
Contents

1
FFX: Fast, Scalable, Deterministic Symbolic Regression Technology 1
Trent McConaghy

Chapter 1

FFX: FAST, SCALABLE, DETERMINISTIC SYMBOLIC
REGRESSION TECHNOLOGY

Trent McConaghy1
1Solido Design Automation Inc., Canada

Abstract
Symbolic regression is a common application for genetic programming (GP).

This paper presents a new non-evolutionary technique for symbolic regression
that, compared to competent GP approaches on real-world problems, isorders of
magnitude faster (taking just seconds), returns simpler models, has comparable
or better prediction on unseen data, and converges reliably and deterministically.
We dub the approach FFX, for Fast Function Extraction. FFX uses a recently-
developed machine learning technique, pathwise regularized learning, torapidly
prune a huge set of candidate basis functions down to compact models.FFX is
verified on a broad set of real-world problems having 13 to 1468 input variables,
outperforming GP as well as several state-of-the-art regression techniques.

Keywords: technology, symbolic regression, genetic programming, pathwise, regulariza-
tion, real-world problems, machine learning, lasso, ridge regression,elastic net,
integrated circuits

2 GENETIC PROGRAMMING THEORY AND PRACTICE VI

1. Introduction

Consider when we type “A/B” into a math package. This is a least-squares
(LS) linear regression problem. The software simply returns an answer.We do
not need to consider the intricacies of the theory, algorithms, and implemen-
tations of LS regression because others have already done it. LS regression is
fast, scalable, and deterministic.It just works.

This gets to the concept of “technology” as used by Boyd: “We can say that
solving least-squares problems is a (mature) technology, that can be reliably
used by many people who do not know, and do not need to know, the details”
(Boyd and Vandenberghe, 2004). Boyd cites LS and linear programmingas
representative examples, and convex optimization getting close. Other exam-
ples might include linear algebra, classical statistics, Monte Carlo methods,
software compilers, SAT solvers1, and CLP solvers2.

(McConaghy et al., 2010) asked: “What does it take to make genetic pro-
gramming (GP) a technology?. . . to be adopted into broader use beyond that
of expert practitioners?. . . so that it becomes another standard, off-the-shelf
method in the ’toolboxes’ of scientists and engineers around the world?”

This paper asks what it takes to make symbolic regression (SR) a technology.
SR is the automated extraction of whitebox models that map input variables
to output variables. GP (Koza, 1992) is a popular approach to do SR, with
successful applications to real-world problems such as industrial processing
(Smits et al., 2010; Castillo et al., 2010), finance (Korns, 2010; Kim et al.,
2008), robotics (Schmidt and Lipson, 2006), and integrated circuit design
(McConaghy and Gielen, 2009).

Outside the GP literature, SR is rare; there are only scattered referencessuch
as (Langley et al., 1987). In contrast, the GP literature has dozens of papers on
SR every year; even the previous GPTP had seven papers involving SR(Riolo
et al., 2010). In a sense, the home field of SR is GP. This means, of course,
that when authors aim at SR, they start with GP, and look to modify GP to
improve speed, scalability, reliability, interpretability, etc. The improvements
are typically 2x to 10x, but fall short of performance that would makes SRa
“technology” the way LS or linear programming is.

We are aiming for SR as a technology. What if we did not constrain ourselves
to using GP? To GP researchers, this may seem heretical at first glance.But if
the aim is truly to improve SR, then this should pose no issue. And in fact, we
argue that the GP literature is still an appropriate home for such work, because
(a) GP authors doing SR deeply care about SR problems, and (b) as already

1for boolean satisfiability problems
2for constraint logic programming

FFX: Fast, Scalable, Deterministic Symbolic Regression Technology 3

mentioned, GP is where all the SR publications are. Of course, we can draw
inspiration from GP literature, but also many other potentially-useful fields.

This paper presents a new technique for SR, called FFX – Fast Function
Extraction. Because of its speed, scalability, and deterministic behavior, FFX
has behavior approaching that of a technology. FFX’s steps are:

• Enumerate to generate a massive set of linear and nonlinear basis functions.

• Use pathwise regularized learning to find coefficient values for the basis
functions in mapping to y. Pathwise learning actually returns aset of
coefficient vectors; with each successive vector explaining the trainingdata
better but with greater risk of overfitting. This has the computational cost of
a single LS regression, thanks to recent developments in machine learning
(Friedman et al., 2010; Zou and Hastie, 2005).

• Nondominated-filter to the number of bases versus the testing or training
error.

While FFX does not use GP directly, it will become evident that its aims and
design are GP-influenced.

We will compare FFX to a competent GP-SR approach on a set of real-world
problems. We will see that FFX returns simpler models, has comparable or
better prediction on unseen data, and is completely deterministic. Figure 1-4
summarizes the key result of this paper. Furthermore, we will show how to
successfully scale FFX to real-world problems having>1000 input variables,
which to our knowledge is the most input variables that any SR technique has
attacked1.

The rest of this paper is organized as follows. Section 2 describes the
SR problem. Section 3 describes pathwise regularized learning. Section 4
describes the FFX algorithm, and section 5 presents results using the algorithm.
Section 6 scales up FFX, guided by theory. Section 7 gives results using the
scalable FFX algorithm. Section 8 gives related work in GP and elsewhere.
Section 9 concludes.

2. SR Problem Definition

Given: X andy, a set of{xj , yj}, j = 1..N data samples wherexj is an
n-dimensional pointj andyj is a corresponding output value. Determine: a set
of symbolic modelsM = m1,m2, . . . that provide the Pareto-optimal tradeoff
between minimizing model complexityf1(m) and minimizing expected future
model prediction errorf2 = Ex,yL(m) whereL(m) is the squared-error loss
functiony−m(x))2. Each modelm maps ann-dimensional inputx to a scalar

1To be precise: attacked directly, without pre-filtering input variables or transforming to a smaller dimen-
sionality

4 GENETIC PROGRAMMING THEORY AND PRACTICE VI

output valuêy, i.e. ŷ = m(x). Complexity issomemeasure that differentiates
the degrees of freedom between different models; we use the number ofbasis
functions.

We restrict ourselves to the class of generalized linear models (GLMs)
(Nelder and Wedderburn, 1972). A GLM is a linear combination ofNB basis
functionsBi; i = 1, 2, ..., NB:

ŷ = m(x) = a0 +

NB∑

i=1

ai ∗Bi(x) (1.1)

3. Background: Pathwise Regularized Learning

Least-squares (LS) learning aims to find the values for each coefficientai in
equation (1.1) that minimize||y−X∗a||2, where theX andy are training data.
Therefore LS learning aims to minimize training error; it does not acknowledge
testing error (future model prediction error). Because it is singularly focused
on training error, LS learning may return model coefficientsa where a few
coefficients are extremely large, making the model overly sensitive to those
coefficients. This is overfitting.

Regularizedlearning aims to minimize the model’s sensitivity to overfit
coefficient values, by adding minimization terms that are dependent solely on
the coefficients:||a||2 or ||a||1. This has the implicit effect of minimizing
expected future model prediction error. The overall problem formulationis:

a∗ = minimize ||y −X ∗ a||2 + λ2||a||2 + λ1||a||1 (1.2)

Including both regularization terms is anelastic netformulation of regular-
ized learning (Zou and Hastie, 2005)1. To make the balance betweenλ1 and
λ2 explicit, we can setλ1 = λ andλ2 = (1 − ρ) ∗ λ, whereλ is now the
regularization weight, andρ is a “mixing parameter.”

