
C01 02/24/2012 15:56:26 Page 3

1
The Crisis in Software:

The Wrong Process Produces the Wrong Results

YOUR ORGANIZATION—WHETHER business, governmental, or nonprofit—likely
needs to be able to create value by building, customizing, and using software.
Without software, your ability to achieve your goals as a business leader is
inherently limited, if not impossible. But despite this need, software develop-
ment has historically been an unreliable, costly, error-prone endeavor.1 This
leaves you in a pickle: You need software, but you can’t get what you need,
when you need it, at a cost that is acceptable, at a level of quality the makes
it usable.

Indeed, the Standish Group’s 2011 CHAOS Report found that more than
half of software projects conducted between 2002 and 2010 were either de-
scribed as challenged or complete failures; just 37 percent were classified as
successful (Figure 1.1) The Standish Group modestly defined a successful proj-
ect as delivering all the requested functionality, on the expected date, for the

1April 11, 2005, Forrester Report “Corporate Software Development Fails to Satisfy on Speed or
Quality.” Corporate development shops continue to disappoint: A fall 2004 Forrester survey of
692 technology influencers—those who hold the information technology (IT) purse strings—
indicated that nearly one-third are dissatisfied with the time it takes their development shops to
deliver custom applications, and the same proportion is disappointed by the quality of the apps
that are ultimately delivered. One-fifth of respondents are unhappy on both counts.

3

COPYRIG
HTED M

ATERIA
L

C01 02/24/2012 15:56:26 Page 4

planned cost. The ability to accommodate changes, the ability to manage
risks, or the inherent value of the software weren’t considered.

The chances that a software project will be successful are not good. If you
are trying to accomplish something critical that involves developing of soft-
ware, you are probably worried. The software industry has failed you by being
slow, expensive, and unpredictable. If software weren’t so important, you
would probably stop investing in software altogether.

You are not alone. Many others are in the same boat. For example, the
Federal Bureau of Investigation’s (FBI) Sentinel project recently ran into
trouble. The FBI turned Sentinel around using the insights and processes
described in this book.

The information here concerning Sentinel comes from the Department of
Justice Inspector General reports, and it is publicly available. Before you dis-
miss this as a corner case, a particularity of government work, think about this:
If a large government agency can radically improve how it builds software,
then so can your organization.

Case Study: The FBI’s Sentinel Project

Every FBI investigation has a case file that contains all of the records that were
either created or obtained as part of an investigation. In 2003, the FBI decided
to digitize cases and automate the related processes . . . Agents would then

Figure 1.1 Traditional Software Development Is Risky

4 WHY EVERY BUSINESS IN THE WORLD CAN PRODUCE SOFTWARE IN 30 DAYS

C01 02/24/2012 15:56:26 Page 5

rapidly compare cases and discover connections between them. The name of
the project was Sentinel.

In March 2006, the FBI initiated development of Sentinel, targeting an
end-user base of more than 30,000 FBI agents, analysts, and administrative
employees. Original estimates for Sentinel were $451 million to develop
and deploy by December 2009. According to the FBI’s original plan, Sentinel
was to be developed in four phases. The FBI contracted the work to
Lockheed Martin. Lockheed Martin proposed using a traditional software
development process.

But by August 2010, the FBI had spent $405 million of the $451 million
Sentinel budget but delivered the functionality for only two of Sentinel’s four
phases. Although these deliverables did improve the FBI’s case management
system, they did not deliver much of the value that was originally envisioned.
Because of the cost and timeline overages, the FBI issued a stop-work order in
July 2010 that directed Lockheed Martin to halt all work on the two remain-
ing phases of Sentinel.

