Genetic Programming Theory and Practice 2010:
An Introduction

Trent McConaghy, Ekaterina Vladislavleva and Rick Riold

Lsolido Design Automation Inc., Canad%Department of Mathematics and Computer Science,
University of Antwerp, Antwerp, Belgiur\o’]Center for Study of Complex Systems, University of
Michigan.

Abstract The toy problems are long gone, real applications are stdndad the systems
have arrived. Genetic programming (GP) researchers hase thesigning and
exploiting advances in theory, algorithm design, and caingupower to the
point where (traditionally) hard problems are the norm. A3i&being deployed
in more real-world and hard problems, GP research goalsrateieg to a higher
level, tosystemsn which GP algorithms play a key role. The key goals in GP
algorithm design are reasonable resource usage, higitygueults, and reliable
convergence. To these GP algorithm goals, we add GP systals: gease of
system integration, end-user friendliness, and user abafrthe problem and
interactivity. In this book, expert GP researchers denratshow they have been
achieving and improving upon the key GP algoritarmd system aims, to realize
them on real-world / hard problems. This work was presentedeaGP Theory
and Practice (GPTP) 2010 worshop. This introductory chaqatenmarizes how
these experts’ work is driving the frontiers of GP algorithemd GP systems in
their application to ever-harder application domains.

Keywords: genetic programming, evolutionary computation

1. The Workshop

In May 2010 the Center of Studies of Complex Systems at thedudsity of
Michigan — with deep historical roots in evolutionary corgtion tracing back
to Holland’s seminal work — opened its doors for the invite&thie workshop on
Genetic Programming in Theory and Practice 2010. Over tyvexperienced
and internationally distinguished GP researchers gatliesnn Arbor to close
themselves in one room for two and a half days, present tkeeiest (and often
controversial) work to the critical attention of their psgdiscuss the challenges
of genetic programming, search for common traits in the Baliegvelopment,
get a better understanding of the global state-of-the+adtshare the vision on
the “next big things” in GP theory and practice.

The atmosphere at the workshop has always been enjoyalile,every
participant trying to get a deep understanding of presenwta#t, provide con-
structive comments on it, suggest links to the relevantoi the broad field of
computing, and question generality, scalability of therapph. The workshop
fosters a friendly atmosphere wherein inquiring minds aeuinely trying to
understand not only what they collectively know or can ddw@P, but also

Introduction toGenetic Programming Theory and Practice VR. Riolo, T. McCongahy, K. Vladislavleva
(Eds.)

Viii Genetic Programming Theory and Practice VIII

what they collectively do not yet know or cannot yet do with. GRe latter
understanding is a major driving force for further devel@mts that we have
observed in all workshops.

We are grateful to all sponsors and acknowledge the impoetahtheir con-
tributions to such an intellectually productive and regefgent. The workshop
is generously founded and sponsored by the University ohigan Center for
the Study of Complex Systems (CSCS) and receives furthaifigrfrom the
following people and or organizations: Michael Korns ofémean Investment
Management, State Street Global Advisors, Third Milleniil and Barbara
Tozier of Vague Innovation, Evolved Analytics, the Compigtaal Genetics
Laboratory of Dartmouth College and the Biocomputing andddepmental
Systems Group of the University of Limerick.

We also thank Jirgen Schmidhuber for an enlightening aongogative
keynote speech, which covered his thoughts on what makeésrdific field ma-
ture, a review of his work in solving difficult real-world pboéems in pragmatic
ways, and his theoretical work in GP- and non-GP-based anognduction.

2. Summary of Progress

Lastyear, GPTP 2009 marked a transition wherein the aim®adlGorithms
— reasonableesourceusage, highresultsquality, andreliable convergence —
were being consistently realized on an impressive variétyeal-world” ap-
plications by skilled practitioners in the field. This year, for GPTP 20te-
searchers have begun to aim for the next levelsjstemsvhere GP algorithms
play a key role. This was evident by the record number of GRarRas$, and by
a renewed emphasis on system usability and user controd rAfiecting this
transition, discsussions had a marked unity and depth ditiguns on the phi-
losophy and future of GP, on the need to re-think the algorittand re-design
systems to solve conceptually harder problems.