A path of solutions sweeps across a set of possibleλ values; returning an
a for eachλ. Interestingly, we can start at ahugevalue ofλ, where allai
are zero; then work towards smallerλ, uniformly on a log scale. Figure 1-1
illustrates: the path starts on the far left, and the withλ decreasing (going
right), coefficientsai take nonzero values one at a time.

An extremely fast variant of pathwise elastic nets was recently developed
/ rediscovered: coordinate descent (Friedman et al., 2010). At eachpoint on
the path, coordinate descent solves for coefficient vectora by: looping through

1The middle term (quadratic term, like ridge regression), encourages correlated variables to group together
rather than letting a single variable dominate, and makes convergence more stable. The last term (l1 term,
like lasso), drives towards a sparse model with few coefficients, but discourages any coefficient from being
too large.||a||1 =

∑
i |ai|.

FFX: Fast, Scalable, Deterministic Symbolic Regression Technology 5

Figure 1-1. A path of regularized regression solutions: each vertical slice of the plotgives
a vector of coefficient valuesa for each of the respective basis functions. Going left to right
(decreasingλ), each coefficientai follows its own path, starting at zero then increasing in
magnitude (and sometimes decreasing).

eachai one at a time, updating theai through a trivial formula while holding
the rest of the parameters fixed, and repeating untila stabilizes. For speed, it
uses “hot starts”: at each new point on the path, coordinate descent starts with
the previous point’sa.

Some highly useful properties of pathwise regularized learning are:

• Learning speed is comparable or better than LS.

• Unlike LS, can learn when there are fewer samples than coefficientsN < n.

• Can learn thousands or more coefficients.

• It returns a wholefamily of coefficient vectors, with different tradeoffs
between number of nonzero coefficients and training accuracy.

For further details, we refer the reader to (Zou and Hastie, 2005; Friedman
et al., 2010).

4. FFX Algorithm

The FFX algorithm has three steps, which we now elaborate.

FFX Step One. Here, FFX generates a massive set of basis functions, where
each basis function combines one or more interacting nonlinear subfunctions.

6 GENETIC PROGRAMMING THEORY AND PRACTICE VI

Table 1-1 gives the pseudocode. Steps 1-10 generate univariate bases, and
steps 11-20 generate bivariate bases (and higher orders of univariate bases). The
algorithm simply has nested loops to generate all the bases. Theeval function
(line 5, 9, and 18) evaluates a baseb given input dataX; that is, it runs the
function defined byb with input vectors inX. Theok() function returnsFalse
if any evaluated value isinf, - inf, orNaN , e.g. as caused by divide-by-zero,
log on negative values, or negative exponents on negative values. Therefore,ok
filters away all poorly-behaving expressions. Line 16 means that expressions
of the formop() ∗ op() are not allowed; these are deemed too complex.

Table 1-1. Step One: GenerateBases()
Inputs: X #input training data
Outputs: B #list of bases

Generate univariate bases
1. B1 = {}
2. for each input variablev = {x1, x2, . . .}
3. for each exponentexp = {0.5, 1.0, 2.0}
4. let expressionbexp = vexp

5. if ok(eval(bexp,X))
6. addbexp toB1

7. for each operatorop = {abs(), log10, . . .}
8. let expressionbop = op(bexp)
9. if ok(eval(bop,X))
10. addbop toB1

Generate interacting-variable bases
11. B2 = {}
12. for i = 1 to length(B1)
13. let expressionbi = B1[i]
14. forj = 1 to i− 1
15. let expressionbj = B1[j]
16. if bj is not an operator # disallowop() ∗ op()
17. let expressionbinter = bi ∗ bj
18. if ok(eval(binter,X))
19. addbinter toB2

20. returnB = B1 ∪B2

FFX Step Two. Here, FFX uses pathwise regularized learning (Zou and Hastie,
2005) to identify the best coefficients and bases when there are 0 bases, 1 base,
2 bases, and so on.

Table 1-2 gives the pseudocode. Steps 1-2 create a large matrixXB which
has evaluated input matrixX on each of the basis functions inB. Steps
3-4 determine a log-spaced set ofNλ values; see (Zou and Hastie, 2005) for
motivations here. Steps 5-16 are the main work, doing pathwise learning.

FFX: Fast, Scalable, Deterministic Symbolic Regression Technology 7

At each iteration of the loop it performs an elastic-net linear fit (line 11)
from XB 7→ y to find the linear coefficientsa. As the loop iterates,Nbases

tends to increase, because with smallerλ there is more pressure to explain the
training data better, therefore requiring the usage of more nonzero coefficients.
Once a coefficient valueai is nonzero, its magnitude tends to increase, though
sometimes it will decrease as another coefficient proves to be more usefulin
explaining the data.

FFX step two is like standard pathwise regularized learning,exceptthat
whereas the standard approach covers a whole range ofλ such that all co-
efficients eventually get included, FFX stops as soon as there are more than
Nmax−bases (e.g. 5) nonzero coefficients (line 9). Naturally, this is because
in the SR application, expressions with more thanNmax−bases are no longer
interpretable. In practice, this makes an enormous difference to runtime; for
example, if there are 7000 possible bases but the maximum number of bases
is 5, and assuming that coefficients get added approximately uniformly with
decreasingλ, then only 5/7000 = 1/1400 = 0.07% of the path must be covered.

Table 1-2. Step Two: PathwiseLearn()
Inputs: X, y, B #input data, output data, bases
Outputs: A #list of coefficent-vectors

ComputeXB

1. for i = 1 to length(B)
2. XB[i] = eval(B[i], X)

Generateλvec = range ofλ values
3. λmax = max(|XTy|)/(N ∗ ρ)
4. λvec = logspace(log10(λmax ∗ eps), log10(λmax), Nλ)

Main pathwise learning
5. A = {}
6. Nbases = 0
7. i = 0
8. a = {0, 0, . . .} #lengthn
9. whileNbases < Nmax−bases andi < length(λvec)
10. λ = λvec[i]
11. a = elasticNetLinearF it(XB ,y, λ, ρ,a)
12. Nbases = number of nonzero values ina
13. if Nbases < Nmax−bases

14. adda to A

15. i = i + 1
16. returnA

In short, the special property of pathwise regularized learning, to startwith
zero coefficients and incrementally insert them (and therefore insert bases),
reconciles extremely well with the SR objectives trading off complexity versus

8 GENETIC PROGRAMMING THEORY AND PRACTICE VI

accuracy with an upper bound on complexity. To a GP practitioner, it feels like
doing a whole multi-objective optimization for the cost of a single LS solve.

FFX Step Three. Here, FFX filters the candidate functions to a nondominated
set that trades off number of bases and error.

Table 1-2 gives the pseudocode. Steps 1-8 take the coefficients and bases
determined in previous FFX steps, and simply combine them to create a set
of candidate modelsMcand. Steps 9-13 apply standard nondominated filtering
to the models, with objectives to minimize complexity(number of bases) and
error.

