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Building block of ARMA models

• A(uto)R(egressive)M(oving)A(verage) = ARMA process.
If there are no AR terms, it’s an MA process. If there are
no MA terms, it’s an AR process. The mixture of the two
is ARMA.

• The white noise stochastic process is the building block
for ARMA processes. Let {εt} denote a general white
noise process. It always has the properties:

1 E (εt) = 0→ mean-zero.
2 E (εtεt−h) = Cov (εt , εt−h) = 0∀h 6= 0→ serially

uncorrelated.
3 E

(
ε2
t

)
= σ2 → finite and homoskedastic (constant

variance).

• Sometimes the uncorrelated (2nd) property is replaced
with independence (a much stronger property).
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Building block of ARMA models

• It is also not uncommon to impose Gaussianity (normality)
on the white noise process:

εt ∼ NID
(
0, σ2

)
,

where NID denotes normally, identically distributed. Note
that independence arises for free here, since zero
correlation plus Gaussianity implies independence. For
now, we’ll not impose this.

• So far, not too interesting. We can’t use the past of the
white noise process to predict its future at all.

• However, if we consider linear combinations of the white
noise process measured at different points in time, things
become more interesting. We can then use past white
noise elements to predict future values for the linear
combination.
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Moving Average (MA) models

• An MA process is a linear combination of white noise
processes which advances through time (the moving part
of the name).

• The shorthand for it is MA(#) where # is the order of
the process and indicates how many lags of the past white
noise affect the present value of the MA process. Thus,
MA(0) is just usual white noise.

• An MA(1) process contains the current white noise
process value plus the once-lagged white noise value:

Yt = µ+ εt + θεt−1

where µ and θ are constant parameters and εt is the white
noise process.
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Moving Average (MA) models

• Notice that:
1 E (Yt) = µ, since ε is mean-zero. If we condition on the

information set at time t − 1 however, we would include
the εt−1 term.

2

Var (Yt) = E
[
(εt + θεt−1)2

]
= E

[
ε2
t + 2θεtεt−1 + θ2ε2

t−1

]
= σ2 + θ2σ2

=
(
1 + θ2

)
σ2

3 Notice how the autocovariance for h = 1 is:

γ1 = E [(εt + θεt−1) (εt−1 + θεt−2)]

= E
[
εtεt−1 + θε2

t−1 + θεtεt−2 + θ2εt−1εt−2

]
= θσ2

where we use the uncorrelatedness of the white noise to
simplify.
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Moving Average (MA) models

• Furthermore, all autocovariances for h > 1 are zero, by the
same uncorrelatedness.

• This is extremely nice. We get that an MA(1) process is
weakly stationary just from its structure. Moreover, if we
make the additional assumption of Gaussianity of the
white noise process, we get ergodicity for all moments.

• In general, an MA(q) process, where q is finite and
positive, is always weakly stationary, regardless of the
magnitude of the coefficients on the MA terms. Why? All
first and second moments are finite and well-defined. Note
that the autocovariances for h > q are all zero by
uncorrelatedness of the white noise.

• What about the case where q is infinite? As you would
expect, things get trickier and we have to impose more
assumptions in order for things to converge.
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Moving Average (MA) models

• Consider the MA(∞) process:

Yt = µ+
∞∑
j=0

ψjεt−j

• In order for the MA(∞) to be weakly stationary, we need
for the MA coefficients to be square summable:

∞∑
j=0

ψ2
j <∞

which ensures that the higher order covariances shrink
quickly enough. By convention, ψ0 = 1.

• If we go for the somewhat stronger absolute summability,
where

∑∞
j=0 |ψj | <∞, then we get not only weak

stationarity but also ergodicity for the mean.
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Moving Average (MA) models

• Consider the derivative of the MA process with respect to
a past white noise innovation:

∂Yt

∂εt−j
= ψj∀j ≥ 0.

• How can we interpret this? The uncorrelatedness of the εs
allows us to extract the marginal effect of the innovation
at time (t − j) upon the MA process at time t. The MA
coefficient is the impulse response of Yt to εt−j .

• A ready causal interpretation presents itself if we consider
the relevant counterfactual to be the average worldline
where εt−j = 0. Then, the impulse response of an MA
process to its underlying white noise process represents the
causal effect of an innovation over time.

• Of course, if the model is misspecified, then this
interpretation is not accurate (viz., there are omitted
variables).
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Moving Average (MA) models

• Consider the derivative of the MA process with respect to
a past white noise innovation:

∂Yt

∂εt−j
= ψj∀j ≥ 0.