This chapter is organized accordingly. After a brief intnotion to GP,
Section 4 describes goals for design of GP algorithms antesgs Then
the contributions of this volume (from the workshop) are susmized from two
complementary perspectives: section 5 describes the pbastice” techniques
that GP practitioners have invented and deployed to achie/&P algorithm
and system aims (including the improvements of GPTP 201@),saction 6
describes the application domains in which success thrbeghpractices has
been reported. We conclude with a discussion of obsenstioat emerged
from the workshop, challenges that remain and potentiahae®e of future
work.

To make the results of the workshop useful to even a relaiyéce in the
field of GP, we first provide a brief overview of GP.

Introduction toGenetic Programming Theory and Practice VR. Riolo, T. McCongahy, K. Vladislavleva
(Eds.)

GPTP2010: An Introduction iX

3. ABrief Introduction to Genetic Programming?

Genetic programming is a search and optimization techrfiguexecutable
expressions that is modeled on natural evolution. Natwalugion is a pow-
erful process that can be described by a few central, genaehanisms; for
an introduction, see (Futuyma, 2009). A population is cosegloof organisms
which can be distinguished in terms of how fit they are witlpess to their
environment. Over time, members of the population breerkigqufency propor-
tional to their fitness. The new offspring inherit the condargenetic material
of their parents with some random variation, and may repdegting members
of the population. The entire process is iterative, adaivd open ended. GP
and other evolutionary algorithms typically realize thentral description of
evolution, albeit in somewhat abstract forms. GP is a setgdriahms that
mimic of survival of the fittest, genetic inheritance andiaaon, and that iter-
ate over a “parent” population, selectively “breeding’rthand replacing them
with offspring.

Though in general evolution does not have a problem solvivey,dGP is
nonetheless used to solve problems arising in diverse d@manging from en-
gineering to art. This is accomplished by casting the osgarin the population
as a candidate program-like solution to the chosen problEne organism is
represented as a computationally executable expresdiarsfaucture), which
is considered its genome. When the expression is executedroa supplied
set of inputs, it generates an output (and possibly somenieidiate results).
This execution behavior is akin to the natural phenotype.c8wyparing the
expression’s output to target outputs, a measure of theéigok quality is ob-
tained. Thisis used as the “fithess” of an expression. Thetatthe candidate
solutions are computationally executable structuresrésgions), not binary or
continuous coded values which are elements of a solutiovhas distinguishes
GP from other evolutionary algorithms (O’Reilly and Angedi 1997).

GP expressions include LISP functions (Koza, 1992; Wu andzBaf,
1998), stack or register based programs (Kantschik andhiéin2002; Spec-
tor and Robinson, 2002), graphs (Miller and Harding, 200&ttMssi and
Floreano, 2007; Poli, 1997), programs derived from gransnf@ruau, 1993;
Whigham, 1995; O’Neill and Ryan, 2003), and generative @s@ntations
which evolve the grammar itself (Hemberg, 2001; Hornby anligek, 2002;
O’'Reilly and Hemberg, 2007). Key steps in applying GP to aijgeprob-
lem collectively define its search space: the problem’s ickatd solutions
are designed by choosing a representation; variation tggerémutation and
crossover) are selected (or specialized); and a fitnessidnn@bjectives and

2Adapted from (O'Reilly et al., 2009).

Introduction toGenetic Programming Theory and Practice VR. Riolo, T. McCongahy, K. Vladislavleva
(Eds.)

X Genetic Programming Theory and Practice VIII

constraints) which expresses the relative merits of gaid complete solutions
is formulated.

For a more detailed overview we refer the reader to the boak €? al.,
2008), which is available for free online.

