
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 4, AUGUST 2011 557

Trustworthy Genetic Programming-Based
Synthesis of Analog Circuit Topologies Using
Hierarchical Domain-Specific Building Blocks

Trent McConaghy, Member, IEEE, Pieter Palmers, Member, IEEE, Michiel Steyaert, Fellow, IEEE,
and Georges G. E. Gielen, Fellow, IEEE

Abstract—This paper presents MOJITO, a system that per-
forms structural synthesis of analog circuits, returning designs
that are trustworthy by construction. The search space is defined
by a set of expert-specified, trusted, hierarchically-organized
analog building blocks, which are organized as a parameterized
context-free grammar. The search algorithm is a multiobjective
evolutionary algorithm that uses an age-layered population struc-
ture to balance exploration versus exploitation. It is validated
with experiments to search across >100 000 different one-stage
and two-stage opamp topologies, returning human-competitive
results. The runtime is orders of magnitude faster than open-
ended systems, and unlike the other evolutionary algorithm
approaches, the resulting circuits are trustworthy by construc-
tion. The approach generalizes to other problem domains which
have accumulated structural domain knowledge, such as robotic
structures, car assemblies, and modeling biological systems.

Index Terms—Analog, design automation, evolutionary algo-
rithm (EA), integrated circuit (IC), multiobjective optimization.

I. Introduction

THE AUTOMATED design of structures such as robotic
structures, car assemblies, and circuit topologies has

attracted much attention in the evolutionary computation litera-
ture, in part because evolutionary algorithms (EAs) like genetic
programming (GP) [1] handle the non-vector search spaces
of structural design problems more naturally than classical
optimization algorithms.

We herein briefly focus on challenges in analog circuit
topology (structure) design; we will see that these challenges
span other domains as well. In analog topology design, the
aim is to generate a graph-like structure of devices (resistors,

Manuscript received December 4, 2008; revised August 24, 2009 and March
15, 2010; accepted November 1, 2010. Date of publication January 24, 2011;
date of current version July 29, 2011. This work was supported by Solido
Design Automation, Inc., IWT/Medea+ Uppermost, and FWO Flanders. This
paper was recommended by Associate Editor G. Greenwood.

T. McConaghy was with Katholieke Universiteit Leuven, B-3000 Leuven,
Belgium. He is now with Solido Design Automation, Inc., Saskatoon, SK
S7N 3R3, Canada (e-mail: trent mcconaghy@yahoo.com).

P. Palmers was with ESAT-MICAS, Katholieke Universiteit Leuven, B-3000
Leuven, Belgium. He is now with Mephisto Design Automation, Leuven 3001,
Belgium (e-mail: pieter.palmers@gmail.com).

M. Steyaert and G. G. E. Gielen are with Katholieke Universiteit Leu-
ven, B-3000 Leuven, Belgium (e-mail: michiel.steyaert@esat.kuleuven.be;
georges.gielen@esat.kuleuven.be).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2010.2093581

capacitors, transistors), which are connected by wires, to
realize a target electrical behavior. Each device can have sizes
(resistance, capacitance, length and width).

The designer has many challenges. First, he or she must
design quickly; typically within a time budget. Second, the
sized topology should have minimal risk of failure upon man-
ufacturing, because it costs millions of dollars to fabricate and
test a design on modern semiconductor processes [2]. A failed
design means that another round of design, manufacturing
and test is needed, affecting time-to-market and profitability.
Third, the designer must either meet target specifications
for power, performance, or area (if specifications exist); or
more typically, he or she must choose a design based on
what the specification tradeoffs. This is hard because different
topologies have different advantages, those advantages change
depending on the specific manufacturing process, and there are
thousands of possible topologies.

To reduce risk of failure, designers typically use building
blocks and topologies that are trustworthy by construction.
We now explain. A trustworthy analog block (including con-
nections) is one that has been successfully manufactured in
silicon and tested. Simulation is not enough because the
simulator may not properly model effects1 that turn out
to be critical. A topology is a hierarchical composition of
blocks and connections; it is trustworthy by construction if
its blocks and connections are trustworthy. The analog design
field has accumulated a large number of trusted blocks over
the years [3], [4], from differential pairs to bias generators.
Combining these blocks in various ways allows a large number
of possible trustworthy topologies. Physical realization in the
chosen process technology is the ultimate arbiter whether
the circuit works, but since manufacturing is so costly, de-
signs must typically pass the “trustworthy” gate before being
considered. If the designer trusts the topology, variation is
managed, and physical layout is done competently, then the
designer can expect the manufactured design to behave similar
to simulation.

