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Chapter 1

FFX:FAST, SCALABLE, DETERMINISTIC SYMBOLIC
REGRESSION TECHNOLOGY

Trent McConaghy

Lsolido Design Automation Inc., Canada

Abstract
Symbolic regression is a common application for genetic programminy (GP

This paper presents a new non-evolutionary technique for symboliesgign
that, compared to competent GP approaches on real-world problesnders of
magnitude faster (taking just seconds), returns simpler models, hgsacable
or better prediction on unseen data, and converges reliably and desticaity.

We dub the approach FFX, for Fast Function Extraction. FFX usesemtige
developed machine learning technique, pathwise regularized learniagpidby
prune a huge set of candidate basis functions down to compact médeisis

verified on a broad set of real-world problems having 13 to 1468 ingrigbles,
outperforming GP as well as several state-of-the-art regressibnitees.

Keywords: technology, symbolic regression, genetic programming, pathwise)amza-
tion, real-world problems, machine learning, lasso, ridge regressiastjc net,

integrated circuits
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1. Introduction

Consider when we type “A/B” into a math package. This is a least-squares
(LS) linear regression problem. The software simply returns an an¥edo
not need to consider the intricacies of the theory, algorithms, and implemen-
tations of LS regression because others have already done it. LSSegrés
fast, scalable, and deterministit just works

This gets to the concept of “technology” as used by Boyd: “We can sy th
solving least-squares problems is a (mature) technology, that can bdyreliab
used by many people who do not know, and do not need to know, the tletails
(Boyd and Vandenberghe, 2004). Boyd cites LS and linear programasing
representative examples, and convex optimization getting close. Other exam-
ples might include linear algebra, classical statistics, Monte Carlo methods,
software compilers, SAT solvérsand CLP solvers

(McConaghy et al., 2010) asked: “What does it take to make genetic pro-
gramming (GP) a technology?. to be adopted into broader use beyond that
of expert practitioners?.. so that it becomes another standard, off-the-shelf
method in the 'toolboxes’ of scientists and engineers around the world?”

This paper asks what it takes to make symbolic regression (SR) a teciinolog
SR is the automated extraction of whitebox models that map input variables
to output variables. GP (Koza, 1992) is a popular approach to do SR, with
successful applications to real-world problems such as industrial $since
(Smits et al., 2010; Castillo et al., 2010), finance (Korns, 2010; Kim et al.,
2008), robotics (Schmidt and Lipson, 2006), and integrated circuigdes
(McConaghy and Gielen, 2009).

Outside the GP literature, SR is rare; there are only scattered refeserutes
as (Langley et al., 1987). In contrast, the GP literature has dozengpefyan
SR every year; even the previous GPTP had seven papers involvi(ii&R
et al., 2010). In a sense, the home field of SR is GP. This means, of course
that when authors aim at SR, they start with GP, and look to modify GP to
improve speed, scalability, reliability, interpretability, etc. The improvements
are typically 2x to 10x, but fall short of performance that would makesaaSR
“technology” the way LS or linear programming is.

We are aiming for SR as atechnology. What if we did not constrain ourselve
to using GP? To GP researchers, this may seem heretical at first gButdé.
the aim is truly to improve SR, then this should pose no issue. And in fact, we
argue that the GP literature is still an appropriate home for such workubeca
(a) GP authors doing SR deeply care about SR problems, and (b) adyalre

1for boolean satisfiability problems
2for constraint logic programming
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mentioned, GP is where all the SR publications are. Of course, we can draw
inspiration from GP literature, but also many other potentially-useful fields.

This paper presents a new technique for SR, called FFX — Fast Function
Extraction. Because of its speed, scalability, and deterministic behavir, FF
has behavior approaching that of a technology. FFX’s steps are:

e Enumerate to generate a massive set of linear and nonlinear basis fanction

e Use pathwise regularized learning to find coefficient values for the basis
functions in mapping to y. Pathwise learning actually returrsetof
coefficient vectors; with each successive vector explaining the tradfaiteg
better but with greater risk of overfitting. This has the computational cost of
a single LS regression, thanks to recent developments in machine learning
(Friedman et al., 2010; Zou and Hastie, 2005).

e Nondominated-filter to the number of bases versus the testing or training
error.

While FFX does not use GP directly, it will become evident that its aims and
design are GP-influenced.

We will compare FFX to a competent GP-SR approach on a set of real-world
problems. We will see that FFX returns simpler models, has comparable or
better prediction on unseen data, and is completely deterministic. Figure 1-4
summarizes the key result of this paper. Furthermore, we will show how to
successfully scale FFX to real-world problems havin000 input variables,
which to our knowledge is the most input variables that any SR technique has
attacked.

The rest of this paper is organized as follows. Section 2 describes the
SR problem. Section 3 describes pathwise regularized learning. Section 4
describes the FFX algorithm, and section 5 presents results using the afgorith
Section 6 scales up FFX, guided by theory. Section 7 gives results uging th
scalable FFX algorithm. Section 8 gives related work in GP and elsewhere.
Section 9 concludes.

2. SR Problem Definition

Given: X andy, a set of{x;,y;},j = 1..N data samples whete; is an
n-dimensional poin§ andy; is a corresponding output value. Determine: a set
of symbolic models\/ = m, mo, ... that provide the Pareto-optimal tradeoff
between minimizing model complexitff (m) and minimizing expected future
model prediction erroff; = E, ,L(m) whereL(m) is the squared-error loss
functiony —m(x))2. Each modet» maps am-dimensional inpu to a scalar

1To be precise: attacked directly, without pre-filteringubpariables or transforming to a smaller dimen-
sionality
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output valuey, i.e. gy = m(x). Complexity issomemeasure that differentiates
the degrees of freedom between different models; we use the numbasisf
functions.