Table 1-3. Step Three: NondominatedFilter()
Inputs: A, B # coefficient vectors, bases
Outputs: M # Pareto-optimal models

Construct candidate models
1. Mcand = {}
2. for i = 1 to length(||A||)
3. a = A[i]
4. a0 = a[0] # offset
5. anz = nonzero values ina (ignoring offset)
6. Bnz = expressions inB corr. to nonzero values ina
7. m = model(a0, anz, Bnz), following eqn. (1.1)
8. addm toMcand

Nondominated filtering
9. f1 = numBases(m), for eachm in Mcand

10. f2 = testError(m) or trainError(m), for eachm in Mcand

11. J = nondominatedIndices(f1,f2)
12. M = Mcand[j] for eachj in J
13. returnM

Rational Functions Trick. For maximum coverage of possible functions, FFX
leverages a special technique inspired by (Leung and Haykin, 1993) toinclude
rational functions, with negligible extra computational cost. The general idea
is: learning the coefficients of a rational function can be cast into a linear
regression problem, solved with linear regression, then back-transformed into
rational function form. Let us elaborate:

A rational function has the form:

ŷ = m(x) =
a0 +

∑NBN

i=1 ai ∗Bi(x)

1.0 +
∑N ′

B

i=NBN+1 ai ∗Bi(x)
(1.3)

whereN ′
B is the number of numerator bases (NBN) plus the number of de-

nominator bases (NBD).

FFX: Fast, Scalable, Deterministic Symbolic Regression Technology 9

Let us perform simple algebraic manipulations to transform this problem.
First, we multiply both sides by the denominator:

y ∗
(
1.0 +

N ′

B∑

i=NBN+1

ai ∗Bi(x)
)
= a0 +

NBN∑

i=1

ai ∗Bi(x) (1.4)

Then we expand the left-hand side:

y +

N ′

B∑

i=NBN+1

ai ∗Bi(x) ∗ y = a0 +

NBN∑

i=1

ai ∗Bi(x) (1.5)

whereBi(x) ∗ y is element-wise multiplication, i.e.Bi(Xj) ∗yj for each data
point j. Now, subtract to isolatey on the left-hand side:

y = a0 +

NBN∑

i=1

ai ∗Bi(x)−
N ′

B∑

i=NBN+1

ai ∗Bi(x) ∗ y (1.6)

Finally, let us define a new set of basis functions.

B′
i =

{
Bi i ≤ NBN

Bi ∗ y otherwise

}
(1.7)

At the end of FFX step 1, we hadNB basis functions. Before we start step 2,
we insert allNB functions into both the numerator and denominator; therefore
NBN = NBD = NB, andN ′

B = 2 ∗ NB. We redefine the basis functions
according to eqn. (1.7). Then, all the subsequent FFX steps are performed with
these new basis functions. Once the coefficients are found, the final model is
extracted by applying the algebraic manipulations in reverse: eqn. (1.6), then
eqn. (1.5), then eqn. (1.4).

This concludes the description of the FFX algorithm. Note that for improved
scalability, FFX must be adapted according to section 6.

5. Medium-Dimensional Experiments

This section presents experiments on medium-dimensional problems. (Sec-
tion 7 will give higher-dimensional results.)

Experimental Setup

Problem Setup. We use a test problem used originally in (Daems et al.,
2003) for posynomial fitting, but also studied extensively using GP-based SR
(McConaghy and Gielen, 2009). The aim is to model performances of a well-
known analog circuit, a CMOS operational transconductance amplifier (OTA).

10 GENETIC PROGRAMMING THEORY AND PRACTICE VI

The goal is to find expressions for the OTA’s performance measures: low-
frequency gain (ALF), phase margin (PM), positive and negative slew rate
(SRp, SRn), input-referred offset voltage (Voffset), and unity-gain frequency
(fu). 1

Each problem has 13 input variables. Input variable space was sampledwith
orthogonal-hypercube Design-Of-Experiments (DOE) (Montgomery, 2009),
with scaleddx=0.1 (wheredx is % change in variable value from center value),
to get 243 samples. Each point was simulated with SPICE. These points were
used as training data inputs. Testing data points were also sampled with DOE
and 243 samples, but withdx=0.03. Thus, this experiment leads to somewhat
localized models; we could just as readily model a broader design space, but
this allows us to compare the results to (Daems et al., 2003). We calculate
normalized mean-squared error on the training data and on the separate testing
data:nmse =

√∑
i((ŷi − yi)/(max(y)−min(y))2)

FFX Setup. Up to Nmax−bases=5 bases are allowed. Operators allowed
are: abs(x), log10(x), min(0, x), max(0, x); and exponents on variables are
x1/2 (=

√
(x)), x1 (=x), andx2. By default, denominators are allowed; but

if turned off, then negative exponents are also allowed:x−1/2 (=1/
√
(x)),

x−1 (=1/x), andx−2 (=1/x2). The elastic net settings wereρ = 0.5,λmax =
max|XTy|/(N ∗ ρ), eps = 10−70, andNλ=1000.

Because the algorithm is not GP, there are no settings for population size,
number of generations, mutation/crossover rate, selection, etc. We emphasize
that the settings in the previous paragraph are very simple, with no tuning
needed by users.

Each FFX run took≈5 s on a 1-GHz single-core CPU.

Reference GP-SR Algorithm Setup. CAFFEINE is a state-of-the-art GP-
based SR approach that uses a thoughtfully-designed grammar to constrain SR
functional forms such that they are interpretable by construction. Key settings
are: up to 15 bases, population size 200, and 5000 generations. Details are in
(McConaghy and Gielen, 2009). Each CAFFEINE run took≈10 minutes on a
1-GHz CPU.

Experimental Results

This section experimentally investigates FFX behavior, and validates its
prediction abilities on the set of six benchmark functions.

FFX Data Flow. To start with, we examine FFX behavior in detail on a test
problem. Recall that FFX has three steps: generating the bases, pathwise

1We log-scalefu so that learning is not wrongly biased towards high-magnitude samples offu.

FFX: Fast, Scalable, Deterministic Symbolic Regression Technology 11

learning on the bases, and pruning the results via nondominated filtering. We
examine the data flow of these steps on theALF problem.

The first step in FFX generated 176 candidate one-variable bases, as shown
in Table 1-4. These bases combined to make 3374 two-variable bases, some
of which are shown in Table 1-5. This made a total of 3550 bases for the
numerator; and another 3550 for the denominator1.

Table 1-4. For FFX step 1: The 176 candidate one-variable bases.

v0.5
sg1 , abs(v0.5

sg1), max(0, v0.5
sg1), min(0, v0.5

sg1), log10(v0.5
sg1), vsg1 , abs(vsg1), max(0, vsg1), min(0, vsg1),

log10(vsg1), v2
sg1 , max(0, v2

sg1), min(0, v2
sg1), log10(v2

sg1), v0.5
gs2 , abs(v0.5

gs2), max(0, v0.5
gs2), min(0, v0.5

gs2),

log10(v0.5
gs2), vgs2 , abs(vgs2), max(0, vgs2), min(0, vgs2), log10(vgs2), v2

gs2 , max(0, v2
gs2), min(0, v2

gs2),

log10(v2
gs2), v0.5

ds2 , abs(v0.5
ds2), max(0, v0.5

ds2), min(0, v0.5
ds2), log10(v0.5

ds2), vds2 , abs(vds2), max(0, vds2),

min(0, vds2), log10(vds2), v2
ds2 , max(0, v2

ds2), min(0, v2
ds2), log10(v2

ds2), v0.5
sg3 , abs(v0.5

sg3), max(0, v0.5
sg3),

min(0, v0.5
sg3), log10(v0.5

sg3), vsg3 , abs(vsg3), max(0, vsg3), min(0, vsg3), log10(vsg3), v2
sg3 , max(0, v2