To this point, the FBI had been using a traditional development process,
and it now chose to adopt a new approach to see if it could obtain better
results. We developed this new process, called Scrum, in the early 1990s. The
same Standish Group CHAOS Report that classified just 37 percent of proj-
ects as successful demonstrated how different the results of a traditional
approach are versus those of using an agile, or Scrum, approach (Figure 1.2);

Figure 1.2 Agile Projects Are 3 times as Successful

The Crisis in Software: The Wrong Process Produces the Wrong Results 5

C01 02/24/2012 15:56:27 Page 6

specifically, it noted that whereas only 14 percent of traditional projects
succeeded, a full 42 percent of projects using an agile approach achieved
success. We argue that in addition to the Standish Group’s traditional defini-
tions of success, these projects also enabled greater responsiveness to changing
customer needs, allowed for better risk mitigation, and ultimately delivered
better-quality software.

By 2009, the FBI recruited a new chief information officer (CIO) and chief
technology officer (CTO) with experience managing organizations that built
software using our approach. They decided to see if this more agile approach
could help the FBI. In 2010, the CTO told the Department of Justice that he
was going to change the approach for Sentinel. He asserted that this new
approach would streamline decision-making processes and allow the FBI to
deliver Sentinel within budget. The FBI told the Inspector General at the
Department of Justice that it believed it would be able to complete Sentinel
with the remaining Sentinel budget and within 12 months of recommencing.
An audit conducted by Mitre had previously concluded that the FBI would
need an additional $35 million and six more years if it had continued with its
traditional approach.

The FBI moved the entire Sentinel project to the basement of the FBI
building in Washington, DC, and reduced the Sentinel staff from 400 to
45 people, 15 of whom were programmers. The CTO ran the project himself,
managing toward a goal of delivering some of Sentinel’s functionality every
30 days. Each increment of functionality had to meet all of the final functional
and nonfunctional requirements—this was no “first draft” software. Every
three months, the FBI would deploy the features that had been built in the
preceding three iterations into a field pilot.

By November 2011, within a year of restarting with the new approach, all
phases of Sentinel had been completed. The software was deployed to a pilot
group of FBI locations, and remaining offices are scheduled to see deployment
by June, 2012. The FBI was able to complete Sentinel for $30 million
dollars within 12-months, a cost savings of more than 90 percent.

The people at the FBI worked hard on the first few phases of Sentinel, but
their approach to software held them back. After the FBI shifted its approach
to the one we lay out in this book, they worked just as hard as before, but they
were rewarded with vastly superior results. If an organization like the FBI can
do this, why can’t yours?

6 WHY EVERY BUSINESS IN THE WORLD CAN PRODUCE SOFTWARE IN 30 DAYS

C01 02/24/2012 15:56:27 Page 7

The Wrong Approach: Predictive Processes

The process that the FBI originally used for Sentinel was what we refer to as a
predictive, or sequential design, process. In fact, until 2005, the majority of
software projects used predictive processes. Don’t get us wrong; there are cer-
tainly circumstances in which predictive processes are more appropriate and
could be successful. These circumstances, however, were the exception rather
than the rule. If one can establish a complete vision, define all of the require-
ments of the vision, and then devise the detailed plan to turn the requirements
into the vision, then a predictive process will work. But any deviation from the
original vision, requirements, or plan creates great project risk. And with busi-
ness needs and technology changing as rapidly as they do, it is rare that these
elements can actually remain static. As a result, and as the Standish Group has
reported, 86 percent of the software projects that use predictive processes are
not successful. In fact, we consider the use of predictive processes to be the
most common cause of problems in software projects.

The organizations that we work with have typically been struggling to in-
crease the success rates for their software projects. They seek our help because
they fear that their software organizations are spinning out of control. Their
existing process has failed them, and they do not know of an alternative. Their
problems with software development create a tremendous amount of waste for
their organization, yet they persist because they are dependent on software to
remain competitive.

Here is how the executives and managers typically describe the problems
they are facing:

1. Releases take longer and longer. “Each release is taking more time, effort, and
cost to get delivered to its customer(s). Several years ago, a release might
have taken 18 months. That same release now takes us 24 months to de-
velop, package, and deploy. Even then, a release is stressful and requires
significant effort. We keep spending more but are getting less and less.”

