Scapa® Test and Performance
Platform

Remedy Comparison
Alderstone Consulting & Scapa
Technologies

June 2015

Introduction
This performance engineering exercise was conducted in order to compare performance of Remedy
versions running on standard architecture and seeked to:

* Benchmark performance on each version of Remedy based on a standard hardware and
software setup.
* |dentify performance bottlenecks (if any)

With the release of BMC Remedy 9.0, and the rewritten Java stack, a series of tests were carried out
to make comparisons in performance between ITSM 9.0, 8.1 SP1 and 7.6.04. An identical approach
was used against each system.

Approach

How Scapa works

A user transaction is captured at the HTTP layer by using a standard browser via an instrumented
proxy. The proxy supports additional proxies, secure sockets and various forms of complex
authentication, and records a trace of the HTTP interaction which, subject to additional processing,
is replayed against the server. The HTTP replay facility again supports a broad range of encryption
and authentication models and/or proxies and is extremely lightweight, so that very significant levels
of usage can be simulated from a small client machine.

The Remedy web client speaks to the Remedy server by issuing commands embedded in the HTTP
requests. These commands correspond quite closely to the underlying Remedy API calls, with API
arguments serialized into and out of the HTTP stream.

Scapa exposes the serialized HTTP/Remedy API references in an XML-based capture/replay trace
that forms a TestComponent. This representation of the TestComponent is edited through the Scapa
GUI which has a number of automatic tools to support parameterization, equivalence processing and
generalization (adding variance) at the HTTP layer (no programming is required).

At test time the XML representation is compiled into a highly performant script format.

Parameterization/equivalence processing is handled through available Scapa functionality which
allows introducing parameters for all occurrences of certain literal values. The necessary script
changes are handled automatically and the resulting parameter instance are editable through an
easy-to-use GUI. To effectively generate a Remedy http test, Scapa traces input/output
dependencies to ensure that the generalized parameters are valid with respect to the workflow in
the system.

In addition to dedicated Remedy connectivity it has a number of key features:

* Dynamic control of load: The load on the servers is controlled and visualized through a
single user interface via one or more sliders. The user interface is like a graphic equaliser,
which can crank up the load and see where the system breaks, whilst watching performance
data inside Scapa.

* Control over business throughput as well as user count. If it is important to know the
number of transactions per second the system can support rather than the number of users,
Scapa allows this to be controlled directly.

* Predefined tests and scheduled tests execution. If dynamic control is not required, tests can
be pre-defined to run in certain ways, for example for regression testing. They can also be
scheduled for out of hour’s execution.

¢ Distributed test execution. Tests can be run from multiple client machines, to measure end-
user performance in the various geographies over which the applications are being
deployed. Test result analysis. All the data collected during a test is available for analysis
with Scapa’s statistical console.

* Reporting: Scapa provides a full-feature reporting capability with PDF, CSV and Web output,
and a broad range of summarization and aggregation facilities, including percentile reporting
and other statistical functions. Every test run is written to a SQLite databases.

* Monitoring: Scapa test execution and system data collection can be scheduled on a
continuous basis to provide an ongoing monitoring capability for Remedy applications.

Infrastructure

Software
¢ Default builds of BMC Remedy ITSM 7.6.04 , 8.1 SP2 and 9.0.
¢ Using MS SQL Server 2008 deployed on same server
* Scapa Test and Performance Platform 3.3 Enterprise Edition — 250 VU license
* Browser used was Google Chrome

Hardware

Identical Amazon EC2 m3.xlarge instances were used for each server build. Default configuration for
m3.xlarge is 4 CPUs (Intel Xeon E5-2670 v2), 15 GB Memory and 100 GB SSD. A fourth m3.large
instance was used for the Scapa Test & Performance Platform installation

TestComponent

For each of the three environments two TestComponent were created, a read-only (Console)
process, and a TestComponent that created an incident, updated and closed it. A detailed list of the
steps taken in each process follows:

Console task
1. Login as standard user
2. Open Incident Console
3. Refresh Console view using Refresh icon
4. Change from the default view in the console to “View All” Refresh Console using the refresh
icon

v

Logout

Create Task
1. Login as standard user
2. Open Create Incident form
3. Populate the form, using lookups for Customer Name, Company name, etc.
4, Add a unique text summary

Assign the incident

Change Status to “In Progress” and Save

Using the Search form, search on the unique test set in Step 4
Open the searched for incident

©® N oW

. Update and close the incident
10. Logout

Both TestComponents were set with a minimum wait time (user think time) of 60 seconds.