We restrict ourselves to the class of generalized linear models (GLMSs)
(Nelder and Wedderburn, 1972). A GLM is a linear combinatioivgf basis
functionsB;;i = 1,2, ..., Ng:

Np
j=m(x)=ao+ Y _a;*Bi(x) (1.1)
=1
3. Background: Pathwise Regularized Learning

Least-squares (LS) learning aims to find the values for each coeffigiant
equation (1.1) that minimizgy — X xa||?, where theX andy are training data.
Therefore LS learning aims to minimize training error; it does not acknowledg
testing error (future model prediction error). Because it is singuladyded
on training error, LS learning may return model coefficiemtehere a few
coefficients are extremely large, making the model overly sensitive to those
coefficients. This is overfitting.

Regularizedlearning aims to minimize the model’s sensitivity to overfit
coefficient values, by adding minimization terms that are dependent solely on
the coefficients:||a||? or ||a||;. This has the implicit effect of minimizing
expected future model prediction error. The overall problem formulagion

a* = minimize ||y — X = al|® + Ao||al* + M||a||1 (1.2)

Including both regularization terms is aftastic nefformulation of regular-
ized learning (Zou and Hastie, 2065)To make the balance betwegn and
A2 explicit, we can sef\; = A and Xy, = (1 — p) = A, where\ is now the
regularization weight, andis a “mixing parameter.”

A path of solutions sweeps across a set of possibialues; returning an
a for each\. Interestingly, we can start attaugevalue of A, where allqa;
are zero; then work towards smaller uniformly on a log scale. Figure 1-1
illustrates: the path starts on the far left, and the witdecreasing (going
right), coefficients:; take nonzero values one at a time.

An extremely fast variant of pathwise elastic nets was recently developed
/ rediscovered: coordinate descent (Friedman et al., 2010). Atpm@ohon
the path, coordinate descent solves for coefficient vechyr. looping through

1The middle term (quadratic term, like ridge regression), arages correlated variables to group together
rather than letting a single variable dominate, and makesezgance more stable. The last terimterm,

like lasso), drives towards a sparse model with few coefftsidout discourages any coefficient from being
too large.||al|l1 = >, |a;].
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e min(0, vds2"2) * vds2”™2 [denom]
® min(0, vsd5"2) * vsd5”°2 [denom]
0.4+ + min(0, vsd6”2) * vsd6~2 [denom]
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Figure 1-1. A path of regularized regression solutions: each vertical slice of thegples

a vector of coefficient values for each of the respective basis functions. Going left to right
(decreasing\), each coefficient:; follows its own path, starting at zero then increasing in
magnitude (and sometimes decreasing).

eacha; one at a time, updating the through a trivial formula while holding
the rest of the parameters fixed, and repeating urgthbilizes. For speed, it
uses “hot starts”: at each new point on the path, coordinate desaestwith
the previous point's.

Some highly useful properties of pathwise regularized learning are:

Learning speed is comparable or better than LS.

Unlike LS, can learn when there are fewer samples than coeffidiertsn.
Can learn thousands or more coefficients.

It returns a wholefamily of coefficient vectors, with different tradeoffs
between number of nonzero coefficients and training accuracy.

For further details, we refer the reader to (Zou and Hastie, 2005;Raad
etal., 2010).

4. FFEX Algorithm
The FFX algorithm has three steps, which we now elaborate.

FFX Step One. Here, FFX generates a massive set of basis functions, where
each basis function combines one or more interacting nonlinear subfusiction
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Table 1-1 gives the pseudocode. Steps 1-10 generate univariet® bad
steps 11-20 generate bivariate bases (and higher orders ofiatévzases). The
algorithm simply has nested loops to generate all the basescvthéunction
(line 5, 9, and 18) evaluates a bdsgiven input dataX; that is, it runs the
function defined by with input vectors inX. Theok() function returndalse
if any evaluated value imf, - inf, or NaN, e.g. as caused by divide-by-zero,
log on negative values, or negative exponents on negative valuesfére pk
filters away all poorly-behaving expressions. Line 16 means that &sipres
of the formop() * op() are not allowed; these are deemed too complex.

Table 1-1. Step One: GenerateBases()
Inputs: X  #input training data
Outputs: B #list of bases

# Generate univariate bases
1. Bi={}
2. for each input variable = {z1, z2, ...}
for each exponertzp = {0.5, 1.0, 2.0}
let expressiofes, = v*P
if ok(eval(bezp, X))
addbe,, to By
for each operatarp = {abs(), logio, - - - }
let expressiobo, = 0p(bezp)
if ok(eval(bop, X))
0. addb,, to B1

BO®NOOAW®

# Generate interacting-variable bases

11. B2 = {}

12. fori = 1 tolength(B1)

13. let expressioh; = B [i]

14. forj=1toi—1

15. let expressioh; = B1[j]

16. if b; is not an operator # disallowp() * op()
17. let expressiob;nter = by * b;

18. if ok(eval (binter, X))

19. addbmte,,. to B>

20. returnB = B, U Bs

FFX Step Two. Here, FFX uses pathwise regularized learning (Zou and Hastie,
2005) to identify the best coefficients and bases when there are Q hémese,
2 bases, and so on.

Table 1-2 gives the pseudocode. Steps 1-2 create a large miXggriwhich
has evaluated input matriX on each of the basis functions B. Steps
3-4 determine a log-spaced set/§f, values; see (Zou and Hastie, 2005) for
motivations here. Steps 5-16 are the main work, doing pathwise learning.
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At each iteration of the loop it performs an elastic-net linear fit (line 11)
from X g — vy to find the linear coefficienta. As the loop iteratesNygses
tends to increase, because with smalénere is more pressure to explain the
training data better, therefore requiring the usage of more nonzerictess.
Once a coefficient value; is nonzero, its magnitude tends to increase, though
sometimes it will decrease as another coefficient proves to be more useful
explaining the data.