• How can we interpret this? The uncorrelatedness of the εs
allows us to extract the marginal effect of the innovation
at time (t − j) upon the MA process at time t. The MA
coefficient is the impulse response of Yt to εt−j .

• A ready causal interpretation presents itself if we consider
the relevant counterfactual to be the average worldline
where εt−j = 0. Then, the impulse response of an MA
process to its underlying white noise process represents the
causal effect of an innovation over time.

• Of course, if the model is misspecified, then this
interpretation is not accurate (viz., there are omitted
variables).
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Moving Average (MA) models

• Since the explanatory variables are unobserved (the εs),
how can you estimate an MA model?

• If you are willing to make a specific distributional
assumption for the εs (e.g., Gaussianity), then you can use
maximum likelihood, combined with a set of initial
conditions for the εs.

• Conditional maximum likelihood starts from the initial
condition and iterates the conditional density forward in
time. With the initial conditions, this is just a
factorization of the usual joint density.

• If exact likelihood method is used, then you can apply the
Kalman filter or undertake a triangular factorization of the
covariance matrix to get the appropriate likelihood.

• Otherwise, you can approach the problem as
quasi-maximum likelihood, where you use a misspecified
likelihood as an approximation.
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Autoregressive (AR) models

• An AR process is a linear combination of its own past
values (the autoregressive part of the name) plus a
contemporaneous innovation.

• The shorthand for it is AR(#) where # is the order of the
process and indicates how many lags of the process affect
the present value of the AR process. Thus, AR(0) is just
usual white noise (only the contemporaneous innovation
piece).

• An AR(1) process contains the current white noise process
value plus the once-lagged value of the process:

Yt = c + φYt−1 + εt

where c and φ are constant parameters and εt is a white
noise process (the innovation).
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Autoregressive (AR) models

• Notice how this is essentially the first order linear
difference equation, with a forcing variable added (the
innovation).

• We know that for the solution to such a difference
equation to depend only upon the past, we need for
|φ| < 1. In this case, we can “divide-out” the past Y and
get an expression for the Yt solely as a function of past
values of ε and the constant. In fact, the AR(1) model is
equivalent to an MA(∞) model!:

(1− φL) Yt = c + εt

Yt =
c

(1− φ)
+ (1− φL)−1 εt

=
c

(1− φ)
+
∞∑
j=0

φjεt−j
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Autoregressive (AR) models

• A couple of things to notice here:
• The AR(1) impulse response function is just the AR

coefficient exponentiated to the lag (or horizon) length:

∂Yt

∂εt−j
= φj∀j ≥ 0.

It’s a smooth, geometrically declining function. This is in
contrast to the general MA(∞) case, where the MA
coefficients may or may not be smoothly related across
time horizons.

• |φ| < 1 is also a sufficient condition for weak stationarity
and ergodicity for the mean since:

∞∑
j=0

|φj | <∞

• What about an AR(p) model, where p is finite and
positive?
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Autoregressive (AR) models

• As usual, we’ll look for a solution to the implied difference
equation by factoring out a lag polynomial, and then
looking to “divide-out”. So, for the AR(p) model, we get
something like:

Yt = c + φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt

= c +
(
φ1L + φ2L2 + · · ·+ φpLp

)
Yt + εt ⇒(

1− φ1L− φ2L2 − · · · − φpLp
)

Yt = c + εt

• In order to be able to invert it, we need for all of the roots
of the associated polynomial:(

1− φ1z − φ2z2 − · · · − φpzp
)

= 0.

to be outside the unit circle in modulus (they might be
complex numbers).
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Autoregressive (AR) models

• This is equivalent to the requirement that the eigenvalues
(λ here) of the characteristic polynomial defined by:(

λp − φ1λ
p−1 − φ2λ

p−2 − · · · − φp

)
= 0.

lie inside the unit circle in modulus. The characteristic
polynomial formulation arises naturally if we express the
difference equation in matrix notation (we’ll consider this
in a moment).

• Unfortunately, both expressions are used in the literature.
You have to use the context to figure out to which
polynomial an author is referring.

• If these hold, then you can show that the AR(p) maps to
an MA(∞) process, where the MA coefficients satisfy∑∞

j=0 |ψj | <∞, meaning that the process is weakly
stationary and ergodic for the mean.

