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A Brief Guide to a Two-Stage Least Squares Research

Design

As we’ve discussed, there are many possible threats to valid inference when we rely upon
purely statistical methods to infer causal relationships. In these notes, we’ll consider how
a threat to valid inference can arise from an omitted variable. Then, we’ll work out how
a two-stage least squares research design can help us recover valid inference.

I Omitted Variables Bias

Suppose that the following linear regression model accurately describes the true determi-
nants of a dependent variable y:

yi = x1,iβ1 + x2,iβ2 + εi,

where i indexes observations, x1 is the first explanatory variable, x2 is the second ex-
planatory variable, ε is a mean-zero error/noise term, and β1 and β2 represent the true
effects of x1 and x2 respectively upon y. We are assuming that there is no intercept term
to make the notation a bit simpler. Since regression 1 represents the true model, we also
have that:

E (x1ε) = E (x2ε) = 0,

where E (·) denotes the population expectation. In other words, there is no correlation
between the true error/noise term ε and the explanatory variables.

If we knew the structure of the model with certainty, we could collect data on all the
determinants and estimate the coefficients (the βs) with a high degree of confidence that
the estimated effects reflect the true effects. Of course, we rarely know the true structure
of the model with certainty. For example, we may not realize that x2 is an important
determinant of y. Alternatively, we may understand the true structure of the model, but
we do not have access to data on one of the variables (e.g., x2).

To see what the effects of such unawareness or missing data, suppose that instead
of the true model for y given by regression 1, we postulate and estimate the following
model:

yi = x1,iβ̃1 + ε̃i,

where the tildes indicate that the parameter and error terms refer to the regression that
we actually run. Unlike β1, β̃1 might not be informative about the true effect of x1 upon
y. Why? The regression model from which it arises is a reflection of our own ignorance
or data shortcomings rather than the true regression model. However, it may be that it
can still tell us something about the true effect, as we’ll now consider.

Furthermore, suppose that x1 and x2 are correlated, such that if we had information
on x2, we could write:

x1,i = x2,iγ + ηi,

where γ 6= 0 would indicate that x1 and x2 are correlated (positively or negatively) and
η represents whatever drivers there are for x1 which are uncorrelated with x2. So, we
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are assuming that E (x2η) = 0. Note that there does not need to be any true causal
relationship between x1 and x2; all that is required is that they are correlated.

To further simplify the discussion, we will also assume that the sample is the popu-
lation of interest. Then, sample or empirical expectations represent the true population-
level expectations. As we know, the ordinary least squares (OLS) estimator for γ in this
case would be:

γ =
E (x1x2)

E (x2

2
)

.

Because we are assuming that we can use the population expectations in the OLS esti-
mator formula, we can ignore concerns about randomness in the sample.

We are now ready to consider what the relationship between regression 1 (the true
model) and regression 2 (what we actually estimate) is. The OLS estimator of β̃1 is given
by:

β̃1 =
E (x1y)

E (x2

1
)

.

If we substitute the true regression model for y into the estimator for β̃1, we can see what
the consequences of neglecting the effect of x2 upon y will be for our inference. We have
that:

β̃1 =
E [x1 (x1β1 + x2β2 + ε)]

E [x2

1
]

=
E [x2

1
β1 + x1x2β2 + x1ε]

E [x2

1
]

=
E [x2

1
]

E [x2

1
]
β1 +

E [x1x2]

E [x2

1
]

β2 +
E [x1ε]

E [x2

1
]

= β1 + γβ2 +
E [x1ε]

E [x2

1
]

= β1 + γβ2,

where we have used the constancy of the population parameters β1 and β2, the definition
of γ, and the fact that E (x1ε) = 0 in the true model so that we can ignore the last term.
From this, we can see that β̃1 differs from the true β1 by a term that is equal to γβ2,
known as the bias of β̃1 for β1. If either γ or β2 equal zero (no correlation of x1 and x2 or
no effect of x2 on y), then we are OK in using β̃1; it will accurately reflect the true effect
β1.

In words, regression 2 potentially suffers from an omitted variable problem, which is
a threat to valid inference. There is an important variable x2 that is omitted and γ is not
equal to zero. Consequently, β̃1 may not be very informative about β1. As the magnitudes
of γ and β2 grow, the bias becomes more prevalent, contaminating our inference.

Notice how the sign of the bias depends upon the signs of γ and β2. If they have the
same sign, then the bias is positive (β̃1 overestimates the effect of x1 upon y). If they
have opposite signs, then the bias is negative (β̃1 underestimates the effect of x1 upon
y). Depending upon the relative magnitude of the bias to the true effect and their signs,
it is even possible for β̃1 and β1 to have different signs.
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II Research Design and Two-Stage Least Squares

Is there a solution to the threat to valid inference detailed above? If we have access to
a variable known as an instrument, then we can use a two-stage least squares (TSLS)
research design to recover a good estimate of β1, despite either being unaware of x2’s
importance for y or not having data on x2. An instrument for x1 is a variable which is
correlated with x1 but is uncorrelated with both x2 and ε. Let z denote the instrument.
It has the following properties:

E (zx2) = E (zε) = 0 ⇒ E (zε̃) = 0.

Moreover, since z is correlated with x1, then we can decompose x1 into components
related to x2 and z:

x1,i = x2,iγ + ziδ + υi,

where δ 6= 0 would indicate that x1 and z are correlated (positively or negatively) and υ

represents whatever drivers there are for x1 which are uncorrelated with both x2 and z.
Again, note that there does not need to be any true causal relationship between x1 and
z; all that is required is that they are correlated. If we were to regress x1 on z, we would
get:

δ =
E [zx1]

E [z2]

=
E [z (x2γ + zδ + υ)]

E [z2]

=
E [zx2]

E [z2]
γ +

E [z2]

E [z2]
δ +

E [zυ]

E [z2]

= δ,

since γ and δ are constants and E (zx2) = E (zυ) = 0. Our estimate of δ is accurate,
because of the properties of the instrument. The fitted values for x1 from such a regression
are x̂1,i = δzi. This is the first stage result of TSLS.

The second stage involves regressing y upon the fitted values from the first stage x̂1.

Denote the second stage coefficient by ̂̃
β

1
. It will be:

̂̃
β

1
=

E [x̂1y]

E [x̂2

1
]

=
E [x̂1 (x1β1 + x2β2 + ε)]

E [x̂2

1
]

=
E [zδ (x1β1 + x2β2 + ε)]

E
[
(zδ)2

]

=
E [zx1] δβ1

E [z] δ2
+

E [zx2] δβ2

E [z] δ2
+

E [zε] δ

E [z] δ2

=
E [zx1] β1

E [z] δ
=

δβ1

δ
= β1,
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where we have used the properties of z as an instrument and the definition of δ. The sec-

ond stage coefficient
̂̃
β

1
is informative about the true effect of x1 upon y! The instrument

z allows us to disentangle the variability in y that arises from x2 from its variability that
arises from x1. Consequently, we are able to get a estimate of the true effect of x1 upon
y that is uncontaminated by x2.

In practice, the toughest part of undertaking a TSLS research design is finding an
instrument. It must be correlated with the explanatory variable of interest and uncor-
related with the omitted variable (or more generally, with the error term ε̃). Empirical
economists spend a lot of energy trying to think about instruments and about argu-
ments for and against a particular choice of instrument. The best research designs have
convincing arguments about the validity of their choice of instrument.