FFX step two is like standard pathwise regularized learnegeptthat
whereas the standard approach covers a whole rangesath that all co-
efficients eventually get included, FFX stops as soon as there are maore tha
Niaz—bases (€.9. 5) nonzero coefficients (line 9). Naturally, this is because
in the SR application, expressions with more thég),. _s.ses are no longer
interpretable. In practice, this makes an enormous difference to runtime; fo
example, if there are 7000 possible bases but the maximum number of bases
is 5, and assuming that coefficients get added approximately uniformly with
decreasing\, then only 5/7000 = 1/1400 = 0.07% of the path must be covered.

Table 1-2. Step Two: PathwiseLearn()
Inputs: X, y, B #input data, output data, bases
Outputs: A #list of coefficent-vectors

# ComputeX g
1. fori=1tolength(B)
2. X l[i] = evalBli], X)

# Generaté\ . = range of\ values
3. )\maac = maa:('XTyD/(N * p)
4. Avec = logspace(logio(Amaz * €ps),10g10(Amaz ), Nx)

# Main pathwise learning

5. A={}

6. Nbu.ses =0

7. i=0

8. a=1{0,0,...} #lengthn

9. while Noases < Nmaz—bases andi <length(Ayec)
10. A = Avee[?]

11. a =elasticNetLinear Fit(X B, y, A, p, a)

12. Npases = number of nonzero values in

13. if Nbuses < N’rnafl;fbases

14. adda to A
15. i=i+1
16. returnA

In short, the special property of pathwise regularized learning, tosithrt
zero coefficients and incrementally insert them (and therefore insezs}as
reconciles extremely well with the SR objectives trading off complexity versus
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accuracy with an upper bound on complexity. To a GP practitioner, it fe@s lik
doing a whole multi-objective optimization for the cost of a single LS solve.

FFX Step Three. Here, FFX filters the candidate functions to a nondominated
set that trades off number of bases and error.

Table 1-2 gives the pseudocode. Steps 1-8 take the coefficients sesl ba
determined in previous FFX steps, and simply combine them to create a set
of candidate model8/.,,,. Steps 9-13 apply standard nondominated filtering
to the models, with objectives to minimize complexity(number of bases) and
error.

Table 1-3. Step Three: NondominatedFilter()
Inputs: A, B # coefficient vectors, bases
Outputs: M # Pareto-optimal models

# Construct candidate models

1. Meana={}

2. fori=1tolength{|A||)

a = Ali]

ao = a[0] # offset

an. = nonzero values ia (ignoring offset)

B, = expressions ifB corr. to nonzero values ia
m =model@o, anz, Bnz), following eqn. (1.1)
addm to Mcang

©ONOoO GO~

# Nondominated filtering

9. f1=numBases(m), for eachm in Mcqna

10. f2 = testError(m) or trainError(m), for eachm in Mcana
11. J = nondominatedindiceg(, f2)

12. M = Mcana[j] for eachj in J

13. returnM

Rational Functions Trick. For maximum coverage of possible functions, FFX
leverages a special technique inspired by (Leung and Haykin, 1988)itmle
rational functions, with negligible extra computational cost. The general ide
is: learning the coefficients of a rational function can be cast into a linear
regression problem, solved with linear regression, then back-tramstbinto
rational function form. Let us elaborate:

A rational function has the form:

§ = mi(z) = ap + 308" a; * By(x)
= miT) = N;
LO+ 325N v+ @i % Bi()

where N, is the number of numerator base€$gy) plus the number of de-
nominator bases\zp).

(1.3)
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Let us perform simple algebraic manipulations to transform this problem.
First, we multiply both sides by the denominator:

N Npn
Y * (1.0 + Z a; * Bl(a:)> =ap+ Z a; x B;(x) (1.4)
i=Npn+1 i=1
Then we expand the left-hand side:
Np Npn
y+ Y aixBix)ry=ao+ Y ai*Bi(x) (1.5)
i=Npn-+1 i=1

whereB;(x) x y is element-wise multiplication, i.e3;( X ;) x y; for each data
pointj. Now, subtract to isolatg on the left-hand side:

Npn NJIB
y=ap+ Z a; * Bi(x) — Z a; * Bi(x) xy (1.6)
=1 i=Npn—+1

Finally, let us define a new set of basis functions.

) Bi i< Npn
Bi = {Bi * otherwise} (1.7)

At the end of FFX step 1, we haupg basis functions. Before we start step 2,
we insert allN g functions into both the numerator and denominator; therefore
Npny = Npp = N, andNj = 2 « Ng. We redefine the basis functions
according to eqgn. (1.7). Then, all the subsequent FFX steps amrmed with
these new basis functions. Once the coefficients are found, the final msod
extracted by applying the algebraic manipulations in reverse: eqn. (1e@), th
eqgn. (1.5), then eqn. (1.4).

This concludes the description of the FFX algorithm. Note that for improved
scalability, FFX must be adapted according to section 6.

5. Medium-Dimensional Experiments
This section presents experiments on medium-dimensional problems. (Sec-
tion 7 will give higher-dimensional results.)

Experimental Setup

Problem Setup. We use a test problem used originally in (Daems et al.,
2003) for posynomial fitting, but also studied extensively using GPeb8se
(McConaghy and Gielen, 2009). The aim is to model performances ofia we
known analog circuit, a CMOS operational transconductance amplifigk)(OT
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The goal is to find expressions for the OTAs performance measures: |o
frequency gain 4 ), phase margini® M), positive and negative slew rate
(SR,, SRy), input-referred offset voltage/ s s.), and unity-gain frequency
(fu)-*

Each problem has 13 input variables. Input variable space was sawitted
orthogonal-hypercube Design-Of-Experiments (DOE) (Montgomedg9p,
with scalediz=0.1 (whereizx is % change in variable value from center value),
to get 243 samples. Each point was simulated with SPICE. These points were
used as training data inputs. Testing data points were also sampled with DOE
and 243 samples, but withr=0.03. Thus, this experiment leads to somewhat
localized models; we could just as readily model a broader design spéce, b
this allows us to compare the results to (Daems et al., 2003). We calculate
normalized mean-squared error on the training data and on the sepdiatg tes

data:nmse = /32, ((9; — yi)/(maz(y) — min(y))?)

