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Abstract The toy problems are long gone, real applications are standard, and the systems
have arrived. Genetic programming (GP) researchers have been designing and
exploiting advances in theory, algorithm design, and computing power to the
point where (traditionally) hard problems are the norm. As GP is being deployed
in more real-world and hard problems, GP research goals are evolving to a higher
level, tosystemsin which GP algorithms play a key role. The key goals in GP
algorithm design are reasonable resource usage, high-quality results, and reliable
convergence. To these GP algorithm goals, we add GP system goals: ease of
system integration, end-user friendliness, and user control of the problem and
interactivity. In this book, expert GP researchers demonstrate how they have been
achieving and improving upon the key GP algorithmandsystem aims, to realize
them on real-world / hard problems. This work was presented at the GP Theory
and Practice (GPTP) 2010 worshop. This introductory chapter summarizes how
these experts’ work is driving the frontiers of GP algorithms and GP systems in
their application to ever-harder application domains.

Keywords: genetic programming, evolutionary computation

1. The Workshop

In May 2010 the Center of Studies of Complex Systems at the University of
Michigan – with deep historical roots in evolutionary computation tracing back
to Holland’s seminal work – opened its doors for the inviteesof the workshop on
Genetic Programming in Theory and Practice 2010. Over twenty experienced
and internationally distinguished GP researchers gathered in Ann Arbor to close
themselves in one room for two and a half days, present their newest (and often
controversial) work to the critical attention of their peers, discuss the challenges
of genetic programming, search for common traits in the field’s development,
get a better understanding of the global state-of-the-art and share the vision on
the “next big things” in GP theory and practice.

The atmosphere at the workshop has always been enjoyable, with every
participant trying to get a deep understanding of presentedwork, provide con-
structive comments on it, suggest links to the relevant topics in the broad field of
computing, and question generality, scalability of the approach. The workshop
fosters a friendly atmosphere wherein inquiring minds are genuinely trying to
understand not only what they collectively know or can do with GP, but also
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what they collectively do not yet know or cannot yet do with GP. The latter
understanding is a major driving force for further developments that we have
observed in all workshops.

We are grateful to all sponsors and acknowledge the importance of their con-
tributions to such an intellectually productive and regular event. The workshop
is generously founded and sponsored by the University of Michigan Center for
the Study of Complex Systems (CSCS) and receives further funding from the
following people and or organizations: Michael Korns of Freeman Investment
Management, State Street Global Advisors, Third Millenium, Bill and Barbara
Tozier of Vague Innovation, Evolved Analytics, the Computational Genetics
Laboratory of Dartmouth College and the Biocomputing and Developmental
Systems Group of the University of Limerick.

We also thank Jürgen Schmidhuber for an enlightening and provocative
keynote speech, which covered his thoughts on what makes a scientific field ma-
ture, a review of his work in solving difficult real-world problems in pragmatic
ways, and his theoretical work in GP- and non-GP-based program induction.

2. Summary of Progress

Last year, GPTP 2009 marked a transition wherein the aims of GP algorithms
– reasonableresourceusage, highresultsquality, andreliable convergence –
were being consistently realized on an impressive variety of “real-world” ap-
plicationsby skilled practitioners in the field. This year, for GPTP 2010, re-
searchers have begun to aim for the next level: forsystemswhere GP algorithms
play a key role. This was evident by the record number of GPTP demos, and by
a renewed emphasis on system usability and user control. Also reflecting this
transition, discsussions had a marked unity and depth of questions on the phi-
losophy and future of GP, on the need to re-think the algorithms and re-design
systems to solve conceptually harder problems.

This chapter is organized accordingly. After a brief introduction to GP,
Section 4 describes goals for design of GP algorithms and systems. Then
the contributions of this volume (from the workshop) are summarized from two
complementary perspectives: section 5 describes the “bestpractice” techniques
that GP practitioners have invented and deployed to achievethe GP algorithm
and system aims (including the improvements of GPTP 2010), and section 6
describes the application domains in which success throughbest practices has
been reported. We conclude with a discussion of observations that emerged
from the workshop, challenges that remain and potential avenues of future
work.