Lecture 02 EC6003, Quantitative Economics (15 of 43)



Economics
6003

Quantitative
Economics

John Bluedorn

Univariate
ARMA Models

Building block of
ARMA models

Moving Average
(MA) models

Autoregressive
(AR) models

ARMA models

ARMA in Stata

Romer and
Romer (2004)
example

Representation
Theorems

Wold
Decomposition
Theorem

Cramér
Representation
Theorem

Data Filters

Summary

Autoregressive (AR) models

• Notice that any AR(p) model can be rewritten as an
AR(1) model in matrix notation:

ξt =


Yt

Yt−1
...

Yt−p+1


(p×1)

, F =


φ1 φ2 · · · φp

1 0 0 0

0
...

. . .
...

...
0 0 1 0


(p×p)

,

and vt =


c + εt

0
...
0


(p×1)

⇒ ξt = F ξt−1 + vt , giving:

Yt = c + φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt

and a set of identities.
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Autoregressive (AR) models

• The characteristic roots which determine whether or not
the model is weakly stationary can be found from the
matrix F . They solve:

|F − λIp| = 0

• We won’t deal explicitly with solving characteristic roots
from the matrix equation, but it is important to recognize
that that is what’s going on in the background.

• Another thing to remark upon is that we can move back
and forth between viewing things as AR or MA. Under a
weak stationarity condition on the MA(1) process, we can
invert it and get an AR(∞) process (a similar argument
holds for any MA(q) for q finite and positive).
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ARMA models

• An ARMA model is a linear combination of an AR
component with an MA component, generally denoted by
ARMA(p, q). Here p is the order of the AR component
and q is the order of the MA component.

• Since we know that any finite order MA is weakly
stationary, the critical determinant of stationarity of the
ARMA model is the stationarity of the AR component,
and thus the AR lag polynomial. Why? Again, to solve
and eliminate the past Y s, we have to “divide-out” the
AR lag polynomial.

• To save space, an ARMA model is often written as:

Φ (L) Yt = Θ (L) εt ,

where Φ (L) is the AR lag polynomial and Θ (L) is the MA
lag polynomial.
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ARMA models

Some caveats when dealing with ARMA models:

• It is possible to have multiple representations of an ARMA
process, if we multiply both sides by the same lag
polynomial. As Hamilton notes, this can make things
confusing (and screw-up any numerical optimization), so
we always go with the simplest parametrization of the
model.

• Related to this, if the AR and MA lag polynomials of an
ARMA(p, q) process share a common root, then the
process can be represented as an ARMA(p − 1, q − 1),
where the common root term of the polynomials is
canceled out.
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ARMA models

• As with usual linear difference equations, we can solve an
ARMA model even if the AR lag polynomial in L is not
well-defined. How? We rewrite it as a polynomial in L−1,
which will converge when inverted. Of course, this means
that the present Y depends upon the future innovations!

• If the AR lag polynomial in L is well-defined, then we say
that we have the invertible representation of the ARMA
process. It is also called the fundamental representation.
You will also sometimes hear it called (improperly IMHO)
the causal representation, since it expresses the present
solely as a function of the past.

• If the AR lag polynomial in L is not well-defined, then we
say that we have the non-invertible representation.

We’ll talk about these issues more when we discuss
identification and invertibility.
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ARMA in Stata

• Stata allows for direct use of lag operator notation if we
declare a loaded dataset as time-series. The time-series
declaration command will be something like:

tsset year, yearly;

where year is a variable in the dataset containing the time.
Note how I am using the semi-colon to denote a
carriage-return. When scripting in Stata, you can set it as
a delimiter if you wish.

• For an AR model, we can estimate a simple linear
regression using the tsseted data by something like:

regress yvar L(1/4).yvar, vce(bootstrap,
reps(1000) seed(123456);

where yvar is the dependent variable and its own lags (4 of
them here) are the explanatory variables. The vce term
tells Stata how to calculate the variance/covariance
matrix. I’ve opted for bootstrapping.
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ARMA in Stata

• As a general rule for AR models, we want to make sure
there are enough lags of the dependent variable in the
model to soak up any serial correlation in the errors.
Why? Serial correlation implies a failure of the basic OLS
orthogonality condition for the errors and the explanatory
variables.

• So, a usual practice is to pick a lag order for an AR model
based upon a failure to reject the null of no serial
correlation.