FFX Setup. Up t0 Njae—bases=D bases are allowed. Operators allowed
are: abs(z), logio(x), min(0, ), maz(0, x); and exponents on variables are
212 (=\/(2)), 2! (=z), and2?. By default, denominators are allowed; but
if turned off, then negative exponents are also allowed?/? (=1/ \f(x)),
x~1 (=1/z), andz~2 (=1/2?). The elastic net settings wepe= 0.5, A0z =
maz| X Ty|/(N * p), eps = 10~7°, and N, =1000.

Because the algorithm is not GP, there are no settings for population size,
number of generations, mutation/crossover rate, selection, etc. We amghas
that the settings in the previous paragraph are very simple, with no tuning
needed by users.

Each FFX run tooks5 s on a 1-GHz single-core CPU.

Reference GP-SR Algorithm Setup. CAFFEINE is a state-of-the-art GP-
based SR approach that uses a thoughtfully-designed grammar to to8&tra
functional forms such that they are interpretable by construction. Kiinge
are: up to 15 bases, population size 200, and 5000 generations. Dedails a
(McConaghy and Gielen, 2009). Each CAFFEINE run tedl) minutes on a
1-GHz CPU.

Experimental Results

This section experimentally investigates FFX behavior, and validates its
prediction abilities on the set of six benchmark functions.

FFX Data Flow. To start with, we examine FFX behavior in detail on a test
problem. Recall that FFX has three steps: generating the bases, pathwise

1We log-scalef,, so that learning is not wrongly biased towards high-mageisamples of,,.
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learning on the bases, and pruning the results via nondominated filtering. We
examine the data flow of these steps onthg- problem.

The first step in FFX generated 176 candidate one-variable basémvas s
in Table 1-4. These bases combined to make 3374 two-variable bases, some
of which are shown in Table 1-5. This made a total of 3550 bases for the
numerator; and another 3550 for the denominator

Table 1-4. For FFX step 1: The 176 candidate one-variable bases.

7,2;]51, abs(wgﬁ), 7naw(0‘v2§51), mm(o,ugﬁ), logw(vgéﬁ), Veg1, abs(vgg1), maz(0,vg1), min(0,vgg1),
10910 (Vgg1)s v2.1, maz (0, v2_1), min(0, vZ 1), logrg(v2, 1), v9-5, abs(v2:3), maz(0,v9:5), min(0, v0:3)
l0g10(vsg1). v5g1, maz(0, vggq), min(0,vggq), logi10(vggy): vgsnr abs(vggn). max(0, vygg), min(0, vygs).
5 . .
loglo(ﬂg‘s‘é), vgs2, abs(vgs2), maz(0, vgs2), min(0, vgg2), Log1o(vgs2), vgsz, mawz(0, 1;352), min(0, 71352),
loglo(ﬂng), ©9:9, abs(v9:3), maz(0,+9:%), min(0,v9:3), 10910(v3.2). vys2. abs(vgsa) maz(0,v4s2),
min(0, vgs2), 10g10(vgs2)s V30, maz(0,v2 5), min(0,v3 ), logig(v3 ), 1;2;753, abs(vgb%), maz(0, 715;753),
min(0, 1;2;]53), 10910(112;?53), vsg3. abs(vgga), max(0, vgg3), min(0,vgg3), logio(vsga), 1)§q3, maz(0, u§q3),
. £ 5 = = . 5 ° °
mtn(0,17§g3), Lagw(vfgs), 1;2_;754, n,bs(vg;ﬁl), mn,.’l:(O,'ug;]‘zl), mtn(O,vgb‘Z), Laglo(vgbi), vsgar abs(vsga),
maz(0, vgga) min(0, vegs), Log10(vaga)s vZg4 maz(0,v2 ), min(0, v2 ,), logio(v2 ), v9%, abs(v0}),
maz(0, 1)22]%), min(0, 1;2;755), loglo(vgb%), Vsgs abs(vggs), maz (0, vggs5), min(0, vegs), Log10(vsgs). uqu,
maz(0, v2 5), min(0, vZ 5), log1o(v2 5), vI 3, abs(vl}), maw (0, v03), min(0, v %), 10910 (vI53) vsgs
abs(vggs), maz(0,vsg5), min(0,vggs), Logio(vsas) vZgs, maz(0,v2,0), min(0,v2 0), logig(vZ;s).
w03, abs(v0:f), maz(0,v0:), min(0, v9:R), 10910 (). vsas abs(vsae), maz(0,vgqq), min(0, vsge)
10910 (vsge) v2gg max(0,v2,6), min(0,v2 4), Logio(v2g), ig1, abs(igr), maz(0,igy), min(0,ig1), i3y,
max(0,i31), min(0,i3), logig(iZ;), 1%y, abs(i%), maxz(0,195%), min(0,19:2), 10910 (i%5), iga, abs(iga).
maz(0,ige), min(0, ige), 1og19 (iga), i3, maw (0, i35), min(0,i35), log1q (i2), i9;°, abs(i9;>), max (0, ;7).
min(0,i915), 1og10(19:%), ip1, abs(ipy), maz(0, ip1), min(0, iy1), logig(ip1), igy, maz(0,i2;), min(0,iZ,),
log10(i21). 195>, abs(i955), maz(0,95°), min(0,1957), 10910 (i95), ipa. abs(ipe), max (0, ipa), min(0, iy),
. . . . . . 5 . 5 . 5 . . . 5

10910 (ip2). itg, max (0, i25), min(0, i2y), log1g(iZy), 1937, abs(i1957), maw(0,i95%), min(0,i955), log10 (193°).
ipg, abs(ipz), maw (0, ip3), min(0, ip3),10g10 (ip3), ity max (0, iZs), min(0, i¥5),log1o(i23)

Table 1-5. For FFX step 1: Some candidate two-variable bases (there are 3374 total)

logio(iZy) *i2,, log1o(i2y) *i0;%, logrlo(igS) iy, 10910 (i35) #12,, log1o (i) *i05°, logio (i25) *
ib2, 10910 (i33) * ify, logro(ify) * i3’ logio(ifg) * ivs, log1o(ips) * ifg

(and 3364 more)

The second FFX step applied pathwise regularized learning on the 7469 ba
(3550 numerator + 3550 denominator), as illustrated in Figure 1-1 (prayiou
shown to introduce pathwise learning). It started with maximum lambjia (
where all coefficient values were 0.0, and therefore there areleffaf figure).
Then, it iteratively decreasedand updated the coefficient estimates. The first
base to get a nonzero coefficient wasn (0, v3,,) * v, (in the denominator).