TestCases
For each environment, a TestCase containing the two TestComponent relevant to that environment
was built with the following population split:

* Console: 180 users
* Create: 80 users

A Scapa Control Sequence (test macro) was built for each environment, ensuring that all tests runs
would run in an identical load pattern. The steps were as follows:

Step Duration Console Create Total

Users Users Users

1 5 mins 1 1 2

2 5 mins 3 1 4

3 10 mins 30 10 40
4 10 mins 60 20 80
5 10 mins 120 40 160
6 20 mins 180 80 260

Results

Initial observations looking purely at response times showed that all three environments performed
in a similar fashion. Response times were very close to the minimum 60 seconds for all load levels up
to an including step 5 (max of 160 users). As the users for Step 6 were ramped in, some deviation on

response times were noted.

8.1 was noted to have the best performance during the final segment of load, with minimal change

on prior segments.

When the focus switched to completed transaction rates, all systems performed to minimal
differences in all periods prior to peak load, with the Console tasks reaching a rate of 2 completed
tasks per second and the Create tasks completing at .75/second. At peak load, the rates reached 3

and 1, but with large variance in the rates of 7.6.04 and 9.0.

Steady State Peak
per per

persec | permin | hour persec | per min | hour
81_Console 2.279 136.74 | 8204.4 2.963 177.78 | 10666.8
81 Create 0.77 46.2 2772 1.339 80.34 | 4820.4
76_Console 2.139 128.34 | 7700.4 2.447 146.82 | 8809.2
76_Create 0.757 45.42 2725.2 1.038 62.28 | 3736.8
90_Console 2.106 126.36 | 7581.6 2.415 144.9 8640
90_Create 0.749 4494 | 2696.4 1.031 61.86 | 3711.6

7.6.04 response times:
In the following screen shot, the two navy lines show the two user populations increasing and

running at steady states. The two black lines are corresponding response times. Note that they are

both very consistent until the last increases in user count

atCon - BiTests.statcon |] *StatCon - 90Tests.statcon

\| =

i a [0 a [0 &
T X i
= S
S R S Response times
L 13]
——1704+ + 4
——150-_‘2__—30_
F L]
IJ: N, N —
]
] Response times
o] become erratic
0— .
] Navy lines
o] show user
1 counts
3

L T e e e e L e o o o e e
:50:00 AM 7:55:00 AM 8:00:00 AM 8:05:00 AM 8:10:00 AM 8:15:00 AM 8:20:00 AM 8:25:00 AM 8:30:00 AM 8:35:00 AM 8:40:00 AM 8:45:00 AM 3:50:!{1
vl ey v e b e e e e e b o e 1wy IHgrizpntald g

"Graphs | Controls | Alerts Common Base Event Log]

ﬁ‘l 08:48:31 (info) - 76_Console : Driving-Concurrency set to 0 active users ;j
08:48:32 (info) - 76_Create : Driving-Concurrency set to 0 active users
=] || 0s:48:36 {error) - itsmBackChannelGET '00063' - Response includes Remedy Error Status[Request: http:ff10.0.0.32/arsys{BackChannel/?param=1140/GetTableEntryListf1/015/win-089ma
alog18/Default%20Admin%20view10{100000395215/win-089mab3d7hq27/AR %205y stem%20Multi-Form%205earch0f1/02/502{0/4051 %51 %501 %501 %501 % 5c1 %501 % 5c1 %501 %!
C_NS{this.windowID)!=null) getCurWFC_NS(this.windowID).status{[{cId:1,t:2,m:"Error in plugin”,n:8753,a:"ARSYS.ARF.FTS"}]);;if(getCurwFC_NS{this. windowID)!=null) getCurwFC_NS
]
08:49:18 (info) - stringPrint - INCO00000001930