To make the results of the workshop useful to even a relative novice in the
field of GP, we first provide a brief overview of GP.
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3. A Brief Introduction to Genetic Programming 2

Genetic programming is a search and optimization techniquefor executable
expressions that is modeled on natural evolution. Natural evolution is a pow-
erful process that can be described by a few central, generalmechanisms; for
an introduction, see (Futuyma, 2009). A population is composed of organisms
which can be distinguished in terms of how fit they are with respect to their
environment. Over time, members of the population breed in frequency propor-
tional to their fitness. The new offspring inherit the combined genetic material
of their parents with some random variation, and may replaceexisting members
of the population. The entire process is iterative, adaptive and open ended. GP
and other evolutionary algorithms typically realize this central description of
evolution, albeit in somewhat abstract forms. GP is a set of algorithms that
mimic of survival of the fittest, genetic inheritance and variation, and that iter-
ate over a “parent” population, selectively “breeding” them and replacing them
with offspring.

Though in general evolution does not have a problem solving goal, GP is
nonetheless used to solve problems arising in diverse domains ranging from en-
gineering to art. This is accomplished by casting the organism in the population
as a candidate program-like solution to the chosen problem.The organism is
represented as a computationally executable expression (aka structure), which
is considered its genome. When the expression is executed onsome supplied
set of inputs, it generates an output (and possibly some intermediate results).
This execution behavior is akin to the natural phenotype. Bycomparing the
expression’s output to target outputs, a measure of the solution’s quality is ob-
tained. This is used as the “fitness” of an expression. The fact that the candidate
solutions are computationally executable structures (expressions), not binary or
continuous coded values which are elements of a solution, iswhat distinguishes
GP from other evolutionary algorithms (O’Reilly and Angeline, 1997).

GP expressions include LISP functions (Koza, 1992; Wu and Banzhaf,
1998), stack or register based programs (Kantschik and Banzhaf, 2002; Spec-
tor and Robinson, 2002), graphs (Miller and Harding, 2008; Mattiussi and
Floreano, 2007; Poli, 1997), programs derived from grammars (Gruau, 1993;
Whigham, 1995; O’Neill and Ryan, 2003), and generative representations
which evolve the grammar itself (Hemberg, 2001; Hornby and Pollack, 2002;
O’Reilly and Hemberg, 2007). Key steps in applying GP to a specific prob-
lem collectively define its search space: the problem’s candidate solutions
are designed by choosing a representation; variation operators (mutation and
crossover) are selected (or specialized); and a fitness function (objectives and

2Adapted from (O’Reilly et al., 2009).
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constraints) which expresses the relative merits of partial and complete solutions
is formulated.

For a more detailed overview we refer the reader to the book (Poli et al.,
2008), which is available for free online.

4. GP Challenges and Goals

In the early days of GP, the challenge was simply to “make it work” on small
problems. As the field of GP research has matured, to be able tosolve challeng-
ing real-world problems GP experts have strived to improve GP algorithmsin
terms of efficient computationalresourceusage, ensuring better qualityresults,
and attaining morereliableconvergence. With the maturation of “best practice”
approaches, researchers are starting to create wholesystemsusing GP which
present its own challenges: ease of system integration, end-user friendliness,
user control of the problem (perhaps interactively). This section elaborates on
these GP algorithm and system goals and challenges.

GP Algorithm Goals and Challenges

A successful GP algorithm has at least the following attributes.

Efficent Use of Computational Resourcesincludes shorter runtime, re-
duced usage of processor(s), and reduced memory and disk usage, for a given
result. Achieving efficent use of computer resources has traditionally been a
major issue for GP. A key reason is that GP search spaces are astronomically
large, multi-modal, epistatic (e.g., variable interactions), have poor locality3,
and other nonlinearities. To handle such challenging search spaces, signifi-
cant exploration is needed (e.g. large population sizes). This entails intensive
processing and memory needs. Exacerbating the problem, fitness evaluations
(objectives and constraints) of real-world problems tend to be expensive. Fi-
nally, because GP expressions have variable length, there is a tendency for them
to “bloat”— to grow rapidly without a corresponding increase in performance
(cf. Poli’s Chapter 5 in this book). Bloat can be a significant drain on available
memory and CPU resources.

Ensuring Quality Results. The key question is: “can a GP resultbe used
in the target application?” This may be more difficult to attain than evident at
first glance because the result may need to be human-interpretable, trustworthy,
or predictive on dramatically different inputs— attainingsuch qualities can be

3Poor locality means that a small change in the individual’s genotype often leads to large changes in the
fitness and introducing additional difficulty into the search effort. For example, the GP “crossover” operation
of swapping the subtrees of two parents might change the comparison of two elements from a “less than”
relationship to an “equal to” relationship. This usually gives dramatically different behavior and fitness.
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challenging. Ensuring quality results has always been perceived as an issue, but
the goal is becoming more prominent as GP is being applied to more real world
problems. Practitioners, not GP, are responsible for deploying a GP result in
their application domain. This means that the practitioner(and potentially their
client) must trust the result sufficiently to be comfortableusing it. Human-
interpretability (readability) of the result is a key factor in trust. This can be
an issue when deployment of the result is expensive or risky,when customers’
understanding of the solution is crucial; when the result must be inspected or
approved; or to gain acceptance of GP methodology.