sg3),

min(0, v2
sg3), log10(v2

sg3), v0.5
sg4 , abs(v0.5

sg4), max(0, v0.5
sg4), min(0, v0.5

sg4), log10(v0.5
sg4), vsg4 , abs(vsg4),

max(0, vsg4), min(0, vsg4), log10(vsg4), v2
sg4 , max(0, v2

sg4), min(0, v2
sg4), log10(v2

sg4), v0.5
sg5 , abs(v0.5

sg5),

max(0, v0.5
sg5), min(0, v0.5

sg5), log10(v0.5
sg5), vsg5 , abs(vsg5), max(0, vsg5), min(0, vsg5), log10(vsg5), v2

sg5 ,

max(0, v2
sg5), min(0, v2

sg5), log10(v2
sg5), v0.5

sd5 , abs(v0.5
sd5), max(0, v0.5

sd5), min(0, v0.5
sd5), log10(v0.5

sd5), vsd5 ,

abs(vsd5), max(0, vsd5), min(0, vsd5), log10(vsd5), v2
sd5 , max(0, v2

sd5), min(0, v2
sd5), log10(v2

sd5),

v0.5
sd6 , abs(v0.5

sd6), max(0, v0.5
sd6), min(0, v0.5

sd6), log10(v0.5
sd6), vsd6 , abs(vsd6), max(0, vsd6), min(0, vsd6),

log10(vsd6), v2
sd6 , max(0, v2

sd6), min(0, v2
sd6), log10(v2

sd6), id1 , abs(id1), max(0, id1), min(0, id1), i2
d1 ,

max(0, i2
d1), min(0, i2

d1), log10(i2
d1), i0.5

d2 , abs(i0.5
d2), max(0, i0.5

d2), min(0, i0.5
d2), log10(i0.5

d2), id2 , abs(id2),

max(0, id2), min(0, id2), log10(id2), i2
d2 , max(0, i2

d2), min(0, i2
d2), log10(i2

d2), i0.5
b1 , abs(i0.5

b1), max(0, i0.5
b1),

min(0, i0.5
b1), log10(i0.5

b1), ib1 , abs(ib1), max(0, ib1), min(0, ib1), log10(ib1), i2
b1 , max(0, i2

b1), min(0, i2
b1),

log10(i2
b1), i0.5

b2 , abs(i0.5
b2), max(0, i0.5

b2), min(0, i0.5
b2), log10(i0.5

b2), ib2 , abs(ib2), max(0, ib2), min(0, ib2),

log10(ib2), i2
b2 , max(0, i2

b2), min(0, i2
b2), log10(i2

b2), i0.5
b3 , abs(i0.5

b3), max(0, i0.5
b3), min(0, i0.5

b3), log10(i0.5
b3),

ib3 , abs(ib3), max(0, ib3), min(0, ib3), log10(ib3), i2
b3 , max(0, i2

b3), min(0, i2
b3), log10(i2

b3)

Table 1-5. For FFX step 1: Some candidate two-variable bases (there are 3374 total).

log10(i2b3)∗ i
2

d2
, log10(i2b3)∗ i

0.5
b1

, log10(i2b3)∗ ib1, log10(i2b3)∗ i
2

b1
, log10(i2b3)∗ i

0.5
b2

, log10(i2b3)∗
ib2, log10(i2b3) ∗ i2

b2
, log10(i2b3) ∗ i0.5

b3
, log10(i2b3) ∗ ib3, log10(i2b3) ∗ i2

b3

(and 3364 more)

The second FFX step applied pathwise regularized learning on the 7100 bases
(3550 numerator + 3550 denominator), as illustrated in Figure 1-1 (previously
shown to introduce pathwise learning). It started with maximum lambda (λ),
where all coefficient values were 0.0, and therefore there are 0 (farleft of figure).
Then, it iteratively decreasedλ and updated the coefficient estimates. The first
base to get a nonzero coefficient wasmin(0, v2ds2) ∗ v2ds2 (in the denominator).
At a slightly smallerλ, the second base to get a nonzero coefficient was
min(0, v2sd5)∗v2sd5 (also in the denominator). These remain the only two bases
for several iterations, until finally whenλ shrinks below 1e4, a third base is

1See “Rational Functions Trick” in section 4.

12 GENETIC PROGRAMMING THEORY AND PRACTICE VI

added. A fourth base is added shortly after. Pathwise learning continueduntil
the maximum number of bases (nonzero coefficients) was hit.

Figure 1-2. For FFX step 2: Pathwise regularized learning following onALF .

The third and final FFX step applies nondominated filtering to the candidate
models, to generate the Pareto Optimal sets that trade off error versus number of
bases (complexity). Figure 1-3 shows the outcome of nondominated filtering,
for the case when error is training error, and for the case when erroris testing
error. Training error for this data is higher than testing error because the training
data covers a broader input variable range (dx = 0.1) than the testing data (dx
= 0.03), as section 5 discussed.

Extracted Whitebox Models. Table 1-6 shows the lowest test-error functions
extracted by FFX, for each test problem. First, we see that the test errors are
all very low, <5% in all cases. Second, we see that the functions themselves
are fairly simple and interpretable, at most having two basis functions. For
ALF , PM , andSRn, FFX determined that using a denominator was better.
We continue to find it remarkable that functions like this can be extracted in
such a computationally lightweight fashion. ForSRp, FFX determined that
the most predictive function was simply a constant (2.35e7). Interestingly,it
combined univariate bases of the same variable to get higher-order bases, for
examplemin(0, v2ds2) ∗ v2ds2 in ALF .

Recall that FFX does is designed to not just return the function with the
lowest error, but a whole set of functions that trade off error and complexity. It

FFX: Fast, Scalable, Deterministic Symbolic Regression Technology 13

Figure 1-3. For FFX step 3: results of nondominated filtering to get the Pareto optimal tradeoff
of error versus number of bases, in modelingALF . Two cases are shown: when error is on the
training data, and when error is on testing data.

Table 1-6. Functions with lowest test error as extracted by FFX, for each test problem. Ex-
traction time per problem was≈5 s on a 1-GHz machine.

Problem Test error (%) Extracted Function

ALF 3.45 37.020
1.0−1.22e-4∗min(0,v2

ds2
)∗v2

ds2
−4.72e-5∗min(0,v2

sd5
)∗v2

sd5

PM 1.51 90.148
1.0−8.79e-6∗min(0,v2sg1)∗v

2

sg1+2.28e-6∗min(0,v2
ds2

)∗v2
ds2

SRn 2.10 −5.21e7
1.0−8.22e-5∗min(0,v2gs2)∗v

2

gs2

SRp 4.74 2.35e7

Voffset 2.16 −0.0020− 1.22e-23 ∗min(0, v2gs2) ∗ v
2

gs2

log10(fu) 2.17 0.74− 1.10e-5 ∗min(0, v2sg1) ∗ v
2

sg1

+1.88e-5 ∗min(0, v2ds2) ∗ v
2

ds2

does this efficiently by exploiting pathwise learning. Table 1-7 illustrates the
Pareto optimal set extracted by FFX for theALF problem.

Prediction Abilities. Figure 1-4 compares FFX to GP-SR, linear models, and
quadratic models in terms of average test error and build time. The linear
and quadratic models took <1 s to build, using LS learning. GP-SR and FFX
predict very well, and linear and quadratic models predict poorly. GP-SRhas
much longer model-building time than the rest. In sum, FFX has the speed of
linear/quadratic models with the prediction abilities of GP-SR.

14 GENETIC PROGRAMMING THEORY AND PRACTICE VI

Table 1-7. Pareto optimal set (complexity vs. test error) forALF extracted by FFX.