Table of the response times plotted against usercounts

Console UserCount users 3 30 60 120 180
Console ResponseTime secs 60.687 60.637 60.955 61.235 68.542
Create UserCount users 1 10 20 40 80
Create ResponseTime secs 61.567 61.818 62.025 62.693 75.179

The increase in response times in the final section of the test can be clearly seen. Some timeout and

plugin error messages were noted at this stage (default timeout for any response across all tests was

30 seconds).

8.1 response times:

Again, the two navy lines show the two user populations increasing and running at steady states.

The two black lines are corresponding response times. Note that this system does not experience

the degradation of response times noted in 7.6, with just a very slight increase in response time for

the final segment.

M2 @2 J@Ca)
= [a4s === -
naml N m
Fe—200{ & Fs—100
= 42102
1005 5 -
1= 1=
—a180 90
- 4 o9}
—a170 P 9

Response times
remain steady as

user counts climb

/NG
[
L I L T I LI . I L I T T T T I T T T I L I T T T T [LI . I T L I L I L |
10:50:00 10:55:00 11:00:00 11:05:00 11:10:00 11:15:00 11:20:00 11:25:00 11:30:00 11:35:00 Ilflo:ﬁ%)l(l](ajl b
v by ey v ey e v v e e e oy By by Iy FeTiEORtE L,
Graphs lControIs | Alerts I Common Base Event Log‘
Name Description Color Width Style H Slider V Slider More
81_Console response time - Measured (Graph 1) (sec) Respo... W 2 Solid Horizontal 1 Vertical 3 More
81_Console usercount - Requested (Graph 1) (active user... 2 Solid Horizontal 1 Vertical 1 More
81_Create response time - Measured (Graph 1) (sec) Respo... W 2 Solid Horizontal 1 Vertical 3 More
81_Create usercount - Requested (Graph 1) (active user... 2 Solid Horizontal 1 Vertical 1 More
Table of the response times plotted against usercounts
Console UserCount users 3 30 60 120 180
Console ResponseTime secs 60.559 60.558 60.58 60.688 61.541
Create UserCount users 1 10 20 40 80
Create ResponseTime secs 60.948 60.935 60.965 60.983 62.424

9.0 response times:

In the following screen shot, the two navy lines show the two user populations increasing and
running at steady states. The two black lines are corresponding response times. Note that they are

both very consistent until the last increases in user count

Similar behaviour pattern to 7.6.04

I

m

/

I LI N I e
}5:4 :00 15:45:00
i

L
15:50:00 15:55:00 16:00:00 16:05:00 16:10:00 16:15:00 16:20:00 16:25:00 16:30:00 16:35;00. f‘l :40:18
.....................‘........‘.............‘?"¥°0"?lﬂ
Graphs ‘ Controls l Alerts | Common Base Event Log‘
Name Description Color Width Style H Slider V Slider More
90GA_Create usercount - Requested (Graph 1) (active user... 2 Solid Horizontal 1 Vertical 1 More
90GA_Console usercount - Requested (Graph 1) (active user... Hll 2 Solid Horizontal 1 Vertical 1 More
90GA_Console response time - Measured (Graph 1) (sec) Respo... W 2 Solid Horizontal 1 Vertical 3 More
90GA _Create response time - Measured (Graph 1) (sec) Respo... W 2 Solid Horizontal 1 Vertical 3 More
Table of the response times plotted against usercounts

Console UserCount users 3 30 60 120 180
Console ResponseTime secs 60.8 60.77 60.875 61.148 73.397
Create UserCount users 1 10 20 40 80
Create ResponseTime secs 61.357 61.331 61.463 62.219 79.823

Response times in the peak load segment were noted to be poorer and show a higher level of

variance than those experienced against 8.1.

