q,t}, \quad \omega_Q \sim N \left(0, \sigma_Q^2 \right) \]
Households

- Domestic household

\[
\begin{align*}
\max_{C_j} C &= \left(\sum_{j=1}^{J} c_j^{\frac{\theta-1}{\theta}} \right)^{\frac{\theta}{\theta-1}} \\
\text{s.t.} & \quad \sum_{j=1}^{J} c_j p_j = I
\end{align*}
\]

- Demand functions (foreign variables with *)

\[
\begin{align*}
C_j &= \left(\frac{p_j}{P} \right)^{-\theta} C \\
C_j^* &= \left(\frac{p_j^*}{P^*} \right)^{-\theta} C^*
\end{align*}
\]
Plant’s problem

- A plant makes two decisions
 1. Within period: prices, labor, capital, sales in each market
 2. Dynamic: export status

- Technology
 \[f(\tilde{\epsilon}_j, n_j, k_j) = \tilde{\epsilon}_j n_j^{\alpha N} k_j^{\alpha K} \]

- Profits (measured in units of \(C \))
 \[\Pi_j = \frac{p_j}{P} y_j + I (X_j = 1) Q \frac{p_j^*}{P^*} y_j^* - wn_j - rk_j \]
Static problem

- Given export status: $X_j = 1$ if exporting, 0 otherwise

\[
\max_{y_j, y_j^*} \Pi_j = \frac{p_j}{P} y_j + I(X_j = 1) Q \frac{p_j^*}{P^*} y_j^* - wn_j - r k_j
\]

s.t. $y_j + y_j^* = \tilde{\epsilon}_j n_j^{\alpha N} k_j^{\alpha K}$

- Policy functions (Q shifts sales across markets)

\[
y_j^* = \frac{1}{1 + Q^{-\theta} \frac{C}{C^*}} \tilde{\epsilon}_j n_j^{\alpha N} k_j^{\alpha K}
\]

\[
y_j = \frac{Q^{-\theta} \frac{C}{C^*}}{1 + Q^{-\theta} \frac{C}{C^*}} \tilde{\epsilon}_j n_j^{\alpha N} k_j^{\alpha K}
\]
Dynamic problem

- State: \((\epsilon, X, Q)\)

- Exporting costs

\[f_X (X_j, X'_j) = f_0 I (X'_j = 1|X_j = 0) + f_1 I (X'_j = 1|X_j = 1) \]

- Bellman equation

\[
V(X_j, \epsilon_j, Q) = \max_{X'_j} \left\{ \Pi (X'_j, \epsilon_j, Q) - f_X (X_j, X'_j) + R \mathbb{E}_{\epsilon'_j, Q'} V(X'_j, \epsilon'_j, Q') \right\}
\]

- Policy function

\[
X'_j (0, \epsilon_j, Q) = \begin{cases}
1 & \text{if } \Pi (X'_j, \epsilon_j, Q) + R \mathbb{E}_{\epsilon'_j, Q'} V(X'_j, \epsilon'_j, Q') - f_0 \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]
Estimation preliminaries

- Quarterly model; aggregate to yearly to compare to data
- Parameters that can be set without solving the model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>r (annual)</td>
<td>0.109</td>
<td>Average observed interest rate</td>
</tr>
<tr>
<td>ρ_Q</td>
<td>0.826</td>
<td>Real effective exchange rate</td>
</tr>
<tr>
<td>σ_Q</td>
<td>0.036</td>
<td>Real effective exchange rate</td>
</tr>
<tr>
<td>α_N</td>
<td>0.450</td>
<td>Labor share of income</td>
</tr>
<tr>
<td>α_K</td>
<td>0.550</td>
<td>Plant-level returns to scale</td>
</tr>
<tr>
<td>θ</td>
<td>5.0</td>
<td>Elasticity of substitution</td>
</tr>
</tbody>
</table>
Parameters to estimate