2. Release schedules slip. “Commitments are made to customers and prospects.
Those customers or potential customers are preparing major business initia-
tives that depend on our release schedule. They need our release, with the
functionality we promised, at the exact point in time we promised to deliver
it. We usually let them down at the last moment. Their plans are thrown

The Crisis in Software: The Wrong Process Produces the Wrong Results 7

C01 02/24/2012 15:56:27 Page 8

into disarray, and they lose money and credibility with their customers. We
may not get more business from them; they will obviously not act as good
references for us; and they may start looking for other vendors.”

3. Stabilization at end of the release takes longer and longer. “We got really firm
with the development organization. We set firm, inflexible dates that they
had to be done by. They met these dates by the end of what they call ‘code
complete’ or a ‘code freeze.’ But the software was unusable. It didn’t do
what was needed, it didn’t perform as required, and it did all of that badly.
We couldn’t even ship it as a ‘beta release’ so we could get feedback from a
small sample of customers. The defects were so profound that our beta
customers refused to participate. We needed another nine months to ship
the release, and even then it was shaky and required a lot of hand-holding
and apologies.”

4. Planning takes too long and doesn’t get it right. “We figured the releases were
taking too long and then slipping because we didn’t plan well enough at the
start of the work. We didn’t get our requirements firmed up and fully devel-
oped, and our estimates included more guesses than they should have. To
rectify this, we now spend more time planning. New ideas keep coming
up. As people review the plans, they find parts that need to be reworked or
clarified. We are now spending much more time planning than we used to,
but our schedule slips and stabilization periods are still extensive and awful.
Despite our significant efforts, changes still come up during development
that weren’t and couldn’t be foreseen during planning.”

5. Changes are hard to introduce mid-release. “The current process cannot ac-
commodate change. We spent a lot of time planning everything at the be-
ginning, and all the needed work is predicated on the plan. But often
something critical has to be included, or a new feature has to be added to
close a sale. To incorporate this change, we have to adjust all the work that
we have already done to accommodate it. This is very difficult because it is
hard to understand the ripple effects of changes in software. Even when it is
important, it feels like the amount of time that it takes to fit it in is often a
hundred times greater than if we had known of it when we started. But what
can we do? If the change doesn’t make it into this project or release, it may
have to wait up to two more years to be included in the next release.”

6. Quality is deteriorating. “We know that we shouldn’t pressure the developers
to get what was planned and changed out on time, but our business is

8 WHY EVERY BUSINESS IN THE WORLD CAN PRODUCE SOFTWARE IN 30 DAYS

C01 02/24/2012 15:56:27 Page 9

hurting from the planning, slippage, and change problems. We tell the de-
velopers to toughen up and get it out on schedule with everything we
planned. Every time we do that the developers accommodate us by cutting
the quality of the software or the testing of its suitability. The result is so
bad that we either go back into the stabilization phase or we ship an orga-
nizational embarrassment.”

7. Death marches are hurting morale. “We are treating people in a way we would
like not to. However, we have commitments and a business to run, so every-
one on the project works weekends and long days. Their families and their
health suffer. As a consequence, we have trouble recruiting top developers
and we lose our best developers to other organizations. Our existing staff is
so demoralized that its productivity is slipping despite the increase in hours.”

These examples are enough to discourage any executive or manager.
Despite 20 years of herculean efforts and massive expenditures in software, by
the early 1990s little progress had been made in ensuring the successful out-
come of software projects. The process we will describe to you in this book
tackles these problems head on.

The Wrong Results: Project Failure

Your use of the traditional, or predictive, software development process is the
root cause underlying so many software project failures. The predictive
process, also called waterfall, depends on the accuracy of the project plan and
its unswerving execution. It depends on:

1. Requirements not changing and being completely understood. Any changes
in requirements would change the plan, requiring alterations to the plan
that create massive ripple effects and frequently rendering already com-
pleted work useless. Unfortunately, more than 35 percent of all require-
ments change during a typical software project. Business customers
struggle to fully define these requirements, but the ever-changing market-
place, their incomplete understanding of what they need, and the difficulty
of fully describing the anticipated system until it is done make requirement
changes inevitable.