At a slightly smaller), the second base to get a nonzero coefficient was
min(0, v2,) *v2,. (also in the denominator). These remain the only two bases
for several iterations, until finally wheh shrinks below 1le4, a third base is

1See “Rational Functions Trick” in section 4.
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added. A fourth base is added shortly after. Pathwise learning contimiigd
the maximum number of bases (nonzero coefficients) was hit.

min(0, vds2~2) * vds2"™2 [denom]
min(0, vsd572) * vsd572 [denom]
min(0, vsd6"2) * vsd6°2 [denom]
logl0(id2°2) * vds2~2 [denom]

0.0 \

0.4}

0.4

¥ * ®H e

Coefficient for base * 1e3

4ed 3ed Zed Ted
Lambda

Figure 1-2. For FFX step 2: Pathwise regularized learning followingAiz.

The third and final FFX step applies nondominated filtering to the candidate
models, to generate the Pareto Optimal sets that trade off error versusmafmb
bases (complexity). Figure 1-3 shows the outcome of nondominated filtering,
for the case when error is training error, and for the case whenisrtesting
error. Training error for this data is higher than testing error becaegediming
data covers a broader input variable range £ 0.1) than the testing datd«
=0.03), as section 5 discussed.

Extracted Whitebox Models. Table 1-6 shows the lowest test-error functions
extracted by FFX, for each test problem. First, we see that the tess amer
all very low, <5% in all cases. Second, we see that the functions theraselve
are fairly simple and interpretable, at most having two basis functions. For
Arpp, PM, andSR,, FFX determined that using a denominator was better.
We continue to find it remarkable that functions like this can be extracted in
such a computationally lightweight fashion. F8R,, FFX determined that
the most predictive function was simply a constant (2.35e7). Interestingly,
combined univariate bases of the same variable to get higher-ordes, fiase
examplemin(0,v3,,) * vi,in App.

Recall that FFX does is designed to not just return the function with the
lowest error, but a whole set of functions that trade off error amapgexity. It
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Figure 1-3. For FFX step 3: results of nondominated filtering to get the Pareto optindadffa
of error versus number of bases, in modeliigr. Two cases are shown: when error is on the
training data, and when error is on testing data.

Table 1-6. Functions with lowest test error as extracted by FFX, for each testgmobEx-
traction time per problem was5 s on a 1-GHz machine.

Problem Test error (%) | Extracted Function
ALF 3.45 37.020

1.0—1.22e-4xmin (0,02 _, )¥v7% , —4.72e-5xmin (0,02 )*v?

90.148
PM 151 1.078.796—6*min(0,v§g1)*vfgl+2.286—6*min(0,v§52)*v352
—5.21e7
SRy 2.10 1.0-8.22e-5xmin(0,07 ;5 ) ¥V .
SR, 4.74 2.35e7
Vof fset 2.16 —0.0020 — 1.22e-23 * min(0, vgs2) * Viso
lOglo(fu) 2.17 0.74 — 1.10e-5 * min(0, Ufgl) * vfgl

+1.88¢-5 * min(0,v3,5) * v3s0

does this efficiently by exploiting pathwise learning. Table 1-7 illustrates the
Pareto optimal set extracted by FFX for the » problem.

Prediction Abilities. Figure 1-4 compares FFX to GP-SR, linear models, and
guadratic models in terms of average test error and build time. The linear
and quadratic models took <1 s to build, using LS learning. GP-SR and FFX
predict very well, and linear and quadratic models predict poorly. GPx&R
much longer model-building time than the rest. In sum, FFX has the speed of
linear/quadratic models with the prediction abilities of GP-SR.
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Table 1-7. Pareto optimal set (complexity vs. test error) for » extracted by FFX.

Test error (%) | Extracted Function

3.72 37.619

37.379
3.55 1.0—6.78¢-5xmin (0,03, )*v3
3.45 37.020

1.0—1.22e-4xmin (0,02, )*v3 ,—4.72e-5xmin (0,02, )xv?

18.0%

@ linear (LS
16.0%9 (LS)
[ ] ¢ quad (LS)
14.0% > FEX
<« _
S 120% GP-SR
-
(0]
4 10.0%
5]
© 8.0%
()]
(4]
|
o 6.0%
-
4.0% 4
>
2.0%

0.0%
0 100 200 300 400 500 600 700

Build time (s)

Figure 1-4. Average test error (across six test problems) versus build time, aangginear,
quadratic, FFX, and GP-SR

Table 1-8 compares the test error for linear, quadratic, FFX, and RBSP-S
models; plus the approaches originally compared in (McConaghy and Gielen
2005): posynomial (Daems et al., 2003), a modern feedforward Ineatvaork
(FFNN) (Ampazis and Perantonis, 2002), boosting the FFNNs, multivariate
adaptive regression splines (MARS) (Friedman, 1991), least-sgjsapport
vector machines (SVM) (Suykens et al., 2002), and kriging (gauss@iegs
models) (Sacks et al., 1989). Lowest-error values are in bold.