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{ϵ}</td>
<td>Idiosyncratic shock persistence</td>
</tr>
<tr>
<td>σ_{ϵ}</td>
<td>Idiosyncratic shock std</td>
</tr>
<tr>
<td>f_0</td>
<td>Export entry cost</td>
</tr>
<tr>
<td>f_1</td>
<td>Export continuation cost</td>
</tr>
<tr>
<td>C^*</td>
<td>Foreign demand scale</td>
</tr>
</tbody>
</table>

- Parameter vector: $\phi = (\rho_{\epsilon}, \sigma_{\epsilon}, f_0, f_1, C^*)$

- Choose parameters to solve:

$$L(\phi) = \min_{\phi} (m_s(\phi) - m_d)' W (m_s(\phi) - m_d),$$
Identification strategy

- Strategy:
 - Use cross-sectional moments to estimate model
 - Check how well model matches new exporter dynamics
- No analytical mapping of parameters to moments
- Numerically explore sensitivity of moments to parameters
Identification

- Idiosyncratic shock process \((\rho_\epsilon, \sigma_\epsilon)\) mostly determine
 - Size distribution of plants: \(ext{std}(\text{employment})/\text{mean}(\text{employment})\)
 - Serial correlation of plant sales (remove plant and time effects)

\[
\log y_{i,t} = \gamma_i + \delta_t + \beta \log y_{i,t-1} + \nu_{i,t},
\]

- Continuation cost and entry cost
 - Entry and exit rates

- Foreign demand scale
 - Average export-sales ratio
Moments

<table>
<thead>
<tr>
<th>Moment</th>
<th>Data</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starter rate</td>
<td>0.0517</td>
<td>0.0517</td>
</tr>
<tr>
<td>Stopper rate</td>
<td>0.1062</td>
<td>0.1062</td>
</tr>
<tr>
<td>Average export-sales ratio</td>
<td>0.1346</td>
<td>0.1346</td>
</tr>
<tr>
<td>Coef. of variation, domestic sales</td>
<td>0.2090</td>
<td>0.2090</td>
</tr>
<tr>
<td>Slope, domestic sales reg.</td>
<td>0.6482</td>
<td>0.6482</td>
</tr>
<tr>
<td>Non-targeted moments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Export size prem., employment</td>
<td>1.238</td>
<td>1.286</td>
</tr>
<tr>
<td>Export size prem., domestic sales</td>
<td>1.150</td>
<td>1.218</td>
</tr>
</tbody>
</table>
Estimates

<table>
<thead>
<tr>
<th></th>
<th>f_0</th>
<th>f_1</th>
<th>C^*</th>
<th>σ_ϵ</th>
<th>ρ_ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.961</td>
<td>0.047</td>
<td>0.146</td>
<td>0.116</td>
<td>0.873</td>
</tr>
<tr>
<td></td>
<td>(0.102)</td>
<td>(0.005)</td>
<td>(0.010)</td>
<td>(0.011)</td>
<td>(0.023)</td>
</tr>
</tbody>
</table>

- Entry and continuation costs in units of median plant sales
 - Export entry almost 1 year’s sales!

- What drives this result?
 - Discrete nature of entry front-loads profits
 - Autocorrelation of shocks makes first few years great
 - Need large entry costs to offset high value of exporting
New exporter dynamics

Export-sales ratio

Conditional survival rate

- Export sales growth too discrete
- Survival rates counterfactual
Modifying the standard model

- Standard model cannot capture new exporter dynamics
- How important is it to get new exporter dynamics right?