2. Technology working without any problems. All of the technology the soft-
ware uses has to perform reliably and as initially planned. Unfortunately,

The Crisis in Software: The Wrong Process Produces the Wrong Results 9

C01 02/24/2012 15:56:27 Page 10

the project frequently incorporates technologies planners haven’t used in
the past—either singularly or in combination, or for the same purposes.
What’s more, technology standards sometimes change during the course of
the project.

3. People being as predictable and reliable as machines. The plan calls for a
specific network of tasks to be completed, each task requiring a defined
number of hours from a specifically skilled resource that is given specific
well-defined inputs. Unfortunately, the network of tasks starts wobbling
whenever requirements change. Even more problematic, people are not
machines! People have their good and bad days, different skill levels, and
different attitudes and intelligence. Tasks ended up being executed in a
very different way than predicted.

The software development industry understands these difficulties and for
years has tried to address them by stepping up its planning efforts. Project
planning could take as long as the actual development of the software. Massive
amounts of work went into gathering requirements, defining architecture, and
detailing work plans.

But all of that work was useful only if the plan was based on accurate infor-
mation that did not change over time. This method is effective when work is
well understood and relatively stable and the plan can consequently remain
unchanged. When this is not the case, however, the predictive process fails. It
is not constructed to cope with the unknown and the unexpected; it is con-
structed to optimize problems of constraint.

Many traditional manufacturers successfully employ the predictive process
model. The payoff for all this upfront work is the repeated execution of the
plan, creating car after car or toaster after toaster. There is no similar payoff in
software, as a software development plan is executed only once. The very
thing that made predictive processes suitable for manufacturing, where a single
process cycle will create high volumes of products, make it ill suited for soft-
ware, where a single process cycle will create just one product.

The Stacey Graph is a useful tool for assessing the certainty or predictabil-
ity of work.2 The Stacey Graph measures the certainty versus the un-
predictability of various dimensions of work and categorizes where the work

2R. Stacey, Complexity and Emergence in Organizations (London: Routledge, 2001).

10 WHY EVERY BUSINESS IN THE WORLD CAN PRODUCE SOFTWARE IN 30 DAYS

C01 02/24/2012 15:56:27 Page 11

falls. We used it to model the three dimensions of software development:
requirements, technology, and people, as described in Figure 1.3.

We can plot software development projects as follows:

& Requirements: Close to certain with no risk of change, to far from certain,
with vague, emergent descriptions and many expected changes.

& Technology:Well known and understood, to far from certain, with develop-
ment and operational technology usually consisting of multiple products
interacting through interfaces at different levels of software development
and release.

& People: Known and constant, with a small number of people on a single
team, to software projects involving more than four or five people, often
hundreds, who are constantly changing. People by themselves have opin-
ions, attitudes, and moods. Working in groups or teams, the interactions
and unpredictability of their work is significant.

Using the Stacey Graph, we can see that software development proj-
ects are at least complex and sometimes chaotic. The predictive process,
on which waterfall and traditional software development is based, is

Anarchy

Complex
Complicated

Complicated
Simple

People

Technology

R
eq

ui
re

m
en

ts

Close to
Certainty

Far from
Certainty

C
lo

se
 to

A
gr

ee
m

en
t

Fa
r

fr
om

A
gr

ee
m

en
t

Figure 1.3 The Stacey Graph

The Crisis in Software: The Wrong Process Produces the Wrong Results 11

C01 02/24/2012 15:56:28 Page 12

applicable only for simple, repeatable work. You can determine whether
the right process is being used for your work by the yield rate, the degree
of success. If a predictive process were appropriate for software projects,
the yield rate (or successful project completion rate) would be very
high—about 99.99 percent. However, the Standish report discussed earlier
measures a software development yield rate of 14 percent using predictive
processes. Most businesses could not survive such a low yield rate. Imagine
if General Motors scrapped every seventh car that it built—that’s the effect
of a 14 percent yield rate.