Consolidated graphs

In this final screenshot, the graphs have been combined. The blue and yellow lines show the steady

user counts climbing for the respective Console and Create tasks. The timelines have been

manipulated so that the execution periods of each test have been transposed on the other. The

other coloured coded lines are response times for the various tasks (key below).

This shows that each system performed almost identically well up to the final phase of user load —

where we move from 160 total users to 260 total users, the exception being the 8.1 system which

continued to perform as before.

|

" Vertical 1 T|=)

-

Each system scaled as expected to the period prior to peak load. This shows that users can

T LML I
:45:00 10:50:00 10:55:00 11:00:00 11:05:00 11:10:00 11:15:00 11:20:00 11:30:00 113 00 114 }]
ofizonta
TGS O SN ST D ST ENC E o G G -
p:00 13:5?:00 13:55:00 14:00:00 14:05:00 14:10:00 14:15:00 14:20:00 14:30:00 143 00 1418 14
A ey b T Toently
1t T T T =T T T T T T
12:50:00 12:55:00 13:00:00 13:05:00 13:10:00 13:15: 13:20:00 13:25: 13:30:00 13:35: 13 4? :00 H 13:4 qO
[I I i I I R R L L qrizorftal,3
Graphs [Controls [Alerts l Common Base Event Log]

Name Description Color Width Style H Slider V Slider More
81_Console response time - Measured (Graph 1) (sec) Response... M 2 Solid Horizontal 1 Vertical 2 More
81_Create response time - Measured (Graph 1) (sec) Response... Wl 2 Solid Horizontal 1 Vertical 2 More
81_Create usercount - Requested (Graph 1) (active users) ... 2 Solid Horizontal 1 Vertical 1 More
76_Console response time - Measured (Graph 1) (sec) Response... Wl 2 Solid Horizontal 2 Vertical 2 More
76_Console usercount - Requested (Graph 1) (active users) ... W 2 Solid Horizontal 2 Vertical 1 More
76_Create response time - Measured (Graph 1) (sec) Response... Wl 2 Solid Horizontal 2 Vertical 2 More
76_Create usercount - Requested (Graph 1) (active users) ... 2 Solid Horizontal 2 Vertical 1 More
90_Console response time - Measured (Graph 1) (sec) Response... M 2 Solid Horizontal 3 Vertical 2 More
90_Console usercount - Requested (Graph 1) (active users) ... W 2 Solid Horizontal 3 Vertical 1 More
90_Create response time - Measured (Graph 1) (sec) Response... M 2 Solid Horizontal 3 Vertical 2 More
90_Create usercount - Requested (Graph 1) (active users) ... 2 Solid Horizontal 3 Vertical 1 More

confidently expect that a lightly loaded server would perform as expected while transactions and

user count grow to a known maximum.

An analysis of the final segment (peak load) for each run shows the following:

¢ 8.1 produced the best (lowest) response times

* 7.6.04 timings were slightly higher

* 9.0 timings were highest (worse) of all

* The variance was higher in the Create task, which has a higher number of transactions in it
as a whole

It should be noted that the tests were all run on a m3.xlarge Amazon EC2 instances. Using instances
with more compute power may well move the envelope of peak load further up the usercount and
transaction rate graphs, allowing different results to be noted.

Zg | Task Time
70 - 7.6 Console 69.86
60 8.1 Console 61.50
>0 =#=Console Task 9.0 Console 73.4
gg —H#=Create Task 7.6 Create 76.87
20 8.1 Create 62.37
12 9.0 Create 79.82
7.6 8.1 9.0

Subsequence Timers
As noted earlier, each component had timers wrapped round pieces of the overall transaction —
these are compared here.

Two sampling period are shown — a lightly loaded part of the scenario (30 Console users and 10
Create Users), and Peak Load (180 Console Users, 80 Create Users).

The values shown are the end user response times for various types of activity. These were defined
during the TestComponent recording process. User wait, or think time, has been eliminated from the
timings shown below.