• The bootstrapping is undertaken here because the
resulting standard errors will be robust to
heteroskedasticity (Stata does a paired bootstrap).

• It involves drawing random samples with replacement from
the dataset, estimating the model from each random
sample, and collecting that coefficients. This builds an
empirical distribution for the estimated coefficients, which
we can use to calculate a standard error.
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ARMA in Stata

• We could also use the usual Huber-Eicker-White
heteroskedasticity-robust standard errors via the robust
option.

• A constant term is automatically included by Stata with
regress unless you tell it otherwise (noconstant).

• Instead of adding additional lags of the dependent variable
to eliminate the serial correlation, we might instead opt to
model the serial correlation directly via an MA process. In
this case, we need to use Stata’s arima command to
estimate. It does maximum (or quasi-maximum) likelihood
estimation.

• Suppose that we want to estimate an ARMA(4,2) model.
We specify it as:

arima yvar , ar(1/4) ma(1/2);

Note that we can specify any subset of lags to include
(need not be contiguous block).
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ARMA in Stata

• Use help arima to get the full set of options which you
can specify.

• We aren’t considering the i bit here, but that stands for
integrated and refers to the amount of differencing a series
requires before it is stationary. We’ll talk about this when
we get to nonstationary time series.

• You can also have exogenous explanatory variables with
arima and thus estimate an ARMAX model (the X are the
additional exogenous explanatory variables).

• There are a couple of cool prediction options that you can
do with arima in Stata:

1 One-step ahead predictions post-estimation via: predict
yvarhat1, xb;.

2 Recursive or dynamic predictions post-estimation via:
predict yvarhat2, dynamic(.);.
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Romer and Romer (2004) example

• Romer and Romer (2004) undertake an interesting
identification approach to estimate the effect of U.S.
monetary policy upon U.S. economic performance (as
measured by the growth of real output and inflation).

• They use narrative evidence (minutes and transcripts) of
the Federal Reserve’s Federal Open Market Committee
(FOMC) to construct an intended federal funds (FF) rate
series, capturing the FOMC’s target interest rate.

• They then employ the in-house economic forecasts of the
Federal Reserve as explanatory variables for changes in the
intended FF rate.

• They argue that the residuals from such a regression
represent the change in monetary policy intentions which is
unrelated to expected future economic conditions, and is
therefore exogenous.
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• Specifically, they estimate:

∆ff m = α + βff m−1

+
2∑

j=−1

γj∆̂ym,j +
2∑

j=−1

ηj

(
∆̂ym,j − ∆̂ym−1,j

)

+
2∑

j=−1

θj π̂m,j +
2∑

j=−1

λj (π̂m,j − π̂m−1,j)

+µn̂m,0 + ηm,

where m indexes FOMC meetings, j indexes the forecast
quarter relative to the current meeting’s quarter, ff is the
target federal funds rate level, ∆y is real output growth, π
is inflation, n is the unemployment rate, η is a mean-zero
error term, and a hat denotes the real-time forecast for a
variable.

Lecture 02 EC6003, Quantitative Economics (26 of 43)



Economics
6003

Quantitative
Economics

John Bluedorn

Univariate
ARMA Models

Building block of
ARMA models

Moving Average
(MA) models

Autoregressive
(AR) models

ARMA models

ARMA in Stata

Romer and
Romer (2004)
example

Representation
Theorems

Wold
Decomposition
Theorem

Cramér
Representation
Theorem

Data Filters

Summary

Romer and Romer (2004) example

• The values of η̂ are then cumulated within months to
generate a monthly data series stretching from 1969-1996.
This is then used to estimate the response of real output
growth (and other variables) at the monthly frequency.

• They are essentially arguing that their procedure identifies
a set of exogenous monetary policy shocks that are
orthogonal to the relevant counterfactual world, where
monetary policy is purely endogenous. Notice how this
implies that an impulse response, where the η̂ are the
innovations, is then the appropriate way to evaluate the
causal effect of monetary policy.