From Table 1-8, we see that of all the modeling approaches, FFX has the
best average test error; and best test error in four of the six pnsbleoming
close in the remaining two.
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Table 1-8. Test error (%) on the six medium-dimensional test problems.
Approach Arr | PM | SR, | SR, | Vogsset | fu Avg.

Linear (LS) 172 | 119 | 156 | 205 7.1 19.0|| 15.21
Quadratic (LS) || 18.5 | 12.2 | 15.7 | 22.7 7.4 20.9|| 16.23
FFX (this work) 35 15 2.1 4.7 2.2 2.2 2.69

GP-SR 2.8 2.6 3.9 7.4 1.0 5.0 || 3.78
Posynomial 6.5 9.7 78.0 | 31.0 0.8 5.9 || 21.98
FFNN 5.0 6.8 9.5 8.2 2.9 9.3 || 6.93
Boosted FFNN || 5.3 2.8 9.7 | 140 1.4 10.0|| 7.19
MARS 4.4 18 5.4 7.2 1.2 9.4 || 4.88
SVM 115 | 58 41 | 10.0 1.8 12.7|| 7.64
Kriging 7.3 3.8 5.1 8.9 2.2 7.3 5.75

6. FFX Scaling
Experimental Setup

So far, we have tested FFX on several problems with 13 input variables.
What about larger real-world problems? We consider the real-worldritesd)
circuits listed in Table 1-9. The aim is to map process variables to circuit
performance outputs. Therefore, these problems have hundredsusatids
of input variables.

The data was generated by performing Monte Carlo sampling: drawing
process points from the process variables’ pdf, and simulating eacegso
point using Hspicé" , to get output values. The opamp and voltage reference
had 800 Monte Carlo sample points, the comparator and GMC filter 2000,
and bitcell and sense amp 5000. The data is chosen as follows: sort#éhe da
according to the y-values; every 4th point is used for testing; and thamest
used for training.

Initial Scaling Experiments

We ran FFX on the larger circuit problems. In the larger circuits, it failed
miserably, getting out-of-memory errors.

1This is faster than cross-validation, yet gives consistetitible answers.
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Table 1-9. Twelve higher-dimensional test problems across six circuits.

Circuit # # Input Outputs
Devices| Variables Modeled
opamp 30 215 AV (gain), BW (bandwidth)
PM (phase margin)$ R (slew rate)
bitcell 6 30 cell,; (read current)
sense amp 12 125 delay, pwr (power)
voltage 11 105 DV REF (difference in voltage),
reference PW R (power)
GMC filter 140 1468 ATTEN (attenuation), IL
comparator 62 639 BW (bandwidth)

To understand why, we can analyze FFX's computational complexity.

FFX Computational Complexity

Let us determine the computational complexity of FFX, for each step. This can
be viewed as the core theory for FFX.

Step One.Let e be the number of exponents ambie the number of nonlinear
operators. Therefore the number of univariate bases per varigble-i$) « e.
(The+1 iswhen no nonlinear operator is applied; or, equivalently, unity). With
n as the number of input variables, then the total number of univariate isases
(o+1)xexn. With N samples, the univariate part of step one has a complexity
of O((o+1)*exnx*N). Sincee ando are constants, this reduces¢n x N).

The number of bivariate basesjis= O(n?), so the bivarate part of step one
has complexityO(n? x N).

Step Two. The cost of an older elastic-net pathwise technique, LARS, was
approximately that of one LS fitting according to p.93 of (Hastie et al., 2008).
Since then, the coordinate descent algorithm (Friedman et al., 2010gbas b
shown to be 10x faster. Nonetheless, we will use LS as a baseline. pWith
input variables, LS fitting with QR decomposition has complegiyV * p?).
Because = O(n?), FFX has approximate complexiy(N * n*).

Step Three. Reference (Deb et al., 2002) shows that nondominated filtering
has complexityO(N, * Nyondom) WhereN, is the number of objectives, and
Ny ondom 1S the number of nondominated individuals. In the SR casgss
a constant (at 2) ant¥,,ondom < Nmaz—bases WNEre Ny, az—bases 1S @ constant
(=5). Therefore, FFX step three complexity(dg1).

The complexity of FFX is the maximum of steps one, two, and three; which
isO(N xn*). O

Given this, the fact that FFX hits limits of computational resources wiien
large is not surprising. In the largest circuitz 1468, therefore? = 4.64e12.
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Modifying FFX for Scalability

We can improve FFX to have a computational complexitpisV x n?),
as follows. We adapt the procedure in Table 1-1 to be stepwise: first lear
univariate coefficients; then only combine the< O(y/n) most important
basis functions with each other for candidate bivariate coefficients;éaen
the coefficients on the combinations of most-important univariate bases. This
means that each linear learning kag)(n) basis functions; therefore overall
complexity iSO(N * n?).

This adaptation can be seen as a “batch” approach to stepwise-forward
regression like that in MARS (Friedman, 1991).

We took another cue from MARS to improve model flexibility, by adding
hingebasis functionsnaxz (0, x — thr), andmaxz(0, thr — z). These operators
add “turn off” some regions of input space and focus on remaining megio
For each hinge operator at each variabJewe allowed 5 different threshold
valuesthr, uniformly distributed fromminaz; 4 0.2 * (maxx; — minz;) to
minxj + 0.8 x (maxx; — minx;); whereminaz; andmaxx; are the minimum
and maximum values seen foy in all training samples.

In preliminary experiments, we found that FFX would give a more thorough
sets of results if we re-ran it on different high-level settings as shovabie
1-10, and merged the results.

Table 1-10. FFX runs on each of these settings, and merges the results.

Inter- Denom- | Expon- | Log/Abs Hinge Notes
actions | inator entials | Operators | Functions
linear
Y quadratic
Y Y Y
Y Y Y Y
Y Y
Y Y
Y Y Y
Y Y Y
Y Y
Y Y Y

FFX settings were like in section 5, except up to 250 bases were allowed.
The overall runtime per problem was30 s on a single-core 1-GHz CPU.