Test error (%) Extracted Function

3.72 37.619

3.55 37.379
1.0−6.78e-5∗min(0,v2

ds2
)∗v2

ds2

3.45 37.020
1.0−1.22e-4∗min(0,v2

ds2
)∗v2

ds2
−4.72e-5∗min(0,v2

sd5
)∗v2

sd5

Figure 1-4. Average test error (across six test problems) versus build time, comparing linear,
quadratic, FFX, and GP-SR

Table 1-8 compares the test error for linear, quadratic, FFX, and GP-SR
models; plus the approaches originally compared in (McConaghy and Gielen,
2005): posynomial (Daems et al., 2003), a modern feedforward neural network
(FFNN) (Ampazis and Perantonis, 2002), boosting the FFNNs, multivariate
adaptive regression splines (MARS) (Friedman, 1991), least-squares support
vector machines (SVM) (Suykens et al., 2002), and kriging (gaussian process
models) (Sacks et al., 1989). Lowest-error values are in bold.

From Table 1-8, we see that of all the modeling approaches, FFX has the
best average test error; and best test error in four of the six problems, coming
close in the remaining two.

FFX: Fast, Scalable, Deterministic Symbolic Regression Technology 15

Table 1-8. Test error (%) on the six medium-dimensional test problems.

Approach ALF PM SRn SRp Voffset fu Avg.

Linear (LS) 17.2 11.9 15.6 20.5 7.1 19.0 15.21

Quadratic (LS) 18.5 12.2 15.7 22.7 7.4 20.9 16.23

FFX (this work) 3.5 1.5 2.1 4.7 2.2 2.2 2.69

GP-SR 2.8 2.6 3.9 7.4 1.0 5.0 3.78

Posynomial 6.5 9.7 78.0 31.0 0.8 5.9 21.98

FFNN 5.0 6.8 9.5 8.2 2.9 9.3 6.93

Boosted FFNN 5.3 2.8 9.7 14.0 1.4 10.0 7.19

MARS 4.4 1.8 5.4 7.2 1.2 9.4 4.88

SVM 11.5 5.8 4.1 10.0 1.8 12.7 7.64

Kriging 7.3 3.8 5.1 8.9 2.2 7.3 5.75

6. FFX Scaling

Experimental Setup

So far, we have tested FFX on several problems with 13 input variables.
What about larger real-world problems? We consider the real-world integrated
circuits listed in Table 1-9. The aim is to map process variables to circuit
performance outputs. Therefore, these problems have hundreds or thousands
of input variables.

The data was generated by performing Monte Carlo sampling: drawing
process points from the process variables’ pdf, and simulating each process
point using HspiceTM , to get output values. The opamp and voltage reference
had 800 Monte Carlo sample points, the comparator and GMC filter 2000,
and bitcell and sense amp 5000. The data is chosen as follows: sort the data
according to the y-values; every 4th point is used for testing; and the restare
used for training1.

Initial Scaling Experiments

We ran FFX on the larger circuit problems. In the larger circuits, it failed
miserably, getting out-of-memory errors.

1This is faster than cross-validation, yet gives consistent, reliable answers.

16 GENETIC PROGRAMMING THEORY AND PRACTICE VI

Table 1-9. Twelve higher-dimensional test problems across six circuits.
Circuit # # Input Outputs

Devices Variables Modeled

opamp 30 215 AV (gain),BW (bandwidth)
PM (phase margin),SR (slew rate)

bitcell 6 30 celli (read current)
sense amp 12 125 delay, pwr (power)

voltage 11 105 DV REF (difference in voltage),
reference PWR (power)

GMC filter 140 1468 ATTEN (attenuation), IL
comparator 62 639 BW (bandwidth)

To understand why, we can analyze FFX’s computational complexity.

FFX Computational Complexity

Let us determine the computational complexity of FFX, for each step. This can
be viewed as the core theory for FFX.

Step One.Let e be the number of exponents ando be the number of nonlinear
operators. Therefore the number of univariate bases per variable is(o+1) ∗ e.
(The+1 is when no nonlinear operator is applied; or, equivalently, unity). With
n as the number of input variables, then the total number of univariate basesis
(o+1)∗e∗n. WithN samples, the univariate part of step one has a complexity
of O((o+1)∗e∗n∗N). Sincee ando are constants, this reduces toO(n∗N).
The number of bivariate bases isp = O(n2), so the bivarate part of step one
has complexityO(n2 ∗N).

Step Two. The cost of an older elastic-net pathwise technique, LARS, was
approximately that of one LS fitting according to p.93 of (Hastie et al., 2008).
Since then, the coordinate descent algorithm (Friedman et al., 2010) has been
shown to be 10x faster. Nonetheless, we will use LS as a baseline. Withp
input variables, LS fitting with QR decomposition has complexityO(N ∗ p2).
Becausep = O(n2), FFX has approximate complexityO(N ∗ n4).

Step Three. Reference (Deb et al., 2002) shows that nondominated filtering
has complexityO(No ∗ Nnondom) whereNo is the number of objectives, and
Nnondom is the number of nondominated individuals. In the SR cases,No is
a constant (at 2) andNnondom ≤ Nmax−bases whereNmax−bases is a constant
(≈5). Therefore, FFX step three complexity isO(1).

The complexity of FFX is the maximum of steps one, two, and three; which
isO(N ∗ n4). �

Given this, the fact that FFX hits limits of computational resources whenn is
large is not surprising. In the largest circuit,n = 1468, thereforen4 = 4.64e12.

FFX: Fast, Scalable, Deterministic Symbolic Regression Technology 17

Modifying FFX for Scalability

We can improve FFX to have a computational complexity isO(N ∗ n2),
as follows. We adapt the procedure in Table 1-1 to be stepwise: first learn
univariate coefficients; then only combine thek ≤ O(

√
n) most important

basis functions with each other for candidate bivariate coefficients; thenlearn
the coefficients on the combinations of most-important univariate bases. This
means that each linear learning has≤ O(n) basis functions; therefore overall
complexity isO(N ∗ n2).

This adaptation can be seen as a “batch” approach to stepwise-forward
regression like that in MARS (Friedman, 1991).

We took another cue from MARS to improve model flexibility, by adding
hingebasis functionsmax(0, x− thr), andmax(0, thr−x). These operators
add “turn off” some regions of input space and focus on remaining regions.
For each hinge operator at each variablexj , we allowed 5 different threshold
valuesthr, uniformly distributed fromminxj + 0.2 ∗ (maxxj − minxj) to
minxj +0.8∗ (maxxj −minxj); whereminxj andmaxxj are the minimum
and maximum values seen forxj in all training samples.

In preliminary experiments, we found that FFX would give a more thorough
sets of results if we re-ran it on different high-level settings as shown intable
1-10, and merged the results.1

Table 1-10. FFX runs on each of these settings, and merges the results.
Inter- Denom- Expon- Log/Abs Hinge Notes
actions inator entials Operators Functions

linear
Y quadratic

Y Y Y
Y Y Y Y

Y Y
Y Y
Y Y Y
Y Y Y
Y Y
Y Y Y

FFX settings were like in section 5, except up to 250 bases were allowed.
The overall runtime per problem was≈30 s on a single-core 1-GHz CPU.

7. High-Dimensional Experiments

This section presents results using the scaled-up FFX, on the high-dimensional
modeling problems described in section 6.

1This, of course, can be trivially parallelized.