• They estimate the following ARX(24,36) model:

yt =
12∑
j=1

αjDj +
24∑
j=1

βjyt−j +
36∑
j=1

γj η̂t−j + ut

D are monthly dummies.
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(�6.4%, �3.0%). Thus it encompasses both no
effect and the estimated maximum impact.18

Since it is not plausible that contractionary
policy raises output, the finding of a significant
positive coefficient on the first lag of the shock

18 These results are similar in their essentials to those in
our earlier work on the real effects of monetary policy
(Romer and Romer, 1989, 1994). In the earlier papers we
identified only a very specific type of shock: Federal Re-
serve decisions to contract aggregate demand in order to
reduce inflation from its current level. We found that the
maximum impact of such a decision on industrial produc-
tion was a reduction of 12 percent after 32 months. Like our
new measure, this anti-inflation shock variable is designed
to isolate changes in monetary policy not taken in response
to anticipated developments. It is, however, not calibrated as
the new measure is, and does not include expansionary

shocks. The obvious reason that the earlier studies found a
larger effect is that the average shock is much larger: in the
seven episodes we identify, the actual monthly funds rate
rose an average of 3.6 percentage points (measured as the
difference between the low in the six months before the
shock to the high in the six months after the shock). The
finding that the lags with which policy affects output are
longer for these shocks than for our new measure could
stem from the fact that important interest rate movements
often occurred after the decisions to follow tighter policy
that we identify.

TABLE 3—THE IMPACT OF MONETARY POLICY SHOCKS ON INDUSTRIAL PRODUCTION

Monetary policy shock Change in industrial production

Lag Coefficient Standard error Lag Coefficient Standard error

1 0.0038 0.0018 1 0.063 0.064
2 0.0026 0.0018 2 �0.013 0.063
3 �0.0038 0.0018 3 0.107 0.063
4 �0.0012 0.0018 4 0.048 0.063
5 �0.0039 0.0018 5 0.028 0.063
6 �0.0001 0.0018 6 �0.005 0.063
7 �0.0008 0.0019 7 0.018 0.063
8 �0.0029 0.0019 8 0.008 0.063
9 �0.0021 0.0019 9 0.040 0.062

10 �0.0047 0.0018 10 �0.043 0.061
11 �0.0025 0.0019 11 0.071 0.059
12 �0.0035 0.0019 12 0.287 0.060
13 �0.0021 0.0019 13 0.023 0.061
14 �0.0007 0.0018 14 �0.196 0.060
15 �0.0003 0.0019 15 �0.151 0.061
16 0.0019 0.0018 16 �0.128 0.062
17 �0.0009 0.0018 17 0.078 0.063
18 �0.0024 0.0018 18 0.085 0.063
19 �0.0023 0.0019 19 0.056 0.063
20 �0.0007 0.0019 20 0.081 0.063
21 �0.0011 0.0019 21 �0.060 0.063
22 �0.0032 0.0018 22 �0.017 0.063
23 0.0015 0.0019 23 �0.068 0.063
24 �0.0000 0.0019 24 0.086 0.063
25 �0.0001 0.0019
26 �0.0000 0.0019
27 �0.0007 0.0019
28 0.0038 0.0019
29 0.0013 0.0019
30 0.0035 0.0019
31 0.0018 0.0019
32 0.0009 0.0018
33 0.0014 0.0018
34 0.0047 0.0018
35 0.0011 0.0018
36 0.0024 0.0018

Notes: R2 � 0.86; D.W. � 2.01; s.e.e. � 0.009; N � 324. The sample period is 1970:1–1996:12.
Coefficients and standard errors for the constant term and monthly dummies are not reported.
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• The raw coefficients from the regression are difficult to
interpret, since effects are also affecting the lagged
dependent variables. There is also a surfeit of them – too
many numbers! The impulse response to an innovation in
the monetary policy shock is more useful.

• Why do they chose this lag specification? They argue that
there are important direct effects which are not captured
in the lagged dependent variable terms. The exact choice
of 24 and 36 are otherwise arbitrary, decided upon using a
heuristic of 2 years indirect with 3 years direct effect of
monetary policy.

• Notice how the Durbin-Watson statistic is essentially 2,
indicating no AR(1) serial correlation. This is not
surprising, given how many lags there are. However, there
could be higher order serial correlation; DW doesn’t say
anything about that.
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variable is troubling. Closer inspection of the
data reveals that this result is due to the April
1980 observation. Our shock measure for April
1980 is �3.2 percentage points, and industrial
production fell 2.5 percent (seasonally adjusted)
from April to May. Setting the April shock to
zero lowers the coefficient on the first lag from
0.0038 to 0.0023, and the t-statistic from 2.1 to
1.1. Examination of the Record of Policy Ac-
tions for the April 1980 meeting yields no evi-
dence that the FOMC’s decision to ease
aggressively was based on information about
unfavorable economic prospects beyond the in-
formation contained in the Greenbook forecast.
Indeed, if anything the members’ outlook may
have been less pessimistic than the forecast.
Thus, there is no reason to think that our shock
series is mismeasured. The most likely possibil-
ity is therefore that the positive coefficient on
the first lag of our shock variable reflects
sampling error due to the single extreme
observation.