Designers only try novel designs when the trusted design
does not meet the area, power, and performance needs. A novel

1Such effects include temperature variations, process variations, load vari-
ations, unwanted parasitic capacitances and resistances, electromigration ef-
fects, packaging effects, leakage effects, and proximity effects. The simulator
itself could fail due to nonconvergence or poor device models.

1089-778X/$26.00 c© 2011 IEEE



558 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 4, AUGUST 2011

analog topology has one or more novel building blocks. Being
novel, these blocks have not been verified in silicon. Therefore,
such blocks and topologies pose a higher risk of failure. A
novel analog building block is not trusted until it has been
fabricated and tested. To minimize risk, the designer typically
starts from the best-performing trustworthy design, and adds
just enough novelty to meet the performance goals.

To meet the challenges of time constraints, manufacturing
risk, and quality design, the designer needs a way to quickly
evaluate a broad set of trusted topology options. Our aim is
a computer-aided design (CAD) tool to assist the designer in
doing this, which fits in industrial design flows for modern
semiconductor processes.

Analog design has similar characteristics to other problems
in engineering and scientific discovery: the aim is structural
design/discovery, and the problem domain has an accumu-
lation of trusted building blocks which can be exploited in
the design/discovery process. Some problems, like design
of engines or bridges, have further similarities: costly to
thoroughly test, higher risk of failure with novel structures,
and a multiobjective nature.

This paper presents MOJITO, an EA-based approach that
targets such problems. To reliably return trusted designs,
MOJITO uses trusted building blocks, hierarchically connected
in trusted ways. This is in contrast to previous EA analog
synthesis approaches which do not restrict search to trusted
designs (see Section II), and therefore risk failure after manu-
facturing. MOJITO performs multiobjective search, returning
a Pareto-optimal set of topologies with associated device sizes.
MOJITO stands for multi-objective and topology sizing.
Novel contributions of this paper are as follows.

1) A framework to define a structural synthesis search
space that is trustworthy by construction, by reusing the
domain knowledge of trustworthy building blocks for
the field. Specifically, it uses trusted analog blocks as
terminal and nonterminal symbols in a parameterized,
context-free grammar. The search space is all the pos-
sible derivations and parameterizations of the grammar
using the root symbol, terminal symbols and nonterminal
symbol. A candidate individual is a sentence within the
grammar, representing a candidate topology and device
sizes.

2) A novel EA-based search algorithm. It combines a mul-
tiobjective EA (MOEA) with one that avoids premature
convergence by grouping individuals by age (ALPS) [5].
Some search operators traverse the grammatical space
with a tree-based view (like [6]); other operators have a
vector-based view (like [7]). It avoids undesirable stealth
mutations [8] by examining the phenotype for gene
expression before fitness evaluation. A novel multiob-
jective selection mechanism, TAPAS, preserves topology
diversity when searching �2 objectives.

The rest of this paper is organized as follows. Section II re-
views past work in analog synthesis, and Section III introduces
MOJITO. Sections IV and V describe the MOJITO search
space and search algorithm. Section VI presents experimental
results to validate the approach. Section VII concludes.

Fig. 1. Left: ideal designer flow when using open-ended GP-based topology
synthesis. Right: actual flow when using open-ended GP, which includes
iterations of adding constraints. The multiple feedback lines illustrate that
there can be many iterations. “Did it cheat” is affirmative if an expert analog
designer can identify an issue via inspection or further tests.

II. Previous Analog Synthesis Approaches

This section reviews past approaches to analog structural
synthesis, from both EA and analog CAD literature.

GP [1] has a natural ability to handle search spaces with
tree-like and graph-like structures (topologies). Accordingly,
many approaches [9]–[24] use variants of GP, for the target
design flow of Fig. 1 (left). It is simple, taking just the design
goals as inputs, and producing a sized topology. GP is given a
set of devices (transistors, resistors, and so on) that it can con-
nect in arbitrary ways without rules—all the building blocks
are “invented” (or reinvented) from scratch. This is what gives
it the open-ended nature. No topology information is input.

The early approaches such as [10], [15], and [18] had few
constraints. Any combination of devices and connections was
allowed, with fitness measured via a SPICE circuit simulator.
While synthesized circuits were optimal according to the
simulator, they did not look like human-designed circuits, and
sometimes had obvious flaws such as dangling resistors. Such
circuits can be found in early papers like [9], up to recent
papers like [24]. In contrast to novel manual designs, these
computer-generated novel designs were not accompanied by
an explanation for the behavior of the design.