18 GENETIC PROGRAMMING THEORY AND PRACTICE VI

Table 1-11 shows the lowest test error found by FFX, compared to other
approaches. FFX always gets the lowest test error, and many other approaches
failed badly. FFX did find it easier to capture some mappings than others.

Table 1-11. Test error (%) on the twelve high-dimensional test problems. The quadratic model
failed because it had too samples for the number of coefficients. GP-SRand FFNN failed, either
because test error was≫100% or model build time took unreasonably long (several hours).

Approach opamp
AV

opamp
BW

opamp
PM

opamp
SR

bitcell
celli

sense amp
delay

Lin (LS) 1.7 1.3 1.3 3.2 12.7 3.4

Quad (LS) FAIL FAIL FAIL FAIL 12.5 3.5

FFX 1.0 0.9 1.0 2.0 12.4 3.0

GP-SR FAIL FAIL FAIL FAIL FAIL FAIL

FFNN FAIL FAIL FAIL FAIL FAIL FAIL

Approach sense
amp
pwr

voltage
reference
DV REF

voltage
reference
PWR

GMC
filter
ATTEN

GMC
filter
IL

comparator
BW

Lin (LS) 3.5 2.4 22.8 16.4 17.3 27.2

Quad (LS) 2.9 2.8 40.4 FAIL FAIL FAIL

FFX 2.7 1.0 2.0 7.0 8.5 17.0

GP-SR FAIL FAIL FAIL FAIL FAIL FAIL

FFNN FAIL FAIL FAIL FAIL FAIL FAIL

Figure 1-5 shows the tradeoff of equations, for each modeling approach.
Each dot represents a different model, having its own complexity and test error.
For a given subplot, the simplest model is a constant, at the far left. It also has
the highest error. As new bases are added (higher complexity), errordrops.
The curves have different signatures. For example, we see that whenthe opamp
BW model (top center) gets 2 bases, its error drops from 6.8% to 1.9%. After
that, additional bases steadily improve error, until the most complex model
having 31 bases has 1% error. Or, for opampPM (top right), there is little
reduction in error after 15 bases.

In many modeling problems, FFX determined that just linear and quadratic
terms were appropriate for the best equations. These include the the simpler
opampPM functions, GMC filterIL, GMC filter ATTEN , opampSR (for
errors> 2.5%), and bitcellcelli. But in some problems, FFX used more
strongly nonlinear functions. These include voltage referenceDV REF , sense
ampdelay, and sense amppwr. Let us explore some models in more detail.

FFX: Fast, Scalable, Deterministic Symbolic Regression Technology 19

Figure 1-5. Test error vs. Complexity. Top row left-to-right: opampAV , opampBW , opamp
PM . Second-from-top row: opampSR, bitcell celli, sense ampdelay. Third-from-top row:
sense amppwr, voltage referenceDV REF , voltage referencePWR. Bottom row: GMC
filter ATTEN , GMC filter IL, comparatorBW .

20 GENETIC PROGRAMMING THEORY AND PRACTICE VI

Table 1-12 shows some functions that FFX extracted for opampPM . At 0
bases is a constant, of course. From 1 to 4 bases, FFX adds one more linear base
at a time, gradually adding resolution to the model. At 5 bases, it adds a base
that has both anabs() operator, and an interaction term:abs(dvthn) ∗ dvthn.
It keeps adding bases up to a maximum of 46 bases. By the time it gets to
46 bases, it has actually started using a rational model, as indicated by the
/(1 + . . .) term.

Table 1-13 shows some functions that FFX extracted for voltage reference
DV REF . It always determines that a rational with a constant numerator is
the best option. It uses the hinge basis functions, including interactions when
3 or more bases are used. It only needs 8 bases (in the denominator) to capture
error of 0.9%. Of the 105 possible variables, FFX determined that variable
dvthn was highly useful, by reusing it in many ways.dvthp anddxw also had
prominence.

Table 1-12. Equations for opampPM , extracted by FFX.

#
Bases

Test
error
(%)

Extracted Function

0 15.5 59.6
1 6.8 59.6− 0.303 ∗ dxl
2 6.6 59.6− 0.308 ∗ dxl − 0.00460 ∗ cgop
3 5.4 59.6− 0.332 ∗ dxl − 0.0268 ∗ cgop+ 0.0215 ∗ dvthn
4 4.2 59.6 − 0.353 ∗ dxl − 0.0457 ∗ cgop + 0.0403 ∗ dvthn −

0.0211 ∗ dvthp
5 4.1 59.6 − 0.354 ∗ dxl − 0.0460 ∗ cgop − 0.0217 ∗ dvthp +

0.0198 ∗ dvthn+ 0.0134 ∗ abs(dvthn) ∗ dvthn
...

...
...

46 1.0 (58.9 − 0.136 ∗ dxl + 0.0299 ∗ dvthn − 0.0194 ∗
max(0, 0.784− dvthn) + . . .)/(1.0 + . . .)

8. Related Work

Related Work in GP

Some GP papers use regularized learning. (McConaghy and Gielen, 2009)
runs gradient directed regularization on a large set of enumerated basisfunc-
tions, and uses those to bias the choice of function building blocks during GP
search. FFX is similar, except it does not perform GP after regularizedlearn-
ing, and does not exploit pathwise learning to get a tradeoff. (Nikolaev and
Iba, 2001) and (McConaghy et al., 2005) use ridge regression and the PRESS
statistic, respectively, as part of the individual’s fitness function.

FFX: Fast, Scalable, Deterministic Symbolic Regression Technology 21

Table 1-13. Equations for voltage referenceDV REF , extracted by FFX.

#
Bases

Test
error
(%)

Extracted Function

0 2.6 512.7
1 2.1 504/(1.0 + 0.121 ∗max(0, dvthn+ 0.875))
2 1.8 503−199∗max(0, dvthn+1.61)−52.1∗max(0, dvthn+

0.875)
...

...
...

8 0.9 476/(1.0 + 0.105 ∗ max(0, dvthn + 1.61) − 0.0397 ∗
max(0,−1.64− dvthp) ∗max(0, dvthn+ 0.875)− . . .)

Some GP research recasts SR from tree-valued problems towards vector-
valued optimization problems. (O’Neill and Brabazon, 2006) casts SR into
a string-based space, then solves it with a differential-evolution (DE) variant
of grammatical evolution (O’Neill and Ryan, 2003). (McConaghy and Gie-
len, 2006) casts SR into a vector-valued Euclidian space, but solve it with a
combination of vector-valued and traditional tree-valued operators in an EA
framework. (Fonlupt and Robilliard, 2011) and others cast SR into a vector-
valued Euclidian space, then solve it with vector-valued DE. (Korns, 2010)
casts SR into a vector-valued space, and solves with Particle Swarm Optimiza-
tion. (Topchy and Punch, 2001) and others cast the sub-problem of learning
SR coefficients into traditional real-valued optimization problems as the inner
loop of memetic learning; the outer loop remains GP-style search.

There are several approaches that recast general tree-valued search into
simpler spaces; (Rothlauf, 2006) is a good starting point.

Shifting towards deterministic behavior, Estimation of Distribution Algo-
rithms (EDAs) are sometimes framed as “derandomized” algorithms (Hansen
and Ostermeier, 2001)1. EDAs have been applied to tree-based search; a recent
example is (Looks, 2006). Variance-reduction techniques have also been used
to derandomize EAs, such as (Teytaud and Gelly, 2007).

(O’Reilly, 1995) is a thorough example of doing tree-based search with
non-evolutionary algorithms (hill climbing, simulated annealing).