4. GP Challenges and Goals

In the early days of GP, the challenge was simply to “make ikivon small
problems. As the field of GP research has matured, to be abt#\te challeng-
ing real-world problems GP experts have strived to improveatgorithmsin
terms of efficient computationabsourceusage, ensuring better qualigsults
and attaining moreeliable convergence. With the maturation of “best practice”
approaches, researchers are starting to create velystemsising GP which
present its own challenges: ease of system integratiorusedfriendliness,
user control of the problem (perhaps interactively). Tlast®n elaborates on
these GP algorithm and system goals and challenges.

GP Algorithm Goals and Challenges
A successful GP algorithm has at least the following attgbu

Efficent Use of Computational Resourcesncludes shorter runtime, re-
duced usage of processor(s), and reduced memory and dig&,dsaa given
result. Achieving efficent use of computer resources halitivaally been a
major issue for GP. A key reason is that GP search spacestara@sically
large, multi-modal, epistatic (e.g., variable interaotijy have poor localify
and other nonlinearities. To handle such challenging segpaces, signifi-
cant exploration is needed (e.g. large population sizekjs @ntails intensive
processing and memory needs. Exacerbating the problerasditevaluations
(objectives and constraints) of real-world problems temte¢ expensive. Fi-
nally, because GP expressions have variable length, thartendency for them
to “bloat"— to grow rapidly without a corresponding incregis performance
(cf. Poli’'s Chapter 5 in this book). Bloat can be a significantml@ available
memory and CPU resources.

Ensuring Quality Results. The key question is: “can a GP resh# used
in the target application?” This may be more difficult to attdnan evident at
first glance because the result may need to be human-intaiopeetrustworthy,
or predictive on dramatically different inputs— attainisgch qualities can be

3Poor locality means that a small change in the individua¥aalype often leads to large changes in the
fitness and introducing additional difficulty into the sdaedfort. For example, the GP “crossover” operation
of swapping the subtrees of two parents might change the agsan of two elements from a “less than”
relationship to an “equal to” relationship. This usuallyeg dramatically different behavior and fitness.

Introduction toGenetic Programming Theory and Practice VR. Riolo, T. McCongahy, K. Vladislavleva
(Eds.)

GPTP2010: An Introduction Xi

challenging. Ensuring quality results has always beergperd as an issue, but
the goal is becoming more prominent as GP is being appliedte neal world
problems. Practitioners, not GP, are responsible for gépyoa GP result in
their application domain. This means that the practitiqaad potentially their
client) must trust the result sufficiently to be comfortabkng it. Human-
interpretability (readability) of the result is a key facta trust. This can be
an issue when deployment of the result is expensive or ngkgn customers’
understanding of the solution is crucial; when the resulsing inspected or
approved; or to gain acceptance of GP methodology.

Reliable convergenceneans that the GP run can be trusted to return reason-
able, useful results, without the practitioner having tamy@bout premature
convergence or whether algorithm parameters like popmriagize were set
correctly. GP can fail to capably identify sub-solutionspartially correct so-
lutions and successfully promote, combine and reuse thegenerate good
solutions with effective structure. The default approadls been to use the
largest population size possible, subject to time and resotonstraints. This
invariably implies high resource usage, and still gives nargntee of hitting
useful results even if such results exist. Alternative apphes to increase the
number of iterations with smaller population sizes stitidaobust scenarios for
computing resource allocation.

Goals for GP Incorporated in larger Systems

These are necessary attributes of GP for successful “GBragsti.e., sys-
tems in which GP plays a key rdle A successful GP system must no doubt
have many other attributes particular to the context in Whids deployed,
but each of the following factors certainly have high impantthe system’s
success.

Ease of system integratioris how easy the GP algorithm is to deploy as
part of the entire system, by the person or a team buildingyetem. Even if a
GP algorithm does well on the algorithm challenges, its mealgdord for system
integrators (or other researchers) to deploy because bfdamplexity or many
parameters. Simple algorithms with few parameters arehwatriving for; and
if this is not possible, then readily available softwarehasimple application
programming interfaces and good documentation is a reasosalution.