Researchers took note of the unfamiliar-looking circuits, and
proceeded to iteratively add constraints to block out unwanted
behaviors. Fig. 1 (right) illustrates the revised flow. This
includes [16], [21], and [22], which added tighter constraints
using domain knowledge to improve efficiency and get more
palatable-appearing circuits. The key problem is that novel
building blocks could still be generated, which are not trust-
worthy because they have not been verified in silicon.

To overcome the trust issue, another EA approach inspired
by [25] replaced the SPICE simulator with reconfigurable
analog circuits (e.g., [26]). However, since such circuits have
different silicon implementations than application-specific
circuits, they have different issues; a functioning evolved
reconfigurable block does imply trust in an application-specific
block. Also, because reconfigurable analog circuits have sig-
nificantly worse performance than application-specific analog



McCONAGHY et al.: TRUSTWORTHY GENETIC PROGRAMMING-BASED SYNTHESIS OF ANALOG CIRCUIT TOPOLOGIES 559

Fig. 2. Proposed flow for trustworthy-by-construction structural synthesis,
using MOJITO. A small set of hierarchically organized, pre-specified, and
field-specific building blocks combine to create a large set of possible
topologies (structures). MOJITO uses GP to search across possible building
block combinations (topologies) in a hierarchy-aware fashion.

circuits, they are rarely used in industrial system-on-chip de-
sign flows [2]. Our aim is to support designers in these flows.

The CAD literature [27] has approached the analog syn-
thesis problem in different ways. Some approaches [28]–
[33] used pre-defined rule-based reasoning or abstract models
having transforms to well-known circuit structures. Due to
using well-known circuit structures, the designs are trusted.
However, the tools required up-front setup efforts of weeks
to months, which must be repeated for each circuit type and
each new process node, both of which are highly unpalat-
able for industrial usage. DARWIN [34] and MINLP [35]
give trustworthy circuits by predefining a space of designer-
known circuit topologies within a fixed-length vector, where
variables enable/disable/choose components or subblocks.2

Unfortunately the approaches rely on a flat definition of the
search space specific to the circuit type; they do not show a
clear path to generalize or are restricted to <100 topologies.

III. MOJITO Flow

Fig. 2 shows the proposed MOJITO flow. It has the same
simple flow as the ideal open-ended GP approaches, but it
returns topologies that are trustworthy by construction. This
is possible by searching across a database (DB) of pre-
defined trusted topologies. This set is sufficiently large that
the designer does not have to intervene in a typical design
problem. MOJITO’s other inputs relate to measuring objectives
and constraints, via testbenches which specify the circuit
analysis and measures for specific performances, and simulator
model files describing how devices like transistors behave for
a particular semiconductor process node.

The challenges are how to specify a large topologies DB,
and how to search it; Sections IV and V elaborate on this.

IV. MOJITO Search Space

This section describes the framework for a synthesis search
space having a large number of possible topologies, which are
trustworthy by construction. It also describes an exemplary set
of operational amplifier topologies.

2There is little conceptual difference between DARWIN and MINLP;
the differences lie in search space implementations and choice of search
algorithm.

A. Search Space Framework

The search space is the possible derivations of a parame-
terized, context-free grammar [6]. That is, there is a set of
nonterminal and terminal symbols. Each nonterminal has a
set of possible derivation rules, where each derivation is an
expansion into a list of symbols. The symbols are parameter-
ized in the same fashion that computer-language functions are
parameterized: they input parameters which can be propagated
to lower-level symbols. One nonterminal is the root symbol.

Trusted analog circuit building blocks are the grammar’s
symbols. Nonterminal symbols (compound and flexible blocks,
defined shortly) can expand according to one or more deriva-
tion rules (the possible sub-blocks). The specific building
blocks are taken from analog design textbooks [3], [4]. This
grammar defines a space of possible topologies and associated
device sizings; a sentence in the grammar is a single sized
topology.

Equivalently, the possible topologies DB is composed of hi-
erarchically organized blocks. Some sub-blocks do not expand
(terminal symbols), and other sub-blocks do expand (nontermi-
nal symbols). The highest-level block (root symbol) expresses
any grammatically valid composition of blocks and therefore
covers the space of all possible topologies (sentences). We
take the block-based perspective in the following description,
because it is easier to relate to analog circuit building-block
domain knowledge.