Reliable convergencemeans that the GP run can be trusted to return reason-
able, useful results, without the practitioner having to worry about premature
convergence or whether algorithm parameters like population size were set
correctly. GP can fail to capably identify sub-solutions orpartially correct so-
lutions and successfully promote, combine and reuse them togenerate good
solutions with effective structure. The default approach has been to use the
largest population size possible, subject to time and resource constraints. This
invariably implies high resource usage, and still gives no guarantee of hitting
useful results even if such results exist. Alternative approaches to increase the
number of iterations with smaller population sizes still lack robust scenarios for
computing resource allocation.

Goals for GP Incorporated in larger Systems

These are necessary attributes of GP for successful “GP systems,” i.e., sys-
tems in which GP plays a key role4. A successful GP system must no doubt
have many other attributes particular to the context in which it is deployed,
but each of the following factors certainly have high impacton the system’s
success.

Ease of system integrationis how easy the GP algorithm is to deploy as
part of the entire system, by the person or a team building thesystem. Even if a
GP algorithm does well on the algorithm challenges, its may be hard for system
integrators (or other researchers) to deploy because of high complexity or many
parameters. Simple algorithms with few parameters are worth striving for; and
if this is not possible, then readily available software with simple application
programming interfaces and good documentation is a reasonable solution.

End-user friendlinessis the end-user’s perspective of how easy the system
is to use when solving the problem at hand, when GP is only a subcomponent
of the overall system. The user wants to solve a problem economically, with

4GP may not even be the centerpiece of the system—that’s fine!
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quality results, reliably. The user task should be smooth and efficient, not
tedious and time consuming.

User (Interactive) Control of the Problem. The system (and its subsys-
tems) should not be solving a problem any harder than it needsto be, especially
when it makes a qualitative difference to resource usage, result quality, or con-
vergence. To meet this goal, users should be able to specify problems to be
solved with as much resolution as appropriate. In some cases, this also means
interactivity with results so far, to further guide exploration according to the
user’s needs, intuitions or subjective tastes. And it specifically doesnot mean
user-level control of the GP algorithm itself: the end-usershould not have to
be a GP expert to use GP to solve a problem, just as GP experts donot have to
be experts on electronics in order to use computers.

For more book-length texts on applying GP to industrial problems, we refer
the reader to recent books on the subject – by GPTP participants themselves:
(Kordon, 2009), (Iba et al., 2010), and (McConaghy et al., 2009).

5. GP Best Practices

First, we describe general best practices that GP practitioners use to achieve
GP algorithm goals. Then, we review advances made at GPTP 2010 toward
attaining those GP algorithm goals, followed a review of GPTP 2010 work that
addresses GP system goals.

In general, GP computational resource use has been made moreefficient by
improved algorithm design, improved design of representation and operators
in specific domains. The importance of high demands of GP for computational
resources has been lessened by Moore’s Law and increasing availability of par-
allel computational approaches, meaning that computational resources become
exponentially cheaper over time. Results quality has improved for the same
reasons. It is also due to a new emphasis by GP practitioners on getting in-
terpretable or trustworthy results. Reliability has been enhanced via algorithm
techniques that support continuous evolutionary improvement through a sys-
tematic or structured fashion, so that the practitioner no longer has to “hope” that
the algorithm isn’t stuck. Implicit or explicit diversity maintenance also helps.
Finally, thoughtful design of expression representation and genetic operators,
for general and specific problem domains, has led to GP systems achieving
human-competitive performance. Techniques along these lines include evolv-
ability, self-adaptiveness, modularity and bloat control.