Lightly Loaded At Peak Load
7.6 8.1 9.0 7.6 8.1 9.0
Console ChangeView 0.155 0.09 .095 1.13 0.256 0.3903
.079
Console 0.101 0.05 1.565 0.207 0.35
Login 0.151 0.141 0.41 5.703 0.501 11.154
Refreshl 0.058 0.079 0.08 0.458 0.218 0.34

Refresh2 0.111 0.11 0.109 1.018 0.272 0.4

Create AssignToMe 0.078 0.077 0.09 0.49 0.147 0.332

Newlnc 0.126 0.083 0.07 1.504 0.187 0.3474
Savelnc 0.339 0.152 0.1476 2.997 0.496 0.9082
SearchCustomer 0.094 0.06 0.089 1.227 0.139 0.27
Searchinc 0.392 0.106 0.25 3.523 0.315 2.17

A brief outline of each timer:

TestComponent Timer Name Description
Console ChangeView The time it takes to change the
console view, changed by
selecting a different value from
the default
Console Initial time to open the console
Login System time to complete a user
login
Refresh 1 Timing the response of a simple
view refresh
Refresh 2 As above
Create AssignToMe Time to Assign created incident
to the test user, clicking the
Assign to Me link
Newlnc Time to open the Create New
Incideent form
Savelnc Time for initial save of the
created incident
SearchCustomer Time to open the Search
Customer view and a list of
default results appear
Searchinc Time to search for the created
Incident by its own Incident
number
Conclusions

Side by side testing of this reference Remedy ITSM systems allows us to make the following

statements:

e All systems supported 160 simultaneous users without system component failure or functional

issue

¢ 8.1 System supported 260 simultaneous users without drastic performance degradation for

most of the user actions.

* The performance of the 7.6.04 and 9.0 systems degraded in the peak load period, with Login

times for both systems increasing in the greatest proportion.

Transaction throughput metrics suggested an optimum performance point at just under 5000
new incidents per hour (and additional 10000 console monitor transactions as a background
load)

At around a half of that load (3500 incidents per hour) user experience was very similar to what
can be expected from the system when being accessed by a single user for all of the platforms.

Most noticeable degradation of response times is associated with Logins and initial form
openings and searches. As the tests necessarily log in and out for each iteration, this impact
may well be lost on a real user.

These results are only applicable to m3.xlarge Amazon EC2 instances. No inferral regarding
usercounts or transactions rates on instances with different copmute power should be made
without testing.

APPENDIX A : The Edge of capacity
The edge of capacity is sometimes referred to as the ‘sweet spot’ or pinch point and is the point
where a system is at its maximum throughput, whilst maintaining an acceptable response time.

As load increases, a higher transactional load will be placed on a system (higher TPS). Eventually the
system in question will not be able to process the workload efficiently, and some sort of queuing will
occur. As the queue increases, the system will take longer to process each request and there will be
an increase in response time. The edge is the point where the transaction request slows and the
transaction time increases as the requested load is increased.

In other words the edge of capacity is the point at which the system is a maximal throughput

capacity.

The Queuing Phenomenon

The Queue Phenomenon

L—» merease n Lond

Queuing phenomenon encompasses all activities of our lives. We have to wait in line whenever the
number of servers or the service rate of the server does not match the rate at which the customers

arrive in the queue.

For Example:
* Waitingin line for an elevator
* Waitingin line to use an ATM
* Waitingin line at a checkout

As the queue increases, the system will take longer to process each request and there will be an

increase in response time.

A computer system is comprised of many queues. Some are complex, first in first out, first in last out
etc., but the phenomenon remains.