End-user friendlinessis the end-user’s perspective of how easy the system
is to use when solving the problem at hand, when GP is only ecsnponent
of the overall system. The user wants to solve a problem enaadly, with

4GP may not even be the centerpiece of the system—that’s fine!

Introduction toGenetic Programming Theory and Practice VR. Riolo, T. McCongahy, K. Vladislavleva
(Eds.)

Xii Genetic Programming Theory and Practice VIII

quality results, reliably. The user task should be smootth efficient, not
tedious and time consuming.

User (Interactive) Control of the Problem. The system (and its subsys-
tems) should not be solving a problem any harder than it niedaks, especially
when it makes a qualitative difference to resource usageltrgquality, or con-
vergence. To meet this goal, users should be able to speaifbigms to be
solved with as much resolution as appropriate. In some cHsssalso means
interactivity with results so far, to further guide expltcam according to the
user’s needs, intuitions or subjective tastes. And it Sjpadiy doesnot mean
user-level control of the GP algorithm itself: the end-usleould not have to
be a GP expert to use GP to solve a problem, just as GP expents# tiave to
be experts on electronics in order to use computers.

For more book-length texts on applying GP to industrial peois, we refer
the reader to recent books on the subject — by GPTP partisighemselves:
(Kordon, 2009), (Iba et al., 2010), and (McConaghy et al020

5. GP Best Practices

First, we describe general best practices that GP prantitouse to achieve
GP algorithm goals. Then, we review advances made at GPT® t2dard
attaining those GP algorithm goals, followed a review of ®2D10 work that
addresses GP system goals.

In general, GP computational resource use has been madeefficient by
improved algorithm design, improved design of represémaand operators
in specific domains. The importance of high demands of GPdormutational
resources has been lessened by Moore’s Law and increasiiigtalty of par-
allel computational approaches, meaning that computti@sources become
exponentially cheaper over time. Results quality has iwvguldfor the same
reasons. It is also due to a new emphasis by GP practitiomegetiing in-
terpretable or trustworthy results. Reliability has beehanced via algorithm
techniques that support continuous evolutionary impreyenthrough a sys-
tematic or structured fashion, so that the practitioneongér hasto “hope” that
the algorithm isn't stuck. Implicit or explicit diversity aintenance also helps.
Finally, thoughtful design of expression representatind genetic operators,
for general and specific problem domains, has led to GP sgstahieving
human-competitive performance. Techniques along thass Include evolv-
ability, self-adaptiveness, modularity and bloat control

At GPTP 2010, the following papers demonstrated advancé&sRiralgo-
rithm aims (efficient computational resource usage, regyiality, or reliable
convergence):

m Poli (Chapter 5) draws on recently developed theory to coosh very
simple technique that manages bloat.

Introduction toGenetic Programming Theory and Practice VR. Riolo, T. McCongahy, K. Vladislavieva
(Eds.)

GPTP2010: An Introduction Xiii

» Hardinget al. (Chapter 6) and Spector (Chapter 2) illuminate the state
of the art in using self-modifying individuals to achieveghily scalable
GP.

= Pattin, Mooreet al. (Chapter 12) also uses self-adaptation and demon-
strates how to incorporate expert knowledge in novel wayshighly
scalable GP.

m Lichodzijewski and Heywood (Chapter 3) and Soetel. (Chapter 4)
make further advances in GP scalability through evolutibleams.

= Orlov and Sipper (Chapter 1) is an excellent example of pesitice
operator design to maintain evolvability in a highly coasted space.

= Smitset al. (Chapter 9) points towards evolution in the “compute cldud,
by exploring massively parallel evolution.

m |ba and Aranha (Chapter 13) exploits the structure of theues-
allocation problem in operator and algorithm design to iowerGP scal-
ability and results quality.

= Bergen and Ross (Chapter 14) explores how to handle proivigims>2
objectives yet maintain convergence.

m Korns (Chapter 7) and McConaghy (Chapter 10) aggressivahstorm
and simplify their respective problems for GP as much asiplesso
greatly reduce GP resource needs.