At GPTP 2010, the following papers demonstrated advances inGP algo-
rithm aims (efficient computational resource usage, results quality, or reliable
convergence):

Poli (Chapter 5) draws on recently developed theory to construct a very
simple technique that manages bloat.
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Hardinget al. (Chapter 6) and Spector (Chapter 2) illuminate the state
of the art in using self-modifying individuals to achieve highly scalable
GP.
Pattin, Mooreet al. (Chapter 12) also uses self-adaptation and demon-
strates how to incorporate expert knowledge in novel ways, for highly
scalable GP.
Lichodzijewski and Heywood (Chapter 3) and Souleet al. (Chapter 4)
make further advances in GP scalability through evolution of teams.
Orlov and Sipper (Chapter 1) is an excellent example of best-practice
operator design to maintain evolvability in a highly constrained space.

Smitset al. (Chapter 9) points towards evolution in the “compute cloud,”
by exploring massively parallel evolution.
Iba and Aranha (Chapter 13) exploits the structure of the resource-
allocation problem in operator and algorithm design to improve GP scal-
ability and results quality.
Bergen and Ross (Chapter 14) explores how to handle problemswith≫2
objectives yet maintain convergence.
Korns (Chapter 7) and McConaghy (Chapter 10) aggressively transform
and simplify their respective problems for GP as much as possible, to
greatly reduce GP resource needs.

At GPTP 2010, the following papers demonstrated advances inGP system
goals (system-integrator usability, user-level usability, or user control of the
problem and interactivity).

For system integrator usability: Schmidt and Lipson (Chapter 8) shows an
approach that achieves the reliable convergence of the popular ALPS algorithm
(Hornby, 2006), but with a simpler algorithm having fewer parameters. Harding
et al. and Spector (Chapter 2) are also examples of relatively simple algorithms,
algorithms that have been simplified over the years as their designers gained
experience with them. In his keynote address, Jürgen Schmidhuber described
the achievement of best-in-class results using simple backpropagation neural
networks but with modern computational resources.

For user-level usability: Castilloet al. (Chapter 11) prescribes a flow for
industrial modeling people where they can use GP as part of their overallmanual
flow in developing trustworthy industrial models. In the special demos session,
many researchers presented highly usable GP systems, including Kotanchek’s
DataModeler (symbolic regression and data analysis package for Mathematica),
Schmidt and Lipson’s Eureqa (symbolic regression), Bergenand Ross’s Jnetic
Textures (art), and Iba and Aranha’s CACIE (music).

For user control of the problem / interactivity: Korns (Chapter 7) describes an
SQL-style language to specify symbolic regression problems, so that function
search only changes subsections of the overall expression.Bergen and Ross
(Chapter 14) and Iba and Aranha (Chapter 13) describe systems that emphasize
usability in interactive design of art and music, respectively.
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What is equally significant in these papers is that which is not mentioned
or barely mentioned: GP algorithm goals that have already been solved suffi-
ciently for particular problem domains, allowing researchers to focus their work
on the more challenging issues. For example, there are several papers that do
some form of symbolic regression (SR), which historically has had major issues
with interpretability or bloat. Yet in these pages, the SR papers barely discuss
interpretability or bloat, because best practices avoid the issue in one or more
ways, most notably: pareto optimization using an extra objective of minimiz-
ing complexity, templated functional forms like McConaghy’s CAFFEINE or
Korns’ abstract expressions or simply using the GP system togenerate promis-
ing subexpressions in a manual modeling flow. Other off-the-shelf techniques
that solve specific problems well have been around for years and are being
increasingly adopted by the GPTP community. These include grammars to
restrict program evolution (Whigham, 1995; O’Neill and Ryan, 2003), compe-
tent algorithms to handle multiple objectives and/or constraints e.g. (Deb et al.,
2002), and meta-algorithms providing diversity and continuous improvement
like ALPS (Hornby, 2006). Finally, significant compute resources are available
to most: in an informal survey at the workshop, we found that most groups use
a compute cluster, and two groups are already using “the compute cloud.”

6. Application Successes Via Best Practices

One of the fascinating aspects of GP research is that GP is so general, i.e.
“search through a space of (program or structure) entities,” that it can be used to
attack an enormous variety of problems, including many problems that are cur-
rently unapproachable by any other technique. This year’s batch of applications
is no exception. This section briefly reviews the applications.

One of the long-standing aims of AI, and GP, has been evolution of software
in the most general sense possible. GPTP this year was fortunate to have three
groups present work directly on this. Orlov and Sipper (Chapter 1) present
FINCH, a system to evolve Java bytecode, an evolutionary substrate that has
evolvability close to machine code, yet returns interpretable Java code thanks
to industry-standard bytecode decompilers. Spector (Chapter 2) presents an
autoconstructive version of PUSH, a GP system which evolvesstack-based
programs. Finally, Hardinget al. (Chapter 6) presents a self-modifying Carte-
sian GP which evolves graphs that can be interpreted as software, circuits,
equations, and more.