The predictive process is inappropriate for problems involving software de-
velopment. Software development is complex, not simple. We assert that the
decision to base software development projects on the predictive process was
what led us to failure. Our proof lies in the increased yield rate of software
development projects when Scrum is employed.

People sometimes equate construction or bridge building with software
development. Engineering disciplines, such as bridge construction, fall some-
where between simple and complex on the Stacey Graph. Standardization
renders this work only complicated. There are three forms of standardization.
Firstly, there are Newtonian laws explaining how physical objects interact.
Secondly, standardized materials such as wood beams, metal struts, and fasten-
ers, with standard sizes and known characteristics are employed.. Thirdly,
there are standards for all types of construction that are written into codes and
inspected for by authorities. None of these things exists in software; what’s
more, as long as the software industry continues to evolve as rapidly as it has,
this is unlikely to change.

Case Study: Parametric Technology Corporation

Parametric Technology Corporation (PTC) is a global firm with 5,000
employees that develops product life cycle management products. These
products, which grew out of CAD/CAM (computer-aided design/computer-
aided manufacturing) systems, help some of the world’s largest engineering
organizations—Raytheon, BAE Systems, and Airbus, to name a few—to
manage the development of massive systems such as the Airbus A380. They
do so this in part by tracking the configuration of all the parts, assemblies, and
subassemblies.

12 WHY EVERY BUSINESS IN THE WORLD CAN PRODUCE SOFTWARE IN 30 DAYS

C01 02/24/2012 15:56:28 Page 13

In 2005, PTC was suffering from all of the symptoms of predictive software
development processes:

1. Releases took longer and longer. Releases had crept from 18 months to
24 months, and it looked like the current release was going to take longer.

2. Release schedules were slipping. Slips from the initial schedule were up to
nine months, and these occurred bit by bit. Customers that relied on the
timely delivery of critical functionality were unhappy.

3. Stabilization at end of the release took longer and longer. Stabilization was
behind at least two-thirds of the slips.

4. Planning took too long and didn’t get it right.Up to six months was spent plan-
ning each release, and even then the plan was wrong and would often have
to be changed.

5. Changes were hard to introduce mid-release. It was hard to tell if the slips,
stabilization, and quality problems were due to changes once the project
started, but there were certainly a lot of necessary changes.

6. Quality was deteriorating. This was both a serious and increasing problem.
7. Death marches were hurting morale. PTC was having trouble recruiting

quality people.

PTC’s development organization employed a waterfall process, and to
make it work better, they had tried to button down on requirements. Require-
ments were compiled into an exhaustive functional specification document.
Only when the requirements were finalized were they shared with the develop-
ment organization. In the meantime, the developers didn’t have much to do.
They either fixed bugs or sometimes left PTC out of pure boredom. The
quality staff wasn’t allowed to start any testing until the product was fully com-
plete, so it had less time to do its work. Working under release date pressure,
the quality team was forced to release products with insufficient testing.

Jane Wachutka was the new vice president for product development of
PTC’s Windchill product. As a new employee, she tried the PTC way of
waterfall, and she found that all of the usual problems occurred. At her previ-
ous job, she had employed many nonwaterfall techniques similar to those that
helped the FBI succeed with the Sentinel project. With this approach, a
project consists of one or more iterations of work, each no more than 30 days
long. Many small teams of developers selected high-value requirements each

The Crisis in Software: The Wrong Process Produces the Wrong Results 13

C01 02/24/2012 15:56:28 Page 14

iteration and turned them into an increment of usable software. All the incre-
ments of the teams were integrated into one complete and usable increment.
In each subsequent iteration, another increment of software was developed
and added to the prior increments.