7. High-Dimensional Experiments

This section presents results using the scaled-up FFX, on the high-dimainsio
modeling problems described in section 6.

1This, of course, can be trivially parallelized.
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Table 1-11 shows the lowest test error found by FFX, compared to other
approaches. FFX always gets the lowest test error, and many offrexapes
failed badly. FFX did find it easier to capture some mappings than others.

Table 1-11. Testerror (%) on the twelve high-dimensional test problems. Thergtiadhodel
failed because it had too samples for the number of coefficients. GEr&RFNN failed, either
because test error was100% or model build time took unreasonably long (several hours).

Approach opamp | opamp opamp opamp bitcell sense amp
AV BW PM SR cell; delay
Lin (LS) 1.7 13 1.3 3.2 12.7 34
Quad (LS) || FAIL FAIL FAIL FAIL 12.5 35
FFX 1.0 0.9 1.0 2.0 12.4 3.0
GP-SR FAIL FAIL FAIL FAIL FAIL FAIL
FFNN FAIL FAIL FAIL FAIL FAIL FAIL
Approach sense voltage voltage GMC GMC comparato
amp reference | reference| filter filter BW
pwr DVREF| PWR ATTEN| IL
Lin (LS) 35 2.4 22.8 16.4 17.3 27.2
Quad (LS) || 2.9 2.8 40.4 FAIL FAIL FAIL
FFX 2.7 1.0 2.0 7.0 8.5 17.0
GP-SR FAIL FAIL FAIL FAIL FAIL FAIL
FENN FAIL FAIL FAIL FAIL FAIL FAIL

Figure 1-5 shows the tradeoff of equations, for each modeling approach
Each dot represents a different model, having its own complexity andtest e
For a given subplot, the simplest model is a constant, at the far left. It also h
the highest error. As new bases are added (higher complexity), dnops.

The curves have different signatures. For example, we see thatthdnepamp
BW maodel (top center) gets 2 bases, its error drops from 6.8% to 1.9%. After
that, additional bases steadily improve error, until the most complex model
having 31 bases has 1% error. Or, for opafp/ (top right), there is little
reduction in error after 15 bases.

In many modeling problems, FFX determined that just linear and quadratic
terms were appropriate for the best equations. These include the the simpler
opampP M functions, GMC filter/ L, GMC filter ATT EN, opampSR (for
errors > 2.5%), and bitcellcell;. But in some problems, FFX used more
strongly nonlinear functions. These include voltage referdngR £ F', sense
ampdelay, and sense amypwr. Let us explore some models in more detail.
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Figure 1-5. Test error vs. Complexity. Top row left-to-right: opampy’, opampBW , opamp
PM. Second-from-top row: opam§$R, bitcell cell;, sense amgelay. Third-from-top row:
sense ampwr, voltage referencdV REF, voltage referencdW R. Bottom row: GMC
filter ATT EN, GMC filter I L, comparatoBW/ .
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Table 1-12 shows some functions that FFX extracted for op&dfa At 0
bases is a constant, of course. From 1 to 4 bases, FFX adds one marbiise
at a time, gradually adding resolution to the model. At 5 bases, it adds a base
that has both anbs() operator, and an interaction termbs(dvthn) x dvthn.

It keeps adding bases up to a maximum of 46 bases. By the time it gets to
46 bases, it has actually started using a rational model, as indicated by the
/(1+...)term.

Table 1-13 shows some functions that FFX extracted for voltage referen
DV REF. It always determines that a rational with a constant numerator is
the best option. It uses the hinge basis functions, including interactioes wh
3 or more bases are used. It only needs 8 bases (in the denominatqriuieeca
error of 0.9%. Of the 105 possible variables, FFX determined that variable
dvthn was highly useful, by reusing it in many way#thp anddzw also had
prominence.

Table 1-12. Equations for opam@’ M, extracted by FFX.
# Test Extracted Function

Bases | error
(%)

0 15.5 59.6

1 6.8 59.6 — 0.303 x dzl

2 6.6 59.6 — 0.308 * dal — 0.00460 * cgop

3 54 59.6 — 0.332 * dxl — 0.0268 * cgop 4+ 0.0215 * dvthn

4 4.2 59.6 — 0.353 * dxl — 0.0457 * cgop + 0.0403 * dvthn —
0.0211 * dvthp

5 4.1 59.6 — 0.354 * dxl — 0.0460 * cgop — 0.0217 * dvthp +

0.0198 * dvthn + 0.0134 * abs(dvthn) * dvthn

46 | 1.0 | (58.9 — 0.136 * dal + 0.0209 * dvothn — 0.0194 =
max(0,0.784 — dvthn) +...)/(1.0+...)

8. Related Work
Related Work in GP

Some GP papers use regularized learning. (McConaghy and Gieled), 200
runs gradient directed regularization on a large set of enumeratedfivasis
tions, and uses those to bias the choice of function building blocks during GP
search. FFX is similar, except it does not perform GP after regulatézed-
ing, and does not exploit pathwise learning to get a tradeoff. (Nikolaéev a
Iba, 2001) and (McConaghy et al., 2005) use ridge regression arféRESS
statistic, respectively, as part of the individual’s fithess function.
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Table 1-13. Equations for voltage referendeV REF', extracted by FFX.
# Test Extracted Function
Bases| error
(%)
0 2.6 512.7
1 2.1 504/(1.0 4+ 0.121 x* max(0, dvthn + 0.875))
2 1.8 503—199%maz(0, dvthn+1.61)—52.1xmax(0, dvthn+
0.875)

8 09 | 476/(1.0 + 0.105 * maxz(0, dothn + 1.61) — 0.0307 *
max (0, —1.64 — dvthp) * max (0, dvthn + 0.875) — ...)