- Modify model to generate new exporter dynamics
- Not a deep model of plants, instead
 - Force model to fit data
 - Quantitatively assess importance of entrant dynamics
Slow growth in export demand

- Standard model is “too discrete”
- Modify export demand to be conditional on exporter age, a

\[c^*_j(a) = \gamma(a) \left(\frac{p^*_j(a)}{P^*} \right)^{-\theta} C^* \]

\[\gamma(a) = \begin{cases}
\gamma_0 + \gamma_1 \times a & \text{if } a = 0, \ldots, 21 \\
1 & \text{if } a > 21.
\end{cases} \]

- Estimate γ_0 and γ_1 to match slow growth in data
- I-O literature: demand, not supply key for new firms
 (Foster, Haltiwanger, Syverson 2012)
Estimates: gradual demand model

<table>
<thead>
<tr>
<th></th>
<th>f_0</th>
<th>f_1</th>
<th>C^*</th>
<th>σ_ϵ</th>
<th>ρ_ϵ</th>
<th>γ_0</th>
<th>γ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.961</td>
<td>0.047</td>
<td>0.146</td>
<td>0.116</td>
<td>0.873</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.102)</td>
<td>(0.005)</td>
<td>(0.010)</td>
<td>(0.011)</td>
<td>(0.023)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gradual demand</td>
<td>0.286</td>
<td>0.064</td>
<td>0.198</td>
<td>0.116</td>
<td>0.873</td>
<td>0.258</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>(0.126)</td>
<td>(0.008)</td>
<td>(0.019)</td>
<td>(0.011)</td>
<td>(0.023)</td>
<td>(0.082)</td>
<td>(0.006)</td>
</tr>
</tbody>
</table>

- Pushing export profits to the future decrease value of exporting
- Export entry cost 3X smaller than baseline
New exporter dynamics

Export-sales ratio

Conditional survival rate
Stochastic export entry costs

- Gradual demand model doesn’t capture survival rates
- Need “bad” plants to enter
- With probability ζ_L, $f_0 = 0$; with probability $1 - \zeta_L$, $f_0 = f_H$
- Estimate ζ_L to match first year survival rate (0.63)
Estimates

<table>
<thead>
<tr>
<th></th>
<th>(f_0)</th>
<th>(f_1)</th>
<th>(C^*)</th>
<th>(\sigma_\epsilon)</th>
<th>(\rho_\epsilon)</th>
<th>(\gamma_0)</th>
<th>(\gamma_1)</th>
<th>(\zeta_L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.961</td>
<td>0.047</td>
<td>0.146</td>
<td>0.116</td>
<td>0.873</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.102)</td>
<td>(0.005)</td>
<td>(0.010)</td>
<td>(0.011)</td>
<td>(0.023)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gradual</td>
<td>0.286</td>
<td>0.064</td>
<td>0.198</td>
<td>0.116</td>
<td>0.873</td>
<td>0.258</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.126)</td>
<td>(0.008)</td>
<td>(0.019)</td>
<td>(0.011)</td>
<td>(0.023)</td>
<td>(0.082)</td>
<td>(0.006)</td>
<td></td>
</tr>
<tr>
<td>Extended</td>
<td>0.590</td>
<td>0.057</td>
<td>0.185</td>
<td>0.116</td>
<td>0.873</td>
<td>0.278</td>
<td>0.026</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>(0.479)</td>
<td>(0.006)</td>
<td>(0.017)</td>
<td>(0.011)</td>
<td>(0.023)</td>
<td>(0.146)</td>
<td>(0.009)</td>
<td>(0.003)</td>
</tr>
</tbody>
</table>
New exporter dynamics

Export-sales ratio

Conditional survival rate
What’s happening?

► In the extended model
 ► Profits are earned only after several periods
 ► Takes almost 20 quarters for average firm to break even
 ► Early exit from exporting is probable

► Discounted, expected value of exporting falls significantly

► Lower expected value generates lower estimated entry costs

► Policy function

\[X'_j (0, \epsilon_j, Q) = \begin{cases}
1 & \text{if } \Pi (X'_j, \epsilon_j, Q) + R \mathbb{E}_{\epsilon'_j, Q'} V (X'_j, \epsilon'_j, Q') - f_0 \geq 0 \\
0 & \text{otherwise}
\end{cases} \]
Average new exporter profits

Cumulative profits

Flow profits