At GPTP 2010, the following papers demonstrated advanc&isystem
goals (system-integrator usability, user-level usapilir user control of the
problem and interactivity).

For system integrator usability: Schmidt and Lipson (Ckag) shows an
approach that achieves the reliable convergence of thdgofuPS algorithm
(Hornby, 2006), but with a simpler algorithm having fewergraeters. Harding
etal. and Spector (Chapter 2) are also examples of relativelylsiaigorithms,
algorithms that have been simplified over the years as tlesigders gained
experience with them. In his keynote address, Jurgen Siftuber described
the achievement of best-in-class results using simplefdraplgation neural
networks but with modern computational resources.

For user-level usability: Castillet al. (Chapter 11) prescribes a flow for
industrial modeling people where they can use GP as partofdlierallmanual
flow in developing trustworthy industrial models. In the sigédemos session,
many researchers presented highly usable GP systemgjimgliotanchek’s
DataModeler (symbolic regression and data analysis padkadylathematica),
Schmidt and Lipson’s Eurega (symbolic regression), BeggahRoss’s Jnetic
Textures (art), and lba and Aranha’s CACIE (music).

For user control of the problem /interactivity: Korns (Cken¥) describes an
SQL-style language to specify symbolic regression probleso that function
search only changes subsections of the overall expres@ergen and Ross
(Chapter 14) and Iba and Aranha (Chapter 13) describe sgstehemphasize
usability in interactive design of art and music, respegyiv

Introduction toGenetic Programming Theory and Practice VR. Riolo, T. McCongahy, K. Vladislavleva
(Eds.)

Xiv Genetic Programming Theory and Practice VIII

What is equally significant in these papers is that which ismentioned
or barely mentioned: GP algorithm goals that have already lselved suffi-
ciently for particular problem domains, allowing reseanto focus their work
on the more challenging issues. For example, there areaeegers that do
some form of symbolic regression (SR), which historicakhgmnad major issues
with interpretability or bloat. Yet in these pages, the SRqya barely discuss
interpretability or bloat, because best practices avoédiskue in one or more
ways, most notably: pareto optimization using an extrachje of minimiz-
ing complexity, templated functional forms like McConaGh€ AFFEINE or
Korns’ abstract expressions or simply using the GP systegenerate promis-
ing subexpressions in a manual modeling flow. Other offdhelf techniques
that solve specific problems well have been around for yeadsaze being
increasingly adopted by the GPTP community. These includenmars to
restrict program evolution (Whigham, 1995; O’Neill and Ry2003), compe-
tent algorithms to handle multiple objectives and/or crists e.g. (Deb et al.,
2002), and meta-algorithms providing diversity and cambuns improvement
like ALPS (Hornby, 2006). Finally, significant compute rastes are available
to most: in an informal survey at the workshop, we found thashgroups use
a compute cluster, and two groups are already using “the atergloud.”

6. Application Successes Via Best Practices

One of the fascinating aspects of GP research is that GP isrserd, i.e.
“search through a space of (program or structure) entitilest it can be used to
attack an enormous variety of problems, including many lemis that are cur-
rently unapproachable by any other technique. This yeatshof applications
is no exception. This section briefly reviews the appliaatio

One of the long-standing aims of Al, and GP, has been evolatisoftware
in the most general sense possible. GPTP this year was &bettm have three
groups present work directly on this. Orlov and Sipper (Gbagd) present
FINCH, a system to evolve Java bytecode, an evolutionargtsate that has
evolvability close to machine code, yet returns intergoietalava code thanks
to industry-standard bytecode decompilers. Spector (t&h&) presents an
autoconstructive version of PUSH, a GP system which evodtask-based
programs. Finally, Hardingt al. (Chapter 6) presents a self-modifying Carte-
sian GP which evolves graphs that can be interpreted as a@ftweircuits,
equations, and more.

