
Controlled-Chaos Software Development
This article presents a macro-process for developing object-oriented or clean-
interface systems. The macro-process, Scrum, is a formalization of development
processes used by many Independent Software Vendor's (ISV's).

Overview
Scrum arose from shared concerns between two ISV's, Advanced Development
Methods (ADM) and VMARK Software (VMARK)ii. Both companies were
concerned over the lack of breakthrough productivity being reported in object-
oriented development projects. Both ADM's and VMARK's products are built
using OO, and breakthrough productivity had been experienced in both
companiesiii.

We were particularly concerned that OO and component-based development were
being hindered by currently available development processes. We wanted to
ensure that the processes used by our organizations, and other ISV's, were
available to our customers and the software development community.

Development in the Real World

With the availability of open systems tools, three-tier architectures, components,
relational/object data bases, Internet, intranet, Notes, and event-driven systems,
the complexity of systems development has increased exponentially. For instance,
compare the testing of a user-responsive GUI to a controlled batch system.

Scrum's Characteristics
Projects are controlled through ongoing measurement and control of backlog,
issues, risk, problems and changes -- task level management is not used

A deliverable product is always ready through the use of constant builds and
testing in parallel with development

Small teams develop and enhance OO, component-based systems with clean
interfaces

Chaos is found in environments with a high degree of unpredictability and
complexity. Chaos is present in most systems development projects. Evolution
favors those that are able to operate with maximum exposure to environmental

chaos. Evolution deselects those who have insulated themselves from
environmental change and have minimized chaos and complexity in their
environment. The amount of chaos that a project can embrace and still succeed is
maximized within the Scrum process.

Scrum formalizes "empirical", chaos-tolerant software development practices.
Originating from industrial process control and biochemical process research,
Scrum offers a productive alternative to the micro-management of traditional
development processes, and the progressively imposing structure of the Software
Engineering Institute's Capability Maturity Model.

Scrum allows a project team to determine when the system is "good enough" for
its application. Unnecessary effort to create a system more robust than its
environment demands doesn't have to be expended.

The payback from the Scrum development approach is breakthrough productivity,
on the order of 600%iv, full utilization of the most current development tools, and
the best possible software for the user's requirements.

Background
ADM is a research and development organization started in 1985. We have
directed our efforts toward 1.) how to manage and control software development
projects, and, 2) how to make a developer's job easier.

In support of these efforts, ADM has 1.) developed process repositories that allow
organizations to acquire, correlate, and disseminate knowledge to project
managers and developers, and, 2) provided project managers and developers with
workbenches for easily using the knowledge to plan, manage, and perform work.

ADM's efforts have led to a number of firsts :

1987 -- CASE-oriented development methodology

1988 -- dictionary-based process management tool for automating
methodologies

1991 -- hypertext process management tool for automating methodologies

1993 -- workgroup enabled OO process management tools

We have partnered with banks, pharmaceutical houses, computer companies,
consulting organizations, and manufacturers in our efforts to automate and
improve their use of system development processes. The resulting process

automation tools and marketplace are a significant step up from the old paper-
based methodologies.

In 1994 we reviewed of our approach. Our customers had been bedeviled by :

Currently available development processes often constrain and stifle
development

The environment in which systems are built is undergoing radical
transformations

Current process automation adds administrative work for managers and
developers

Development processes are marginally used and soon become shelfware
or diskware

Centralizated, automated knowledge is best provided in books

Considering our observations, we established the following areas for research and
development during 1995:

What is the best way to author and access knowledge as it moves from a
tacit, unexpressed form to an explicit, published formv.

What sort of development process is appropriate for building systems in
complex, unpredictable, changing environments (technical and business).

This article provides our answer to the second question. We reviewed recent
advances in development processes, we studied the development processes in use
at the most successful ISV's, and we turned to science to arrive at this answer.

Defined vs. Empirical
If a process can be fully defined, with all things known about it so that it can be
designed and run repeatably with predictable results , it is known as a defined
process, and it can be subjected to automation. If all things about a process aren't
fully known -- only what generally happens when you mix these inputs and what
to measure and control to get the desired output -- these are called empirical
processes.

A defined process is predictable; it performs the same every time. An empirical
process requires close watching and control, with frequent intervention. It is
chaotic and unrepeatable, requiring constant measurement to ensure the desired
result.

