
Scrum, Complexity, and Process Improvement

Everyone likes Scrum. What�s not to like? Scrum increases productivity,
improves return on investment, delivers useful functionality every month, and helps
everyone enjoy working. Yet, everyone wants to tinker with it, to improve it, to increase
its accuracy, to make it more amenable to his or her culture.

I used to help people modify Scrum to make it more compatible with their
perceptions. Lately, I�ve come to realize that this is a mistake. For sustained
improvements with Scrum, to stop yourself from making changes that undercut the core
of Scrum, you have to understand Scrum at its deepest, theoretical level. And this is very
hard. But only then will you understand why these improvements will destroy the very
success you desire. How did this paradox come to be?

The scientific approach is the basis of much of our current understanding of our
world. Based on observations, we make a hypothesis. We test the hypothesis on a
statistically significant set of examples. If sustained, the hypothesis can be used in every
day life to build technology and to predictably guide our interaction with the world. This
is called the deterministic approach and is exemplified by Newtonian physics.

Our approach to science has changed over the last century. Something called
quantum mechanics has started to show us that there is more afoot than the deterministic
approach would lead us to believe. You see, there is a lot of glossing over the rough
edges, accepting �out of boundary� experimental results, and approximation to use the
results of the deterministic approach. We�ve accepted this imprecision because the results
of applying these hypotheses are acceptable, more or less. Imprecision like the ability to
predict the interaction of planetary bodies using Newtonian physics. We can predict fine
as long as we restrict the predictions to two planetary bodies, but predictions fall apart
when we try to predict the interactions of three or more bodies. The imprecision, the
approximation, shows up then through unpredictable variations between further
observation and predictions.

A body of thought called complexity theory is useful in thinking about this
problem. It says that complex things act differently than simple things. Simple things
operate predictably according to our laws as measured by the available precision of our
measuring instruments. Complex things sometimes act predictably, but just as often will
act wildly unpredictable, sometimes fluctuating in a manner that cannot be modeled
mathematically, sometimes not, sometimes settling into a mathematically predictable
pattern after a time, sometimes not. Worse yet, the more precise our measuring
instrument, the more we are finding that even things we thought were simple really are
complex; we had just never been able to detect this complexity and we had found ways of
working around any apparent unpredictability with approximations.

So, what does this have to do with Scrum. Scrum is an empirical process control
rooted in industrial process control theory, and applicable to complex problems that
otherwise are not amenable to solution. I have applied Scrum to hundreds of projects over

the last decade, most of them software development projects. I have and continue to
assert that Scrum with its basis in empirical process control theory, is the correct
theoretical approach to software development. Why? Over this time not a single Scrum
project has failed, at a time when industry-wide failure rates were over 60% and of the
other 40% that succeeded, 70% of the functionality delivered wasn�t useful when
delivered.

Scrum deals with complexity, not simplicity. Scrum calls for frequent inspection
and subsequent adaptation during a project. Scrum practices queue up things for
inspection and adaptation frequently enough and with enough precision that software
projects and other projects that deal with complex problems are able to thread their way
through the unpredictable nature of complexity to deliver something of value. Scrum
constantly sticks the results of people attempting to turn imprecise, changing
requirements and truculent, treacherous technology in your face and asks you to figure
out if its resolution is proceeding acceptably. If not, Scrum asks you to devise an
adaptation on the spot that redirects efforts to maximally improve the likelihood of an
acceptable outcome.

But we are trained in the scientific method. We pride ourselves in simplifying
things, in reducing them to a state where they can run unattended or at least with less
attention and more precision. Scrum and empiricism are the art of the possible, but people
want the art of the predictable � even though complex things aren�t predictable by their
very nature. This sticks in the craw of people that want deterministic management
techniques and the scientific method to reduce the practice of software development into
a predictable practice and discipline.

Estimating is the nexus of this failure to understand. In Scrum, estimates of work
are only a starting point, a way of getting our minds around a complex problem. Teams
start to work on the problem, dealing with the complexity, the unexpected and the
unpredictable as they proceed. At the end of iteration, a thirty calendar day time-box
called a Sprint, the team demonstrates what it has been able to do. Based on the team�s
success and progress, everyone then figures out what is the most valuable thing to do
next. This continues Sprint by Sprint until the problem has been resolved and the
complexity rendered into a system that is satisfactory.

To someone of the scientific method bent, however, this is inadequate. They want
to improve the accuracy of these estimates so they will be able to predict better what will
be ready at the end of each Sprint. One approach that they�ve used in the past is
comparing estimated work to actual work required. Their belief is that if these are
adequately studied, a hypothesis for the variance can be derived, the hypothesis can be
tested on more real work, and then the entire process can be improved by applying the
hypothesis in practice. This belief exposes the vast chasm between solving problems
through a deterministic or the quantum approach to the world. Quantum mechanics and
one of its children, Scrum, indicate the fallacy of this approach. The problem is complex
and not amenable to reductionism. The degree of complexity and unpredictability
inherent in the problem negates attempts to statistically manage the results to increase

predictability. Attempts to tinker with the process to increase predictability only lessen its
effectiveness.

I tell people that Scrum is really hard work, and they think that they know what I
mean. I tell them that the software development problem is so complex that the only
solution is to constantly pay attention through inspection and to have to over and over
again derive the best possible adaptation to anything that the inspection reveals to be
unexpected and out of tolerance. This cannot be shirked or avoided when dealing with
complex problems. But, over and over, people look for ways to simplify Scrum so that
they can pay less attention, so that the process will require less of their attention and
intelligence, so that they can go on to solving other problems. That would be nice but for
two things: if you don�t pay adequate attention to complex problems, attempts to solve
them will fail, and there are no deterministic solutions that will allow anyone to reduce
this attention. Worse yet, as Scrum proves itself over and over in solving complex
problems, people will increase the complexity of the problems that are being addressed.

Is Scrum easy? In presentation, yet; in practice, no! Scrum not only requires all of
our attention and intelligence, but it runs contrary to our ingrained, deeply held beliefs
about how to solve problems. Our lives are so full of problems and complexity that it is a
normal reaction to want to reduce them. Unfortunately, the consequence of either
inattention or reductionism in the software development process is failure.