Of course, none of these approaches are reallythat closely related to FFX.
FFX dispenses with selection, mutation, and crossover. It has no individuals,
and no population. At its core, it simply casts SR as one (or two) convex
optimization problems, and solves them with off-the-shelf algorithms.

1The authors claim CMA-ES is a “completely” derandomized algorithm, but that is not quite accurate,
because CMA-ES still relies on drawing samples from a pdf. To becompletelyderandomized, an algorithm
has to be deterministic.

22 GENETIC PROGRAMMING THEORY AND PRACTICE VI

GLMs and Universal Approximation

Researchers familiar with generalized linear models (GLMs) may see FFX
“merely” as a particular choice of “basis expansions”; for example (Hastie et al.,
2008) suggests possible expansions includinglog(xj) and

√
xj . The benefit

of this, of course, is that GLM theory applies directly to FFX. However, this
sells FFX short; consider the usefulness of other “merely GLM” techniques
like CART (with indicator-style bases), MARS (with hinge-function bases),
and SVMs (with kernel bases). Their usefulness is precisely due to a particular
choice of basis functions, with appropriate algorithmic support framework, and
a thoughtfully-chosen application. In our case, the choice of basis functions
is driven from an SR perspective; the algorithmic support framework makes
special use of the pathwise regularized learning, and includes nondominated
filtering; the application is the SR-derived aim to generate whitebox models
trading off prediction error versus complexity; and finally the scalable variant
of FFX has “batch” stepwise-forward regression and hinge functions.

FFX shares a related philosophy with SVMs: transform a lower-dimensional
set ofn linear bases to a much larger set of basesnnew ≫ n; then apply linear
learning on this larger set, but prune them down (in the case of SVMs, to a
set of “support vectors”). Of course, the distance calculation in SVM basis
function of ||x − xsvi|| for support vectori is not naturally interpretable, so
does not apply to SR problems.

With a sufficiently broad choice of basis functions, FFX would be a universal
approximator. But as already discussed, the aim ofspecificGLM techniques
is to thoughtfully choose basis functions that reflect their aims. FFX’s basis
functions FFX are not sufficiently general to give FFX universal approximation.
Hinge functions help, but to make FFX fully universal we would need to add
more threshold values, and allow iteration to higher orders (similar to MARS).
Of course, doing this hurts interpretability.

FFX is not a panacea: because its functional form is not naturally a universal
approximator, there will be classes of SR problems that it handles poorly.
For example, it cannot tune the coefficients{w0, w1} inside a nonlinear basis
function likesin(w0+w1 ∗x1). This is not unlike other “technologies”: linear
regression can only competently handle linear and weakly nonlinear models;
convex optimization can only handle unimodal problems; and so on. But
what they trade off for flexibility, they gain in speed and reliability. To our
knowledge, of the regression “technologies” that output interpretable models,
FFX covers the broadest class of functions. And as we have seen, even with
these restrictions, FFX is extremely competitive with GP-SR in finding accurate
models on real-world data.

FFX: Fast, Scalable, Deterministic Symbolic Regression Technology 23

9. Conclusion

This paper presented FFX, a new SR technique that approaches “technology”
level speed, scalability, and reliability. Rather than evolutionary learning,
it uses a recently-developed technique from the machine learning literature:
pathwise regularized learning (Friedman et al., 2010). FFX applies pathwise
learning to an enormous set of nonlinear basis functions, and exploits the path
structure to generate a set of models that trade off error versus complexity. FFX
was verified on six real-world medium-sized SR problems: average training
time is≈5 s (compared to 10 min with GP-SR), prediction error is comparable
or better than GP-SR, and the models are at least as compact. FFX was scaled
up to perform well on real-world problems with>1000 input variables. Due to
its simplicity and deterministic nature, FFX’s computational complexity could
readily be determined:O(N ∗ n2); whereN is number of samples andn is
number of input dimensions.

A python implementation of FFX, along with the real-world benchmark
datasets used in this paper, are available at trent.st/ffx.

FFX’s success on a problem traditionally approached by GP raises several
points. First, stochasticity is not necessarily a virtue: FFX’s deterministic
nature means no wondering whether a new run on the same problem would
work. Second, this paper showed how doing SR does not have to mean doing
GP. What about other problems traditionally associated with GP? GP’s greatest
virtue is perhaps its convenience. But GP is not necessarily the only way;
there is the possibility of dramatically different approaches. The problem may
be reframed to be deterministic or even convex. As in the case of FFX for
SR, there could be benefits like speed, scalability, simplicity, and adoptability;
plus a deeper understanding of the problem itself. Such research can help
crystallize insight into what problems GP has most benefit, and where research
on GP might be the most fruitful; for example, answering specific questions
about the nature of evolution, of emergence and complexity, and of computer
science.

10. Acknowledgment

Funding for the reported research results is acknowledged from SolidoDe-
sign Automation Inc.

References

Ampazis, N. and Perantonis, S. J. (2002). Two highly efficient second-order
algorithms for training feedforward networks.IEEE-EC, 13:1064–1074.

Boyd, Stephen and Vandenberghe, Lieven (2004).Convex Optimization. Cam-
bridge University Press, New York, NY, USA.

24 GENETIC PROGRAMMING THEORY AND PRACTICE VI

Castillo, Flor, Kordon, Arthur, and Villa, Carlos (2010). Genetic program-
ming transforms in linear regression situations. In Riolo, Rick, McConaghy,
Trent, and Vladislavleva, Ekaterina, editors,Genetic Programming Theory
and Practice VIII, volume 8 ofGenetic and Evolutionary Computation,
chapter 11, pages 175–194. Springer, Ann Arbor, USA.

Daems, Walter, Gielen, Georges G. E., and Sansen, Willy M. C. (2003).
Simulation-based generation of posynomial performance models for the siz-
ing of analog integrated circuits.IEEE Trans. on CAD of Integrated Circuits
and Systems, 22(5):517–534.

Deb, Kalyanmoy, Pratap, Amrit, Agarwal, Sameer, and Meyarivan, T. (2002). A
fast and elitist multiobjective genetic algorithm: Nsga-ii.IEEE Transactions
on Evolutionary Computation, 6:182–197.

Fonlupt, Cyril and Robilliard, Denis (2011). A continuous approach to genetic
programming. In Silva, Sara, Foster, James A., Nicolau, Miguel, Giacobini,
Mario, and Machado, Penousal, editors,Proceedings of the 14th European
Conference on Genetic Programming, EuroGP 2011, volume 6621 ofLNCS,
pages 335–346, Turin, Italy. Springer Verlag.

Friedman, J. H. (1991). Multivariate adaptive regression splines.Annals of
Statistics, 19(1):1–141.

Friedman, Jerome H., Hastie, Trevor, and Tibshirani, Rob (2010). Regulariza-
tion paths for generalized linear models via coordinate descent.Journal of
Statistical Software, 33(1):1–22.

Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-adaptation
in evolution strategies.Evolutionary Computation, 9(2):159–195.

Hastie, Trevor, Tibshirani, Robert, and Friedman, Jerome (2008).The elements
of statistical learning: data mining, inference and prediction. Springer, 2
edition.

Kim, Minkyu, Becker, Ying L., Fei, Peng, and O’Reilly, Una-May (2008).
Constrained genetic programming to minimize overfitting in stock selec-
tion. In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors,Genetic
Programming Theory and Practice VI, Genetic and Evolutionary Computa-
tion, chapter 12, pages 179–195. Springer, Ann Arbor.

