Tale of Two I mplementations
Ken Schwaber

Abstract: Many organizations have struggled to successfully spread agile processes beyond the
initial beachheads. Two approaches that simplify the implementation and mitigate the pain of the
change are presented.

Overview: Implementing an agile process requires all of the change management skills available
within an organization. Even though the benefits are easily understood and even experienced
through pilot projects, the width and breadth of change required is daunting. Engineering practices
need tightening, project management changes, customer relationships are shaken, collaboration
rather than contracts and isolation becomes the norm, and most other assumptions and comforts
that underlie an organization’s operations are changed. This article presents two approaches for
easing the pain of the change and enhancing the probability of success. These are the “two step”
and the “wrap.”

Keywords:. iteration, increment, emergence, self-organization, change, product management,
development team

Article. Two recent organization-wide implementations of the Scrum agile process may offer
some guidelines, even patterns, that may be successfully employed by others. Each implementation
employsindirect, even agile, tactics that led the organizations to incrementally benefit from agile
processes without undergoing the pain that often results from a direct approach. These two
implementations offer an alternative to the resistance to change that often setsin during radical
changesto cultures. Implementations are akin to changing the wheels on alocomotive hurtling
forward on its tracks; how to change the wheels without untracking the entire train?

The“ Two Sep” implementation wasin asmall biotechnology company. We'll name this company
“AbleX.” AbleX filled aniche in the biotechnology and pharmaceutical world. AbleX acquired
raw experimental data, repacked it with many vectors of datathat uniquely identified it, and resold
the repackaged product to companies that required FDA licensing precision. The current
development approach was amix of hacking and waterfall.

Scrum and agile processes use the techniques of iterative and incremental development to create a
regular flow of timely products. The techniques of inspection and adaptation ensure the timely
presence and certifiable correctness of these products. These techniques increase the control of
complex development projects. They reduce the risk of the projects never getting off the ground,
not producing anything worthwhile, and diverging into uselessness. A flow diagram of the Scrum
process that implements iterations through thirty day “ Sprints’ is shown in Figure 2.

Copyright Advanced Development Methods, 2003 Page 1



AbleX wasin the middle of upgrading its operational systems, those systems that provided the value-

Dally E‘h

EVERY 24
hours

Scrur 15 minute daily meeting.
Teams member respond to basics:
13 What did you do since last Scrum

Meeting?
2) Do you have any obstacles?
Sprint Backiog Backlog 3) What will you do befare next

Feature(s) items Spnnt ll_ meenng?
@ Management

assigned expanded for 30
to sprint Iy byteam days

|/ New functionality
is demonstrated

at end of sprint

added to the raw data.

Product Backlog. .
Prioritized product features desired by the customer Flg 2

was very interested in the increased control and reduced risk of agile processes. It was ableto
achieve both by simply implementing the thirty-day Sprintsand Daily Scrums. Inspection and
adaptation happen during both Scrum practices. They were easy to implemented with minimal
change. Management was then able to better track and control devel opment, converging on
increments of functionality every Sprint.

More difficult for AbleX were the concepts of emergence and self-organization. These are the
practices wherein Scrum and agile processes deliver breakthrough productivity, creativity, and
employee satisfaction. However, these require the most subtle and far reaching changes. For
instance, these practices require product management to use brief product backlog, or stories, instead
of detailed requirements and design documents. They wondered, how could these brief one-line
descriptions make up for the detailed knowledge implemented into these extensive documents? How
could ateam of individuals with less business domain expertise possible come up with a better,
much less an adequate solution?

In many regards, product management anxiety and apprehension were correct. The development
teams had always been at aremove from the users and the business, acting as a software factory that
relied on the precise instructions of the product managers. We needed away to transition this
awareness and knowledge to the devel opment teams. To do so, we devised the second of the “two
steps!” The product managers started skimping by only sketching out areas of |ess complex
requirements and design. Although the product backlog was still complete, some of the backlog
referred to very detailed requirements and design, whereas other backlog referred to this sketchy,
“stubbed out” information. The team had to figure out the details of the sketchy parts on its own,
relying on self-organization and emergence.

Copyright Advanced Development Methods, 2003 Page 2



The second step facilitated the growing knowledge of the business by the development teams and the
increasing trust of the product managersin emergence and self-organization.

The“ Wrap” implementation was at alarge software company that we'll call ActiveX for the
purposes of this article. ActiveX came into being through the acquisition of independent companies.
Each company provided software products that complemented each other. As awhole, the products
provided a development environment for complex, n-tier, web-based applications.

ActiveX was experiencing rapid growth and dominated its software niche. The demands of the
growth precluded consolidating its acquisitions either geographically or through similar processes.
The seven sites were worldwide, spanning the full set of time zones. Their engineering and
management practices ranged from amost CMM-level compliance to those more commonly found
in the .com companies of the 90's. Systems architectures and good-will at an individual engineering
level held product releases together. However, under the pressure of competition and new
functionality, friction was increasing between employees and locations and product quality was
suffering.

Object-oriented devel opment relies on such practices as encapsultion and information-hiding. The
results are simplified, standardized clean interfaces and a structure that is easily understood. We
decided to use a similar approach to implementing Scrum. Rather than implementing Scrum in full,
we decided to implement Scrum by wrapping all of the management and engineering practices at
each of the seven locations with Scrum practices. Each site would use iterative, incremental
development. During each iteration, each site could do whatever they wanted; at the end of the
iteration, each site had to demonstrate working product functionality. During each iteration, each
team had daily Scrum, or status, meeting. Hierarchies of these meeting were used to coordinate the
multiple teams.

Through this wrapping, common operating practices were implemented that allowed anyone and any
site to inspect the progress, status, and problems of any development area within ActiveX. Through
the delivery of increments of working functionality, everyone in the organization could rely on the
regular presence of working code that could be inspected, interfaced to, and relied upon.

Another object-oriented practice is refactoring. As a system gets devel oped, the redundancies and
inaccuracies are removed from the design and code. This happens incrementally rather than by
relying on a static design developed at the beginning of the project. ActiveX relied on process
refactoring once the various organizational sites were wrapped by Scrum practices. The wrapper
provided common interfaces and external practices, similar to the idea of object methods. Once this
stability was implemented, each organization began to refactor itsinternal practices to conform to
each other. We taught the various devel opment groups the details and philosophies of Scrum. This
provided avision for each process refactoring.

Copyright Advanced Development Methods, 2003 Page 3



Both ActiveX and AbleX understood their business and development domains. We understood the
theory, benefits, interdependencies, and agile practices. Working together, we were able to implement
Scrum to deliver agile practices with minimal disruption.

Copyright Advanced Development Methods, 2003 Page 4