P Scuse Tewt Parssectice R
Fle G& Nwigws Sesch Prpct B Wedow Hep

WWW.SCAPATECH.COM g

SwiCon 001 Ecwrple Tost Came

s - - A |
n - 10_4';«_3 :
i : 1 300}

S04 9 - 1

] 45 1

] i L 250
a0]
o] 7-5]
C 7 & ——15 1 |
C iy Vo <
i 1
- 4] 1501
2 1 8
L e -1 -
—20. 4 1
- e "1
[g 3)
L 1]
4 1 4

104 4
C 1 0
X 1

h 034032 X 104002 104200 L TR T
Geaphs | Cowrds | AN Comwan Date Dvwd Lag |
| 20 Dascrptien | Osler VA | Sy W Sader TV ot e
(Y mids Moot Ovagh 1)) 3 yabe [Ve 1 e
Fa e s Wil Tog ot e Ubwiand (o 1) i Pesgs 3 [TR ¥ Vet | Ve
[Eeampn Vs Devapent i P F] Tab TG V1 [
| o =T 3 s Temwas s e 1 Ve

Scapa TTP has been designed so that load can be increased over time, during a single test cycle, so
that the edge of capacity can be easily identified, within the one test cycle. Load can be increase and
decreased during the test run in order to dial in on the edge. The edge can be clearly identified in the
above screenshot. The compress timeline feature of Scapa makes it easy to see the results for the
whole test run.

Terminology

Working Envelope

’

Response Tlme

‘ o - B col-to-End Response Time
lf—' (nevease W Load B Concurvent Users
B Throughput
B % cPu utilization

The edge-of-capacity can be easily identified in the following screenshot. The horizontal timeline
has been compressed so that the whole test run can be viewed.

” Scapa Test Perspective - StatCon - 001_HTTP_My_Work New_DBproxy.statcon - Scapa Test and Performance Platform

File Edit MNavigate Search Project Run Window Help

- G @ Q’ Q| e i | [@lscapa Test P...

>
»

+ 82 Scapi A A A
- 52 wind:
C v |l g

1
Im S
R 1
(SR
(S
mES
O s
)

I

I

I

I

I
™~
d]

= 10:46:42 27-May-08

+

+

M.

Il

’ T ’ 'Fies'por:se’Tilﬁe(’Seéoan)
n
o

O
(i)
>

=T =

m}
(i)

Mae
Mac
Mo
M«

Ha ||....|....|....|....|....|....|....|....|....|....|....|....||
Marn 0:00 09:40:00 09:50:00 10:00:00 10:10:00 10:20:00 10:30:00 10:40:00 10:50:00 11:00:00 11:10:00 11:20:00 11:30:
Ha v b b b L b L b U o B o B v o Ty oy Horigontl g,
=

Man Graphs I Controls I Alerts I Common Base Event Log l
I MName | Description | Color | ‘Width | Style | H Slider | ¥ Slider | More A

I HTTP My Work ramping mode - Requested {Graph 1) Ramping mo.. 2 Solid Horizontal 1 Yertical 1 More

il HTTP My Work response time - Measured {(Graph 1) (sec) Respo Solid Horizontal 1 Vertical 3 More

M@ HITP My Work throughput - Measured (Graph | ——m

O@u HTTP My Work throughput units - Requested (Graph 1) Throughput .l Solid Horizontal 1 Vertical 1 More

Ow@w HTTP My Work usercount - Measured {Graph 1) (active user... W 2 Solid Horizontal 1 Vertical 1 More

any HTTP My Work wait time - Requested {Graph 1) (sec) Wait ti... ! 2 Solid Horizontal 1 Yertical 3 More
| | >

—

#

+

|~

The screenshot above displays a graphical signature that is indicative of a system that scales in
proportion to load. This is a classic example of how a system should scale.

The edge-of-capacity is evident — at approximately 10:46am and the end user experience (response
time shown in black) increased only slightly as the load request increases.

Increasing the user concurrency (blue line) periodically was used to place additional load on the
system. The transactional throughput (green line) reached a maximum of 2.9 (approximate) user
transactions/activities per second.

As we increase the load beyond the edge, we can see that the end user response time increases (this
is expected as the system is already running at maximum throughput - the system simply cannot
perform any more transactional throughput, therefore the response time will increase).

We can also see the corresponding amount of %CPU utilization correlated with the end user
experience and transactional throughput. We can see that the average %CPU utilization also scales
in proportion to load and is therefore predictable. This is not necessarily true for all systems.