Korns, Michael F. (2010). Abstract expression grammar symbolic regression.
In Riolo, Rick, McConaghy, Trent, and Vladislavleva, Ekaterina, editors,
Genetic Programming Theory and Practice VIII, volume 8 ofGenetic and
Evolutionary Computation, chapter 7, pages 109–128. Springer, Ann Arbor,
USA.

Koza, John R. (1992).Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Langley, Pat, Simon, Herbert A., Bradshaw, Gary L., and Zytkow, Jan M.
(1987).Scientific discovery: computational explorations of the creative pro-
cess. MIT Press, Cambridge, MA, USA.

FFX: Fast, Scalable, Deterministic Symbolic Regression Technology 25

Leung, Henry and Haykin, Simon (1993). Rational function neural network.
Neural Comput., 5:928–938.

Looks, Moshe (2006).Competent Program Evolution. Doctor of science, Wash-
ington University, St. Louis, USA.

McConaghy, Trent, Eeckelaert, Tom, and Gielen, Georges (2005). CAFFEINE:
Template-free symbolic model generation of analog circuits via canonical
form functions and genetic programming. InProceedings of the Design
Automation and Test Europe (DATE) Conference, volume 2, pages 1082–
1087, Munich.

McConaghy, Trent and Gielen, Georges (2005). Analysis of simulation-driven
numerical performance modeling techniques for application to analog cir-
cuit optimization. InProceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE Press.

McConaghy, Trent and Gielen, Georges (2006). Double-strength caffeine: fast
template-free symbolic modeling of analog circuits via implicit canonical
form functions and explicit introns. InProceedings of the conference on
Design, automation and test in Europe: Proceedings, DATE ’06, pages 269–
274, 3001 Leuven, Belgium, Belgium. European Design and Automation
Association.

McConaghy, Trent and Gielen, Georges G. E. (2009). Template-freesymbolic
performance modeling of analog circuits via canonical-form functions and
genetic programming.IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 28(8):1162–1175.

McConaghy, Trent, Vladislavleva, Ekaterina, and Riolo, Rick (2010). Genetic
programming theory and practice 2010: An introduction. In Riolo, Rick,
McConaghy, Trent, and Vladislavleva, Ekaterina, editors,Genetic Program-
ming Theory and Practice VIII, volume 8 ofGenetic and Evolutionary
Computation, pages xvii–xxviii. Springer, Ann Arbor, USA.

Montgomery, Douglas C. (2009).Design and analysis of experiments. Wiley,
Hoboken, NJ, 7. ed., international student version edition.

Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear models.
Journal of the Royal Statistical Society, Series A, General, 135:370–384.

Nikolaev, Nikolay Y. and Iba, Hitoshi (2001). Regularization approachto induc-
tive genetic programming.IEEE Transactions on Evolutionary Computing,
54(4):359–375.

O’Neill, Michael and Brabazon, Anthony (2006). Grammatical differential evo-
lution. In Arabnia, Hamid R., editor,Proceedings of the 2006 International
Conference on Artificial Intelligence, ICAI 2006, volume 1, pages 231–236,
Las Vegas, Nevada, USA. CSREA Press.

O’Neill, Michael and Ryan, Conor (2003).Grammatical Evolution: Evolution-
ary Automatic Programming in a Arbitrary Language, volume 4 ofGenetic
programming. Kluwer Academic Publishers.

26 GENETIC PROGRAMMING THEORY AND PRACTICE VI

O’Reilly, Una-May (1995).An Analysis of Genetic Programming. PhD the-
sis, Carleton University, Ottawa-Carleton Institute for Computer Science,
Ottawa, Ontario, Canada.

Riolo, Rick, McConaghy, Trent, and Vladislavleva, Ekaterina, editors (2010).
Genetic Programming Theory and Practice VIII, Genetic and Evolutionary
Computation, Ann Arbor, USA. Springer.

Rothlauf, Franz (2006).Representations for genetic and evolutionary algo-
rithms. Springer-Verlag, pub-SV:adr, second edition. First published 2002,
2nd edition available electronically.

Sacks, Jerome, Welch, William J., Mitchell, Toby J., and Wynn, Henry P.
(1989). Design and analysis of computer experiments.Statistical Science,
4(4.409–435):409–427.

Schmidt, Michael D. and Lipson, Hod (2006). Co-evolving fitness predictors
for accelerating and reducing evaluations. In Riolo, Rick L., Soule, Terence,
and Worzel, Bill, editors,Genetic Programming Theory and Practice IV,
volume 5 ofGenetic and Evolutionary Computation, chapter 17, pages –.
Springer, Ann Arbor.

Smits, Guido F., Vladislavleva, Ekaterina, and Kotanchek, Mark E. (2010).
Scalable symbolic regression by continuous evolution with very small pop-
ulations. In Riolo, Rick, McConaghy, Trent, and Vladislavleva, Ekaterina,
editors,Genetic Programming Theory and Practice VIII, volume 8 ofGe-
netic and Evolutionary Computation, chapter 9, pages 147–160. Springer,
Ann Arbor, USA.

Suykens, J. A. K., Gestel, T. Van, Brabanter, J. De, Moor, B. De, and Vande-
walle, J. (2002).Least Squares Support Vector Machines. World Scientific,
Singapore.

Teytaud, Olivier and Gelly, Sylvain (2007). Dcma: yet another derandom-
ization in covariance-matrix-adaptation. InProceedings of the 9th annual
conference on Genetic and evolutionary computation, GECCO ’07, pages
955–963, New York, NY, USA. ACM.

Topchy, Alexander and Punch, William F. (2001). Faster genetic programming
based on local gradient search of numeric leaf values. In Spector, Lee,
Goodman, Erik D., Wu, Annie, Langdon, W. B., Voigt, Hans-Michael, Gen,
Mitsuo, Sen, Sandip, Dorigo, Marco, Pezeshk, Shahram, Garzon, Max H.,
and Burke, Edmund, editors,Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pages 155–162, San Francisco,
California, USA. Morgan Kaufmann.

Zou, Hui and Hastie, Trevor (2005). Regularization and variable selection via
the elastic net.Journal Of The Royal Statistical Society Series B, 67(2):301–
320.

Index

Benchmark problem, 23
Computational complexity, 16–17, 23
Convex, 2, 21–23
Convex optimization, 2, 21–23
Derandomized algorithm, 21
Deterministic, 2–3, 21, 23
Elastic net, 4, 10
Estimation of Distribution Algorithm, 21
Fast Function Extraction, 3, 5–18, 20–23
FFX, 3, 5–18, 20–23
Generalized linear model, 4, 22
GLM, 4, 22
GP adoption, 2
Integrated circuit, 9, 15
Lasso, 4
Least-squares regression, 2, 4

Linear programming, 2
Linear regression, 2, 4, 8
McConaghy Trent, 1
Multi-objective, 3, 5, 8, 11–13, 16, 22
Pathwise regularized learning, 3–8, 11–13, 16, 20,

22–23
Rational functions, 8–9, 20
Real-world problems, 3, 15, 23
Regularized learning, 3–7, 11–12, 20, 22–23
Ridge regression, 4, 20
Scalability, 2–3, 9, 22–23
SR, 2–3, 7, 9–10, 13–14, 16, 18, 21–23
Stochastic, 21, 23
Symbolic regression, 2–3, 7, 9–10, 13–14, 16, 18,

21–23
Technology, 2–3, 23
Theory, 16