Robustness.—We investigate the robustness
of these results along four dimensions. First,
because our estimated policy changes are larg-
est and least certain during the early part of the
period of nonborrowed reserve targeting under
Paul Volcker, we reestimate equation (2) treat-
ing the policy measure as missing from October
1979 through May 1981. Omitting these obser-
vations weakens the results only slightly. The
estimated peak effect is now �3.4 percent
rather than �4.3 percent, and the estimated
effect after 48 months is �0.2 percent rather
than �1.7 percent. The omission of the infor-
mation from the early Volcker era raises the

standard errors of the estimated effects only by
about 10 percent.

Second, we examine the effects of including
48 rather than 36 lags of the policy measure.
This change has virtually no impact on the point
estimates or standard errors through month 36.
Thereafter the inclusion of the additional lags
increases the extent of mean reversion. With the
additional lags, the estimated impact at month
48 is �0.8 percent rather than �1.7 percent.

Third, we investigate the robustness of our
findings to alternative specifications of the re-
gression used to derive the shock series. Using
any of the alternative shock series described in
Section I, subsection C, leads to very similar
estimates of the effect of monetary shocks on
output. For example, using the residuals from the
regression of the intended funds rate on Federal
Reserve forecasts estimated separately before and
after 1983 leads to an estimated peak effect of
monetary policy on output of �3.9 percent.

Fourth, we examine the effects of controlling
for a measure of supply shocks. We describe this
experiment in Section II, subsection C, below.

Broader Measures of Policy.—It is important
to compare the results using our measure with
those using broader measures. A finding that the
estimated effects of policy on output are similar
using both our new measure and broader mea-
sures would suggest that the broader measures
are not severely contaminated by endogenous
and anticipatory movements, and thus would
allow researchers to use those measures with
more confidence. A finding that the estimated
effects are very different, on the other hand,
would suggest that using a narrower measure
such as ours is important.

To investigate this issue, we reestimate equa-
tion (2) using the change in the actual funds rate
in place of our shock series. The top panel of
Figure 3 displays the estimated response of out-
put to a one-percentage-point rise in the funds
rate. The effects of policy using the change in
the actual funds rate are both substantially
slower and considerably smaller than with our
measure. The estimated effect becomes nega-
tive beginning in month 6, only a month later
than it does with our measure. However, the
effect is close to zero through month 10, and is
less than a third as large as with our measure
through month 17. The effect reaches �2.4

FIGURE 2. THE EFFECT OF MONETARY POLICY ON OUTPUT
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percent in month 30 and is roughly flat thereaf-
ter. With our measure, in contrast, the estimated
effect peaks at �4.3 percent in months 22–27.
At all horizons, there is considerable overlap
between the two-standard-error confidence in-
tervals using the actual funds rate and using our
new series. Nonetheless, the contrast between
the point estimates using the two measures sug-
gests that endogenous and anticipatory move-
ments in interest rates have a quantitatively
important impact on the estimated speed and
size of the effect of policy on output.19

We also estimate equation (2) using the
change in the intended funds rate and the
change in the actual funds rate controlling for
the forecasts. The results are shown in the bot-
tom panel of Figure 3. The results using both
intermediate broader series are similar to those
obtained using the change in the actual funds
rate. That the results using both intermediate
series are quite different from those using the
new measure, and similar to those using the
actual funds rate, suggests that dealing with
both endogeneity and anticipatory movements
is important to estimating the effects of policy.
Indeed, the fact that neither correction alone has
a large impact, while the two together clearly
do, suggests that there are important interaction
effects between the two corrections.

B. Prices

Methodology and Basic Results.—Our new
series can also be used to estimate the impact of
monetary policy on inflation and the price level.
While there are few broad monthly output mea-
sures, there are a number of reliable monthly
price indexes to choose from. In our baseline
regressions we use the PPI for finished goods,
which is a standard measure covering a wide
range of goods.20 We discuss the results using
other common measures below.