Some GP research recasts SR from tree-valued problems towards vector
valued optimization problems. (O’Neill and Brabazon, 2006) casts SR into
a string-based space, then solves it with a differential-evolution (DEnvar
of grammatical evolution (O’Neill and Ryan, 2003). (McConaghy and Gie-
len, 2006) casts SR into a vector-valued Euclidian space, but solve it with a
combination of vector-valued and traditional tree-valued operators infan E
framework. (Fonlupt and Robilliard, 2011) and others cast SR into #orec
valued Euclidian space, then solve it with vector-valued DE. (Kornspp01
casts SR into a vector-valued space, and solves with Particle Swarm Optimiza-
tion. (Topchy and Punch, 2001) and others cast the sub-problenaroiirig
SR coefficients into traditional real-valued optimization problems as the inner
loop of memetic learning; the outer loop remains GP-style search.

There are several approaches that recast general tree-vaaszh $nto
simpler spaces; (Rothlauf, 2006) is a good starting point.

Shifting towards deterministic behavior, Estimation of Distribution Algo-
rithms (EDAS) are sometimes framed as “derandomized” algorithms (Hansen
and Ostermeier, 2001) EDAs have been applied to tree-based search; a recent
example is (Looks, 2006). Variance-reduction techniques have atsoused
to derandomize EAs, such as (Teytaud and Gelly, 2007).

(O'Reilly, 1995) is a thorough example of doing tree-based search with
non-evolutionary algorithms (hill climbing, simulated annealing).

Of course, none of these approaches are réldlyclosely related to FFX.

FFX dispenses with selection, mutation, and crossover. It has no indlgidu
and no population. At its core, it simply casts SR as one (or two) convex
optimization problems, and solves them with off-the-shelf algorithms.

1The authors claim CMA-ES is a “completely” derandomized &thor, but that is not quite accurate,
because CMA-ES still relies on drawing samples from a pdf. &edmpletelyderandomized, an algorithm
has to be deterministic.
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GLMs and Universal Approximation

Researchers familiar with generalized linear models (GLMs) may see FFX
“merely” as a particular choice of “basis expansions”; for examplefielasal.,
2008) suggests possible expansions includingz;) and,/z;. The benefit
of this, of course, is that GLM theory applies directly to FFX. However, this
sells FFX short; consider the usefulness of other “merely GLM” techsique
like CART (with indicator-style bases), MARS (with hinge-function bases),
and SVMs (with kernel bases). Their usefulness is precisely due tdiayar
choice of basis functions, with appropriate algorithmic support frameveordk
a thoughtfully-chosen application. In our case, the choice of basidifunsc
is driven from an SR perspective; the algorithmic support frameworkesak
special use of the pathwise regularized learning, and includes nondenhina
filtering; the application is the SR-derived aim to generate whitebox models
trading off prediction error versus complexity; and finally the scalablamar
of FFX has “batch” stepwise-forward regression and hinge functions

FFX shares a related philosophy with SVMs: transform a lower-dimenisiona
set ofn linear bases to a much larger set of basgs, > n; then apply linear
learning on this larger set, but prune them down (in the case of SVMs, to a
set of “support vectors”). Of course, the distance calculation in S\AgiD
function of || — xs,;|| for support vectoi is not naturally interpretable, so
does not apply to SR problems.

With a sufficiently broad choice of basis functions, FFX would be a usaler
approximator. But as already discussed, the airapeaftificGLM techniques
is to thoughtfully choose basis functions that reflect their aims. FFX’s basis
functions FFX are not sufficiently general to give FFX universarapimation.
Hinge functions help, but to make FFX fully universal we would need to add
more threshold values, and allow iteration to higher orders (similar to MARS).
Of course, doing this hurts interpretability.

FFXis not a panacea: because its functional form is not naturally ansaiv
approximator, there will be classes of SR problems that it handles poorly.
For example, it cannot tune the coefficiefitsy, w; } inside a nonlinear basis
function like sin(wo + w1 *x1). This is not unlike other “technologies”: linear
regression can only competently handle linear and weakly nonlinear models;
convex optimization can only handle unimodal problems; and so on. But
what they trade off for flexibility, they gain in speed and reliability. To our
knowledge, of the regression “technologies” that output interpretabtietso
FFX covers the broadest class of functions. And as we have semmweéth
these restrictions, FFX is extremely competitive with GP-SR in finding accurate
models on real-world data.
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9. Conclusion

This paper presented FFX, a new SR technique that approache tagyin
level speed, scalability, and reliability. Rather than evolutionary learning,
it uses a recently-developed technique from the machine learning literature
pathwise regularized learning (Friedman et al., 2010). FFX applies pa&hwis
learning to an enormous set of nonlinear basis functions, and exploitattne p
structure to generate a set of models that trade off error versus catnpkexX
was verified on six real-world medium-sized SR problems: average training
time is~5 s (compared to 10 min with GP-SR), prediction error is comparable
or better than GP-SR, and the models are at least as compact. FFX was scale
up to perform well on real-world problems with1000 input variables. Due to
its simplicity and deterministic nature, FFX’s computational complexity could
readily be determinedO(N * n?); where N is number of samples andis
number of input dimensions.

A python implementation of FFX, along with the real-world benchmark
datasets used in this paper, are available at trent.st/ffx.

FFX’s success on a problem traditionally approached by GP raisesakeve
points. First, stochasticity is not necessarily a virtue: FFX's deterministic
nature means no wondering whether a new run on the same problem would
work. Second, this paper showed how doing SR does not have to mean do
GP. What about other problems traditionally associated with GP? GP’s gfreate
virtue is perhaps its convenience. But GP is not necessarily the only way;
there is the possibility of dramatically different approaches. The probleyn ma
be reframed to be deterministic or even convex. As in the case of FFX for
SR, there could be benefits like speed, scalability, simplicity, and adoptability;
plus a deeper understanding of the problem itself. Such researchet@an h
crystallize insight into what problems GP has most benefit, and wherechsea
on GP might be the most fruitful; for example, answering specific questions
about the nature of evolution, of emergence and complexity, and of compute
science.
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