Two chapters introduce wholly new problems for GP. McCora@hap-
ter 10) introduces the problem of building density models aistribution’s
tails (and dusts off the general problem of symbolic densibdeling), for the
application of SRAM memory circuit analysis. Lichodzijewsnd Heywood

Introduction toGenetic Programming Theory and Practice VR. Riolo, T. McCongahy, K. Vladislavleva
(Eds.)

GPTP2010: An Introduction XV

(Chapter 3) introduce the problem of solving a Rubik’s cubith &P, taking
the perspective of temporal sequence learning.

GP continues to help the artistic types. Bergen and Rosspt€ha4) de-
scribe a sophisticated interactive system for interacéivelutionary art, and
Iba and Aranha (Chapter 13) describe an advanced systemiéoactive evo-
lutionary music. Both systems have been already used exédnby artists
and musicians.

In a biology application, Pattin, Mooret al. (Chapter 12) describe the use
of GP for disease susceptibility modeling.

GP remains popular in financial applications. Korns (Chapteps the ante
on a set of symbolic regression and classification probléwtsare representa-
tive of financial modeling problems to aid stock-trading idEmmaking. lba
and Aranha (Chapter 13) describes a system for portfolacation.

For the problem of industrial modeling (e.g. of inferensainsors at Dow),
Castilloet al. (Chapter 11) focuses on a structured approach to exploit GP
results within industrial modelers’ model development #owUndoubtedly,
the symbolic regression approach in Snetsal. (Chapter 9) will find end
usage in Dow’s industrial modeling environment as well.

Other approaches used standard problems in (symbolic¥ifitagion or
regression as their test suites, though the emphasis wabheatpplication.
This includes work by Soulet al. (Chapter 4), Poli (Chapter 4), and Schmidt
and Lipson (Chapter 8).

7. Themes, Summary and Looking Forward

The toy problems are gone; the GP systems have arrived. Nat doere
will continue to be qualitative improvements to GP algarithand GP systems
for years to come. But is there more? We posit there is.

Despite these achievements, GP’s computer-based evotla@s not demon-
strate the potential associated with natural evolutiom,duoes it always satis-
factorily solve important problems we might hope to use it diven when
using best practice approaches to manage challenges urcespresults, and
reliability, the computational load may still be too exdessand the final results
may still be inadequate. To achieve success in a difficultlera domain takes
a great deal of human effort toward thoughtful design of espntations and
operators.

Many questions and challenges remain:

e What does it take to make GP a science? (Is this even a realististion?)
How can work on applications facilitate the continued depeient of a GP
theory?

e Whatdoesittake to make GP atechnology? (Isthiseven atiegjuestion?)
What fundamental contributions will allow GP to be adoptetbibroader

Introduction toGenetic Programming Theory and Practice VR. Riolo, T. McCongahy, K. Vladislavieva
(Eds.)

XVi Genetic Programming Theory and Practice VIII

use beyond that of expert practitioners? For example, hovizdabe scoped
so that it becomes another standard, off-the-shelf methtuei “toolboxes”
of scientists and engineers around the world? Can GP foliothe same
vein of linear programming? Can it follow the example of sopsector
machines and convex optimization methods? One challemg®isnulating
the algorithm so that it provides more ease in laying out dlgra. Another
is determining how, by default —without parameter tunin@, ¢an efficiently
exploit specified resources to return results reliably.

e How do we get 1 million people using GP? 1 billion? (Shouldytkegen
know they’re using GP?)

e Success with GP often requires extensive human effort itucag and em-
bedding the domain knowledge. How can this up-front huméortelbe
reduced while still achieving excellent results? Are thadelitional auto-
matic ways to capture domain knowledge for input to GP sys®em

e Scalability is always relative. GP has attacked fairly éapgoblems, but
how can GP be improved to solve problems that are 10x, 10000]1000x
harder?

e What opportunities await GP due to new computing architestand sub-
strates, with potentially vastly richer processing resea? This includes
massively multicore processors, GPUs, and cloud compubag it also
includes digital microfluidics, modern programmable lggind more.

e What opportunities await GP due to massive memory and staragacity,
coupled with giant databases? For example, this has alneedgundly
affected machine learning applied to speech recognitiottamention web
search. Massive and freely available databases are comiing cespecially
from biology.

e What “uncrackable” problems await a creative GP approadin@fiiture has
many challenges in energy, health care, defence, and morendny fields,
there are lists of “holy grail” problems, unsolved probleragen problems
with prize money attached.