Models of empirical processes are derived by categorizing observed inputs and
outputs and defining the controls that cause them to occur within prescribed
bounds. Empirical process modeling involves constructing a process model
strictly from experimentally obtained input/output data, with no recourse to any
laws concerning the fundamental nature and properties of the system. No a priori
knowledge about the process is necessary; a process is treated like a black box.

Scientific Research
A formal body of knowledge regarding industrial and biochemical processes and
their automation already exists.vi We asked scientists familiar with this
knowledge why the systems development process was so problematicvii.

The scientists inspected the systems development process. They concluded that
many of the processes, rather than being repeatable, defined, and predictable,
were unpredictable and unrepeatable. With that, the scientists explained the
difference between defined processes and empirical processes.

The scientists stated, "We are most amazed that your industry treats these ill-
formed processes as defined, and performs them without controls despite their
irregular nature. If chemical processes that we don't understand completely were
handled in the same way, we would get very unpredictable results."

We confirmed that we also get unpredictable results, such as undelivered systems,
delivered systems that are unusable by the customer, and the systems
development process going on interminably without adequate output generated.

The scientists recommended -- since our business is an empirical process -- that
we use measurements and controls, as done elsewhere in the physical world. The
scientists provided the concepts of defined and empirical processes .. and they
told us that we needed controls to manage the empirical systems development
process.

Industry Research

We studied the development process at the most chaotic, pressure-ridden
development environments known -- those at successful ISV's. Michael Cusamo
summarizes this process in a recent book about Microsoftviii:

"It breaks down large products into manageable chunks -- a few product
features that small teams can create in a few months.

It enables projects to proceed systematically even when team members
cannot determine a complete and stable product design at the project's
beginning.

It allows large teams to work like small teams by dividing work into
pieces, proceeding in parallel but synchronizing continuously, stabilizing
in increments, and continuously finding and fixing problems.

It facilitates competition based on customer feedback, product features,
and short development times by providing a mechanism to incorporate
customer inputs, set priorities, complete the most important parts first, and
change or cut less important features.ix"

From our experience, we added :

Our customers and users conduct business in an ever changing,
competitive environment. They never can give us a "final spec" because
their needs are constantly evolving. The best we can do is evolve a product
as their needs evolve.

There is no end to productivity saving techniques and tools offered to us
by software vendors and methodologists. It would be a shame not to use
those that seem worthwhile.

Components are becoming mainstream. When available, they let us offer
our customers and users more than planned.

Process Requirements
From the research, we devised the following requirements for a systems
development process. It must be :

Chaos-tolerant, expecting the unpredictable and allowing flexible
responses.

Constantly measured, with intelligent, timely control.

Assume that the product is never complete; working solutions must be
provided as needed, but the product will continue to evolve with the
customer and user

Maximize communications bandwidth and information sharing.

Provide the best possible software given the required functionality,
quality, timetable, and resources.

We graphed our expectations for this new development process. Primarily, it
should meet the above requirements through chaos-tolerance. The y axis indicates
the probability of the best possible software being delivered when the customer
needs it.

The x axis is the degree of complexity and unpredictability in which the system is
being developed. The lower curve defines the performance of defined processes
used for developing systems in increasingly chaotic environments. The upper
curve defines the performance of empirical processes with controls used for
developing systems in increasingly chaotic environments. The cross-hatched area
between these two curves is the advantage provided by the use of empirical,
controlled processes over defined processes.

The primary difference between the defined lower curve (waterfall, spiral
and iterative) and empirical upper curve is that the empirical approach
assumes that the development process is unpredictable and chaotic. Controls
are used to manage the unpredictability and control the risk. Flexibility,
responsiveness, and reliability are the results.

Running a project with good controls is like driving a sport car through a
sharp curve. The constant, immediate feedback lets you control the car and
maximize the speed while controlling the risk. The small teams used in a
Scrum project are like top quality components in a sports car. When you
respond to a measurement, the effect is immediate and appropriate.

Scrum Empirical Development Process
Scrum is a macro-process that defines and implements controls. Scrum consists of
tasks that establish, monitor and manage backlog, work, risk, issues, problems,
and changes. Micro-processes, such as object-domain analysis, are used for actual
product construction.