19 As Figure 1 makes clear, the actual funds rate is
substantially more volatile than our new measure. If the two
series are highly correlated, this difference in volatility
could account for some of the difference in the estimated
effects of policy when we consider the same one-percent-
age-point innovation in each series. To investigate this
issue, we first regress the change in the actual funds rate on
24 own lags and the contemporaneous value and 36 lags of
our new shock measure, and compute the implied response
of the actual funds rate to a one-percentage-point realization

of our new measure. We find that the funds rate rises more
than one-for-one with our measure for the first few months
following a shock, but quickly falls to zero (and then
below). We then compute what the coefficients from equa-
tion (2) (estimated using the actual funds rate) imply about
how industrial production responds to this path of the funds
rate. That is, we calculate the response of output, not to a
one-percentage-point rise in the funds rate, but to the usual
response of the funds rate to a one-percentage-point real-
ization of our new measure. We find that only about half of
the gap between the maximum effect estimated using our
measure and the maximum effect estimated using the funds
rate goes away when we make this change. At shorter
horizons, an even smaller portion of the gap is eliminated.
Furthermore, because the estimated effects of the actual
funds rate on output are close to zero for ten months,
changing the path of the funds rate considered has no effect
on the speed of the output response. Therefore, our finding
that output responds more quickly using our new measure
than using the actual funds rate is robust to considering the
alternative path for the funds rate.

20 The PPI data are not seasonally adjusted. They
are from the Bureau of Labor Statistics Web site
(http://wwwbls.gov), series WPUSOP3000.

FIGURE 3. THE EFFECT OF BROADER MEASURES OF

MONETARY POLICY ON OUTPUT
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• Other than VAR estimation, there is no canned routine in
Stata which will generate impulse response functions.

• Consequently, you have to program something yourself:
• Use nlcom for non-linear combinations to directly calculate

the impulse responses and their delta-method (asymptotic,
analytic) standard errors.

• Place the estimated coefficients in a matrix and use the
MATA language within Stata to “power-up” the matrix
representation of the system to get the impulse responses.
For standard errors, you would: (1) generate lots of
bootstrap samples, get the coefficient estimates, and
export them; (2) calculate the delta-method, analytical
standard errors.

• Export the estimated coefficients for use in another
program (e.g., Matlab). For standard errors, the same
options as above are available.
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Representation theorems

• There are two representation theorems for weakly
stationary time series that are useful to know. We won’t
derive them, but will merely state them and discuss their
interpretation. The first is due to Wold (1938) and the
second due to Cramér (1942).

• Wold Decomposition Theorem – Any zero-mean,
weakly stationary process (denote it Yt) can be expressed
as the linear combination of a stochastic component (a
linear combination of a white noise process and its lags)
and a deterministic component that is uncorrelated with
the stochastic component:

Yt =
∞∑
j=0

ψjεt−j + κt , where ψ0 = 1,
∞∑
j=0

ψ2 <∞.
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Wold Decomposition Theorem

• εt is a white noise process. Moreover, it is the prediction
error for a linear projection of Yt upon its own past.

• corr (εs , κt) = 0∀s, t.
• κt is linearly deterministic. It can be perfectly linearly

predicted by lags of Yt .
• Things to note:

• The mean-zero is not a real restriction, since we can always
redefine the dependent variable as Y minus its mean.

• εs do not have to be Gaussian. Moreover, they do not
have to be independent or identically distributed.

• Although the εs are linearly orthogonal to the past Y , it
does not have to be the case that their conditional
expectation on the past Y is zero (could be non-linearly
related).

• εs do not necessarily have any structural interpretation.
• The Wold representation is the unique linear representation

with linear forecast errors. There may be other non-linear
representations or non-linear forecast error representations.
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Cramér Representation Theorem

• Cramér Representation Theorem (also known as the
spectral representation theorem – Any weakly stationary
stochastic process with absolutely summable
autocovariances (related to the MA coefficients) can be
expressed in the form:

Yt = µ+

∫ π

−π
e iωtdZY (ω)

where i =
√
−1, ω is frequency in radians, and dZY (ω) is

a mean-zero, complex-valued random variable that is
continuous in ω.

• dZ is uncorrelated across frequencies. Thus, you can
decompose the variation in Yt into the variation due to
cycles of different frequencies.

• This is closely related to the Fourier transform of the
autocovariances (known as the spectral density of the
process).
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Data Filters

• A lot of empirical work relies upon macroeconomic data
that are filtered. This means that some component of the
variability of the data is removed. Why would you want to
do this?

• We want to focus on some aspect of the data without
getting distracted by other irrelevant aspects of the data.