These questions and their answers will provide the foddefutore GPTP
workshops. We wish you many hours of stimulating readinghedf volume’s
contributions.

References

Deb, Kalyanmoy, Pratap, Amrit, Agarwal, Sameer, and Meya;i T. (2002). A
fast and elitist multiobjective genetic algorithm: Nsga#EE Transactions
on Evolutionary Computatiqré:182—-197.

Futuyma, Douglas (2009Evolution, Second EditiorSinauer Associates Inc.

Introduction toGenetic Programming Theory and Practice VR. Riolo, T. McCongahy, K. Vladislavl-
eva (Eds.)

GPTP2010: An Introduction XVii

Gruau, Frederic (1993). Cellular encoding as a graph gramiB&ia Colloquium
on Grammatical Inference: Theory, Applications and Altdivies (Digest
N0.092):17/1-10.

Hemberg, Martin (2001). GENRS - A design tool for surfacegyation. Mas-
ter's thesis, Department of Physical Resource Theory,Gaa University,
Sweden.

Hornby, Gregory S. (2006). ALPS: the age-layered poputastructure for
reducing the problem of premature convergence. In Keijgerarten, Cat-
tolico, Mike, Arnold, Dirk, Babovic, Vladan, Blum, Christh, Bosman, Pe-
ter, Butz, Martin V., Coello Coello, Carlos, Dasgupta, Digar, Ficici, Se-
van G., Foster, James, Hernandez-Aguirre, Arturo, Hor@reg, Lipson,
Hod, McMinn, Phil, Moore, Jason, Raidl, Guenther, Rothl&rinz, Ryan,
Conor, and Thierens, Dirk, editoiGECCO 2006: Proceedings of the 8th an-
nual conference on Genetic and evolutionary computatiotume 1, pages
815-822, Seattle, Washington, USA. ACM Press.

Hornby, Gregory S. and Pollack, Jordan B. (2002). Creatigh-tevel com-
ponents with a generative representation for body-bragugion. Artificial
Life, 8(3):223-246.

Iba, Hitoshi, Paul, Topon Kumar, and Hasegawa, Yoshihikidl@2. Applied
Genetic Programming and Machine LearnifgRC Press.

Kantschik, Wolfgang and Banzhaf, Wolfgang (2002). Lingeaph GP—A new
GP structure. In Foster, James A., Lutton, Evelyne, Millzdian, Ryan,
Conor, and Tettamanzi, Andrea G. B., editd&enetic Programming, Pro-
ceedings of the 5th European Conference, EuroGP 206ime 2278 of
LNCS pages 83-92, Kinsale, Ireland. Springer-Verlag.

Kordon, Arthur (2009) Applying Computational Intelligence: How to Create
Value Springer.

Koza, John R. (1992)5enetic Programming: On the Programming of Com-
puters by Means of Natural SelectiddlIT Press, Cambridge, MA, USA.

Mattiussi, Claudio and Floreano, Dario (2007). Analog denencoding for
the evolution of circuits and networkHZEE Transactions on Evolutionary
Computation 11(5):596—-607.

McConaghy, Trent, Palmers, Pieter, Gao, Peng, Steyaedhi®lj and Gie-
len, Georges G.E. (2009ariation-Aware Analog Structural Synthesis: A
Computational Intelligence ApproacBpringer.