Brian Shepherd, PTC’s executive vice president for product development,
was skeptical when Jane advocated this new process for building the software
in 2007. If he allowed her to do so, she committed to being able to get the
programmers started sooner, improving programmer retention rates, engaging
the quality group sooner, and not releasing products until they were fully
tested and of sufficient quality. Jane stressed that the functional specifications
could be imperfect because the product management group would get to see
and use parts of the product frequently during the development cycle and give
feedback. Brian agreed to proceed with a new process—an agile process called
Scrum. He warned Jane, though, “Don’t screw it up.”

When Jane first told her employees about the new way they were going to
develop software, they were skeptical. The individual members of the develop-
ment teams, in particular, were slow to buy into it. They still struggled to be
perfect at each step of development, making sure they were doing exactly what
others wanted. However, as they gained some experience in using the new
process, the product managers no longer struggled to complete perfect func-
tional specifications before handoff to development; they let the functional
specifications emerge throughout the release. Because PTC now developed
complete functionality within 30 days, its developers were able to directly
collaborate with customers within any appropriate iteration of development.
The developers gained insights into the requirements and how they could be
best implemented. Customers noticed the differences and began working with
development teams during each iteration. The proud customers helped author
the functionality and got exactly what they wanted.

The product management team had a rolling three-, two-, and one-year set
of requirements. Three years out was the vision, with a description of high-
level capabilities. A more detailed picture of which releases would deliver the
vision was available for the two-year time frame. For the current year, 30-day
iterations were defined for most of the first six months, and there was a road
map of goals for the next six months. Each year’s set of requirements had more
detail than its predecessor. The developers worked on the one-year set of re-
quirements. They called and worked with PTC customers to work out the

14 WHY EVERY BUSINESS IN THE WORLD CAN PRODUCE SOFTWARE IN 30 DAYS

C01 02/24/2012 15:56:28 Page 15

details. The entire organization had become a think tank of creativity
and productivity.

Within two years, all of Jane’s commitments to Brian had been met. Jane’s
organization was releasing software every 12 months, down from previous re-
lease times that exceeded 24 months. The product was of high quality. By
2011, PTC had changed. It had become a transparent organization, both
within and to its customers. Surprises rarely happened; customers knew what
to expect and when. Defects were low and trending to zero by 2012. New fea-
tures, user interfaces, and workflow capabilities had been added. The product
had been overhauled to make it secure from external threats. Finally, the bud-
get and staffing were both down by more than 10 percent. Brian Shepherd had
a new facility built for the software product organization. The space reflected
the transparency critical to the new process: Everyone was in an open space,
with no offices. All walls were glass.

Recently, Jim Heppelmann, the chief executive officer (CEO) of PTC,
listened as his managers positioned themselves for increases in their annual
budgets. Finally, he stopped the discussion and asked everyone to thank Jane’s
organization for reducing costs while improving quality and increasing func-
tionality. Because of them, he said, he could share the savings with others
parts of the organization.

In one instance, Jane and Jim were on a conference call to a company in
Israel that was evaluating PTC’s products. Jane told the CEO that Raytheon
was using PTC’s products worldwide and she urged him to contact Raytheon’s
executives. She knew that they were not only impressed with PTC’s products;
they were thrilled that PTC’s new process removed surprises. They were able
to collaborate and adjust their schedules in real time with PTC. They were so
impressed that they were adopting PTC’s way of developing software. Jim
jumped in. He told the prospect that Jane had forgotten to mention the
last release. It was the best-looking product PTC had ever shipped, primarily
because Jane had changed the process.

Summary

Software development has in the past been prone to failure. The root cause of
this failure is the use of predictive processes for complex work. When we shift

The Crisis in Software: The Wrong Process Produces the Wrong Results 15

C01 02/24/2012 15:56:28 Page 16

to Scrum, an empirical process, the software project success rate increases
dramatically.

It is possible to get software features ready to use in 30 days—or less. Don’t
let your developers tell you otherwise, because hundreds of thousands of soft-
ware developers have been doing this since the early 2000s. A software prod-
uct may still be big, but it can still be built in small pieces, one by one, 30 days
at a time.

16 WHY EVERY BUSINESS IN THE WORLD CAN PRODUCE SOFTWARE IN 30 DAYS