Two chapters introduce wholly new problems for GP. McConaghy (Chap-
ter 10) introduces the problem of building density models ata distribution’s
tails (and dusts off the general problem of symbolic densitymodeling), for the
application of SRAM memory circuit analysis. Lichodzijewski and Heywood
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(Chapter 3) introduce the problem of solving a Rubik’s cube with GP, taking
the perspective of temporal sequence learning.

GP continues to help the artistic types. Bergen and Ross (Chapter 14) de-
scribe a sophisticated interactive system for interactiveevolutionary art, and
Iba and Aranha (Chapter 13) describe an advanced system for interactive evo-
lutionary music. Both systems have been already used extensively by artists
and musicians.

In a biology application, Pattin, Mooreet al. (Chapter 12) describe the use
of GP for disease susceptibility modeling.

GP remains popular in financial applications. Korns (Chapter 7) ups the ante
on a set of symbolic regression and classification problems that are representa-
tive of financial modeling problems to aid stock-trading decisionmaking. Iba
and Aranha (Chapter 13) describes a system for portfolio allocation.

For the problem of industrial modeling (e.g. of inferentialsensors at Dow),
Castillo et al. (Chapter 11) focuses on a structured approach to exploit GP
results within industrial modelers’ model development flows. Undoubtedly,
the symbolic regression approach in Smitset al. (Chapter 9) will find end
usage in Dow’s industrial modeling environment as well.

Other approaches used standard problems in (symbolic) classification or
regression as their test suites, though the emphasis was notthe application.
This includes work by Souleet al. (Chapter 4), Poli (Chapter 4), and Schmidt
and Lipson (Chapter 8).

7. Themes, Summary and Looking Forward

The toy problems are gone; the GP systems have arrived. No doubt there
will continue to be qualitative improvements to GP algorithms and GP systems
for years to come. But is there more? We posit there is.

Despite these achievements, GP’s computer-basedevolution does not demon-
strate the potential associated with natural evolution, nor does it always satis-
factorily solve important problems we might hope to use it on. Even when
using best practice approaches to manage challenges in resources, results, and
reliability, the computational load may still be too excessive and the final results
may still be inadequate. To achieve success in a difficult problem domain takes
a great deal of human effort toward thoughtful design of representations and
operators.

Many questions and challenges remain:

• What does it take to make GP a science? (Is this even a realistic question?)
How can work on applications facilitate the continued development of a GP
theory?

• What does it take tomake GP a technology? (Is this evena realistic question?)
What fundamental contributions will allow GP to be adopted into broader
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use beyond that of expert practitioners? For example, how can GP be scoped
so that it becomes another standard, off-the-shelf method in the “toolboxes”
of scientists and engineers around the world? Can GP follow in the same
vein of linear programming? Can it follow the example of support vector
machines andconvexoptimization methods? One challenge isin formulating
the algorithm so that it provides more ease in laying out a problem. Another
is determining how, by default – without parameter tuning, GP can efficiently
exploit specified resources to return results reliably.

• How do we get 1 million people using GP? 1 billion? (Should they even
know they’re using GP?)

• Success with GP often requires extensive human effort in capturing and em-
bedding the domain knowledge. How can this up-front human effort be
reduced while still achieving excellent results? Are thereadditional auto-
matic ways to capture domain knowledge for input to GP systems?

• Scalability is always relative. GP has attacked fairly large problems, but
how can GP be improved to solve problems that are 10x, 100x, 1,000,000x
harder?

• What opportunities await GP due to new computing architectures and sub-
strates, with potentially vastly richer processing resources? This includes
massively multicore processors, GPUs, and cloud computing; but it also
includes digital microfluidics, modern programmable logic, and more.

• What opportunities await GP due to massive memory and storage capacity,
coupled with giant databases? For example, this has alreadyprofoundly
affected machine learning applied to speech recognition, not to mention web
search. Massive and freely available databases are coming online, especially
from biology.

• What “uncrackable” problems await a creative GP approach? The future has
many challenges in energy, health care, defence, and more. For many fields,
there are lists of “holy grail” problems, unsolved problems, even problems
with prize money attached.

These questions and their answers will provide the fodder for future GPTP
workshops. We wish you many hours of stimulating reading of this volume’s
contributions.
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