Aberdeen Conclusions

New database, hardware, application, and networking technologies are not
proprietary -- your competitors can use them as effectively as you. ISVs
understand this, and bet on high-speed, quick-U-turn development processes to
succeed in cutthroat markets. IS organizations can take the same tack: learn from
ISVs and emphasize speed-to-deliver and flexibility rather than costs and
backward compatibility. Methods like ADM's SCRUM give IS a way to drive
ISV best practices deep into the development organization.

At the same time, IS should not have to be on the bleeding edge of yet another
new software development metholodogy. Enterprise IS is not being a pioneer by
following the SCRUM methodology ¾ ISVs are already using it. ADM is simply
making it available in the form of the Product Management Facility.

Most importantly, IS should consider where this is leading in the long term. The
new mission-critical applications can give the enterprise a competitive advantage
-- but can the IS organization keep delivering after the first home run? ISV's that
stay around for more than 10 years don't rest on their laurels: they use rapid
development and flexible processes to gain more and more competitive
advantage. Methodologies like SCRUM aren't just a passing fad or one-shot fix. If
IS wants to succeed in the long term like the best ISVs, it should take a good hard
look at ideas like SCRUMx.

Scrum formalizes the empirical "do what it takes" software development process
used today by many successful ISV's. An empirical approach has been used by
these ISV's to cope with the otherwise overwhelming degree of complexity and
uncertainty -- chaos -- in which they develop products. The chaos exists not only
in the marketplace where they hope to sell the products, but in the technology that
they employ to design and construct these products.

Scrum combines our research and these ISV development processes into a formal
process. See the sidebar for an industry analyst's conclusions regarding Scrum.

Scrum uses an iterative, incremental approach. Interaction with the environment
(technical, competitive, and user) is allowed, changing the project scope,
technology, functionality, cost, and schedule whenever required. Controls are
used to measure and manage the impact.

Scrum accepts that the development process is unpredictable. The delivered
product is the best possible software, factoring in cost, functionality, timing, and
quality. This concept has been discussed by James Bach of Software Testing
Laboratories in various articles, including "The Challenge of Good Enough
Software"xi .

Scrum Overview
A Scrum software project is controlled by establishing, maintaining, and
monitoring key control parameters. These controls are critical when a software
development encompasses an unknown quantity of uncertainty, unpredictable
behavior, and chaos. Use of these controls is the backbone of the Scrum
development process.

These controls are measured, correlated, and tracked. The main controls are
backlog and risk. Backlog should start relatively high, get higher during planning,
and then be whittled away as the project proceeds - either by being solved or
removed, until the software is completed. Risk will rise with the identification of
backlog , issues, and problems, and fall to acceptable levels as the software is
changed.

Visualize a large pressure cooker. Scrum development work is done in it. Gauges
sticking out of the pressure cooker provide detailed information on the inner
workings, including backlog, risks, problems, changes, and issues. The pressure
cooker is where Scrum Sprint cycles occur, iteratively producing incrementally
more functional product.

The Planning and System Architecture phases prepare the input that is placed in
the pressure cooker. The input consists of ingredients (backlog, objects, packets,
problems, issues), recipe (system architecture, design, and prototypes), and
cooking sequence (infrastructure, top priority functions, next priority...).

The Closure phase removes the final product (executable and documentation) and
prepares it for shipment. The Consolidation Phase cleans up the pressure cooker
and ingredients for the next batch.

The Inner Workings of Scrum
Scrum consists of development processes and measurements that are used to
control the development processes. "The Scrum methodology consists of three
distinct processes.

The initial process is Planning and System Architecture. Key in this phase is
pinning down the date at which the application should be placed in production or
released to the market, prioritizing functionality requirements (ranging from
good-enough to best-possible), identifying the resources available for the
development effort, envisioning the application architecture, and establishing the
target operating environment(s).

However, compared to other methodologies, this planning phase is conducted
relatively quickly because it assumes that pragmatic managers and the course of
events will require that any or all of these initial parameters will be changed
during the Sprint phase.

The next process, consisting of multiple Sprints, is where Scrum radically differs
from traditional enterprise application methodologies. The project manager
establishes Sprint teams consisting of between 1 and 7 members (a fully staffed

team should include a developer, quality assurance person, and documentation
member).

Each team is given its assignment(s) and all teams are told to sprint to achieve
their objectives on the same day -- between 1 and 6 weeks from the start of the
Sprint. Each team can select its own object-oriented tools and its own means to
achieve its objectives -- these are not selected from on high and then forced on the
developers and other team members. However, this process is not as undisciplined
as it may seem -- each team must deliver executable code to successfully
accomplish the Sprint.