• The classic example is filtering to abstract away from
business cycle fluctuations.

• The Cramér representation theorem gives us a ready-way
to filter out the business cycle component, by removing
those frequencies of the data associated with business
cycles.

• Determine the data frequency (e.g., monthly, quarterly,
yearly, etc.).

• Determine what are the relevant business cycles. Baxter
and King (1999) consider them to be recurrent
fluctuations between 1.5-8 years.

• Determine the corresponding frequency ω in radians
→ ω = 2π

τ , where τ is the time cycle. Notice how long
cycles correspond to low frequencies and short cycles
correspond to high frequencies.

•
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Data Filters

• A lot of empirical work relies upon macroeconomic data
that are filtered. This means that some component of the
variability of the data is removed. Why would you want to
do this?

• We want to focus on some aspect of the data without
getting distracted by other irrelevant aspects of the data.

• The classic example is filtering to either abstract away
from business cycle fluctuations, or to abstract away from
non-business cycle fluctuations (e.g., the very short and
long runs).

• The Cramér representation theorem gives us a ready-way
to filter out the cyclical component we don’t want, by
removing those frequencies of the data associated with
those cycles.
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Data Filters

• How can we figure out what frequencies correspond to the
cycle of interest? The procedure goes as follows:

• Determine the data frequency (e.g., monthly, quarterly,
yearly, etc.).

• Determine what are the relevant business cycles. Baxter
and King (1999) consider them to be recurrent fluctuations
between 1.5-8 years. Hodrick and Prescott (1997) consider
them to be all recurrent fluctuations below about 8 years.

• Determine the corresponding frequency ω in radians
→ ω = 2π

τ , where τ is the cycle in the data’s time units
(e.g., months, quarters, etc.). Notice how long cycles
correspond to low frequencies and short cycles correspond
to high frequencies.

• Set the filter to eliminate those frequencies that are not of
interest.
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Data Filters

• For most economic work, this all boils down to choosing
one of the two most popular filters:

• Hodrick and Prescott (1997) – filters out all frequencies
either above or below a given threshold.

• Baxter and King (1999) – filters out or preserves those
frequencies between some upper and lower bound.

• We won’t go into their derivation, but you can execute
these filters on tsset time series data in Stata by
installing the hprescott and bking user-defined packages
→ on the command line in Stata, type net search
hprescott and then click on the appropriate link (for
example).

• You will sometimes hear them referred to as high-pass
filters, since the higher, business cycle frequencies are
passed or kept.
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Data Filters

• There are several caveats to using filters:
• If you are doing work that is implicitly real-time (e.g.,

modeling information sets at a point in time or the like),
then you need to use the one-sided version of the filters.
By default, they use information from both the future and
the past to locate the cycles and then pass or eliminate
them; they are two-sided filters.

• As Cogley (2008) describes, the Baxter-King approach
defines business cycles as linearly deterministic (recall the
Wold decomposition). This does not accord with the view
from DSGE models which sees the business cycle as a
result of stochastic processes which propagate.

• Cogley and Nason (1995) showed that the application of
the Hodrick-Prescott filter to a random walk creates a
spurious business cycle! Thus, the filter can actually
generate cycles when they are not there in an economically
meaningful way.
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Data Filters

• Cogley (2008) notes that interest in business cycle
research is now less on fitting moments to filtered business
cycle data than on matching impulse response functions.

• We will discuss what this actually entails and how it
relates to identification issues when we get to V(ector)
A(uto)R(egressions) – VARs.
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Summary

• An ARMA process may be inverted to get an MA process,
where the MA coefficients represent the impulse response
to the corresponding innovation.

• MA processes always have 2 representations, only one of
which is considered fundamental. It is where the present is
solely a function of the past (generally preferred).

• For highly parameterized ARMA models, the impulse
response functions are oftentimes more revealing than the
actual estimated coefficients. Of course, their
interpretation depends upon what the relevant
counterfactual is.

• The Wold decomposition theorem guarantees that we can
always find an MA representation. However, it says
nothing about whether or not the resulting representation
is structural or economically meaningful.
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Summary

• The Cramér representation theorem gives us a nice link
between the time domain (where we usually work) and the
frequency domain, which is useful for business cycle
research and filters.

• A naive application of a filter can actually generate a
spurious business cycle (a cycle which has no economic
meaning). This is related to the Wold decomposition not
necessarily having any structural interpretation.
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