Miller, Julian Francis and Harding, Simon L. (2008). Caidesgenetic pro-
gramming. In Ebner, Marc, Cattolico, Mike, van Hemert, Ja@astafson,
Steven, Merkle, Laurence D., Moore, Frank W., Congdon, é€CRates,
Clack, ChristopherD., Moore, Frank W., Rand, William, EicBevan G., Ri-

olo, Rick, Bacardit, Jaume, Bernado-Mansilla, Ester, BMtartin V., Smith,
Stephen L., Cagnoni, Stefano, Hauschild, Mark, Pelikarrtiklaand Sastry,

Introduction toGenetic Programming Theory and Practice VR. Riolo, T. McCongahy, K. Vladislavl-
eva (Eds.)

Xviii Genetic Programming Theory and Practice VIII

Kumara, editorsGECCO-2008 tutorialspages 2701-2726, Atlanta, GA,
USA. ACM.

O’Neill, Michael and Ryan, Conor (2003rrammatical Evolution: Evolution-
ary Automatic Programming in a Arbitrary Languagelume 4 ofGenetic
programming Kluwer Academic Publishers.

O'Reilly, Una-May and Angeline, Peter J. (1997). Trendsvoletionary meth-
ods for program inductiorEvolutionary Computatignb(2):v—ix.

O'Reilly, Una-May and Hemberg, Martin (2007). Integratigpgnerative growth
and evolutionary computation for form exploratid@enetic Programming
and Evolvable Maching8(2):163—-186. Special issue on developmental sys-
tems.

O'Reilly, Una-May, McConaghy, Trent, and Riolo, Rick (200&PTP 2009:
An example of evolvability. In Riolo, Rick L., O’'Reilly, Un#ay, and Mc-
Conaghy, Trent, editorgsenetic Programming Theory and Practice VIl
Genetic and Evolutionary Computation, chapter 1, pages8.1Springer,
Ann Arbor.

Poli, Riccardo (1997). Evolution of graph-like programstiwparallel dis-
tributed genetic programming. In Back, Thomas, ediB#netic Algorithms:
Proceedings of the Seventh International Conferepages 346—-353, Michi-
gan State University, East Lansing, MIl, USA. Morgan Kaufman

Poli, Riccardo, Langdon, William B., and McPhee, Nicholasitag (2008) A
field guide to genetic programmin@ublished viehttp://lulu.com and
freely available ahttp://www.gp-field-guide.org.uk. (With contri-
butions by J. R. Koza).

Spector, Lee and Robinson, Alan (2002). Genetic programraind autocon-
structive evolution with the push programming languagenetic Program-
ming and Evolvable Maching8(1):7-40.

Whigham, P. A. (1995). Grammatically-based genetic pnognéng. In Rosca,
Justinian P., editoRroceedings of the Workshop on Genetic Programming:
From Theory to Real-World Applicationpages 33—41, Tahoe City, Califor-
nia, USA.

Wu, Annie S. and Banzhaf, Wolfgang (1998). Introductionhie $pecial issue:
Variable-length representation and noncoding segments/tdutionary al-
gorithms.Evolutionary Computatiorg(4):iii—vi.

Introduction toGenetic Programming Theory and Practice VR. Riolo, T. McCongahy, K. Vladislavleva
(Eds.)

Index

Application successes, xiv introduction, ix
Biocomputing and Developmental Systems Group, search space, ix
viii Themes Summary and Looking Forward, xv
Center for the Study of Complex Systems, viii GP versus other EAs, ix
Computational Genetics Laboratory, viii LISP functions, ix
Ease of system integration, xi Register based programs, ix
Efficent Use of Computational Resources, x Reliable convergence, xi
End-user friendliness, xi Riolo Rick, vii

Schmidhuber Jurgen, viii

Sponsors, viii

Stack-based programs, ix

State Street Global Advisors, viii

Third Millenium, viii

University of Michigan, viii

User (Interactive) Control of the Problem, xii
Vague Innovation, viii

Vladislavleva Ekaterina, vii

Ensuring Quality Results, x
Evolved Analytics, viii
Freeman Investment Management, viii
GP
expressions, ix
generative representations, ix
grammars, ix

Introduction toGenetic Programming Theory and Practice VR. Riolo, T. McCongahy, K. Vladislavleva
(Eds.)