At the end of the Sprint period -- three weeks, for example -- all the teams meet to
review their progress (including executable code delivered to date) with each
other, the project manager, customers/prospects, and the enterprise's senior
executives. At the conclusion of the review session, the project manager and his
or her superiors have the opportunity to change anything and everything. This
built in flexibility allows the organization to add to (or, rarely, subtract from) the
requirements for the application during the Sprint phase.

When the objectives of the application development effort are completed in terms
of functionality and quality, or the time/budget constraints are reached, the Sprint
phase is completed. Approved modifications to the original planning and systems
architecture are lumped into a category called backlog and assigned to the teams
(whose resources may also be changed to reflect the new objectives) at the
beginning of the next Sprint period.

Finally, Scrum ends with the Closure phase. Closure consists of finishing system
and regression testing, developing training materials, and completing final
documentation. Approved modifications to the original planning and systems
architecture are lumped into a category called backlog and assigned to the teams
(whose resources may also be changed to reflect the new objectives) at the
beginning of the next Sprint period.

As opposed to traditional methods, which try to lock in requirements during the
planning phase, Scrum (and Sprints in particular) provides the development team
with a tremendous amount of post-planning flexibility. For example, many
enterprises that had selected OS/2 as their chosen client operating environment in
early 1995 decided by late 1995 to move to Windows NT Client. This change --
replace OS/2 with Windows NT -- would have been assigned to the appropriate
teams to implement at the beginning of the next Sprint."xii

Summary

We have formalized empirical, chaos-tolerant development processes into a
macro process named Scrum. The detailed micro processes of OO, BPR, and
other techniques are implemented within this macro process as needed and as
standardized within anorganization.

Systems development is not now, and may never be, a cookbook process.
Component- based development already eases our job, but the intelligent,
adaptive, ongoing interaction of a project team and the environment is mandatory
to successful product delivery. Controls ensure that that product is the best
possible that could be produced by that team, given that technology, for that
environment.

• i The word Scrum was first applied to the development process by Takeuchi
and Nonaka in their seminal article, The New Product Development Game
(Takeuchi, Hirotaka and Nonaka, Ikujiro). The New Product Development Game.
Harvard Business Review. Jan/Feb 1986). Scrum describes a product
development process used by the most innovative American and Japanese
companies (ibid, The Knowledge-Creating Company : How Japanese Companies
Create the Dynamics of Innovation. Oxford University Press, 1995). Scrum was
also described as a form of systems development process by Peter DeGrace
(DeGrace, P. and Hulet-Stahl, L. Wicked Problems, Righteous Solutions.
Yourdon Press, 1990).

• ii ADM produces process automation software. VMARK produces object-
oriented software development environments

• iii ADM and VMARK are members of the Object Management Group. The
original Scrum development process paper was presented at a meeting of OMG's
Business Object Modeling Special Interest Group (OMG BOMSIG) at
OOPSLA95

• iv From Business Object Architecture presentation given at Object World,
1995, by Jeff Sutherland, based on research done by Capers Jones

• v We found that the answer lies in learning theory, the size and organization of
development teams, tactics for capturing tacit knowledge and moving it to
explicit, published knowledge, the hierarchy of knowledge, and the world-wide-
web; this question is addressed in another paper

• vi Ogunnaike, B. Process Dynamics, Modeling, and Control. Oxford University
Press, 1994

• vii Scientists at DuPont's Advanced Research Facility in Wilmington, Delaware
collaborated during the spring and summer of 1995

• viii Cusamo, M. and Selby, R. Microsoft Secrets, The Free Press, 1995

• ix ibid

• x Aberdeen Group , Upgrading To ISV Methodology For Enterprise
Application Development Product Viewpoint Volume 8/Number 17, 1995

• xi Bach, James. The Challenge of "Good Enough" Software, American
Programmer October, 1995

• xii op.cit. Aberdeen Group

	Overview
	
	Development in the Real World

	Scrum's Characteristics
	Background
	Scientific Research
	Industry Research
	Process Requirements
	Scrum Empirical Development Process
	
	Aberdeen Conclusions

	Scrum Overview
	The Inner Workings of Scrum
	Summary