Each block has an interface which includes parameters, and
external ports (nodes). When a block expands into a sub-
block, each sub-block’s parameters are a function of its parent
block’s parameters. A specific block is instantiated when its
parameters and external ports have been specified. Therefore, a
specific sized topology is instantiated when the parameters and
external ports for the highest-level block have been specified.

The DB has three types of blocks: an atomic block (terminal
symbol), a compound block (nonterminal with 1 expansion
option), and a flexible block (noterminal with >1 option).

1) Atomic block. Have no embedded blocks. Being leaf
nodes in the building block hierarchy, it is only these
blocks that are expressed in the final sized topology
(netlist). Fig. 3 gives examples.

2) Compound block. These have one or more sub-blocks
embedded. Sub-blocks can have internal connections
among themselves and to the block’s external ports. Fig.
4 gives examples.

3) Flexible block. These have the special topological pa-
rameter chosen−part−index, which, during netlisting, is
used to select one of several candidate embedded blocks
and respective wirings. Example: a current mirror which
may be simple or cascode (chosen−part−index = 0 or
1). Fig. 5 gives an example.

Larger blocks are hierarchically composed from smaller
blocks, all the way to the top-level block. A hierarchically
composed set of blocks that includes flexible blocks allows for
>1 possible topologies. Therefore, the top-level block (e.g.,
operational amplifier) defines the DB of possible topologies
and sizings (e.g., possible operational amplifiers). The search
space for a given block is the combination of possible values



560 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 4, AUGUST 2011

Fig. 3. Example atomic blocks: nmos4 transistor, pmos4 transistor, resistor,
capacitor. Example of ports and input parameters: nmos4 has four external
ports: G, D, S, and B; it has two input parameters, W and L. Note how DC-
controlled voltage source (dcvs) has only one external port; the other port ties
directly to ground.

Fig. 4. Example compound blocks. mos3 is a wrapper for mos4, so that the
mos4’s “B” node is not seen at higher levels. mosDiode ties together two
internal ports to only present two external ports. biasedMos uses a 1-port
dc-controlled voltage source (dcvs) block to set its gate bias internally.

Fig. 5. Example flexible block: mos4 turns the choice of NMOS versus
PMOS into a parameter “chosen−part−index.” Note how parameters get
assigned from mos4 to either of its sub-blocks. In this case, both sub-blocks
use the mos4’s W and L parameters as their own W and L values.

that each of the block’s interface parameters and nodes can
take. Therefore, the overall search space is the combination of
possible values for the top-level block’s parameters and nodes.
The blocks can be specified in one of many forms: as a text-
based grammar, an analog hardware description language, a
circuit schematic editor, or a programming language. We use
Python [36], where each block is a different method.

B. Search Space Locality

A key aim in designing the search space’s building blocks is
to make it as easy to search as possible. Good locality means
that small changes to the genotype lead to expected small
changes in performance (objective function). Good locality is
important for an effective search algorithm [8].

In analog circuits, there is a complication to achieving
locality. The genotype is expressed into a sized topology,
which is then expressed as electrical behavior (via simulation),
which is then measured for performance (fitness). Locality

Fig. 6. Four circuits with the same qualitative electrical behavior, but dra-
matically different topologies. The circuits on the left have PMOS inputs, and
on the right have NMOS inputs (input−is−PMOS = true/false). The load’s
rail is vdd in the top row, and gnd in the bottom row (loadrail−is−vdd =
true/false).

is easy to achieve if there is a small change in each step
of expression. However, in analog circuits, very different
building blocks can express the same qualitative electrical
behavior at their interface. That is, the same design intent
can be captured with different implementations. For example,
Fig. 6 shows four circuits. These circuits have the same
qualitative electrical behavior: differential amplification from
input signal to output signal. However, as the figure shows,
they have very different structures. There are many such
examples in analog circuit design [3], [4].

Past GP synthesis approaches (Section II) do not handle this,
because they do not capture design intent of different building
blocks. To illustrate, a GP tree from a past approach does not
have a means to convert among the four topologies of Fig. 6
via small genotype changes. Instead, major genotype changes
would be needed for this small change to fitness.

Our approach preserves locality in the mapping from geno-
type to electrical behavior, ignoring the degree of changes to
the sized topology. We allow large changes to the topology,
even when there are small changes to genotype and electrical
behavior. We use this approach at the overall topology level,
and within sub-blocks of the topology.

We implement our approach via carefully-designed building
blocks. Specifically, we use a flexible block as the qualitative
target electrical behavior, and its different possible sub-blocks
as the structures implementing the target behavior. For exam-
ple, a flexible block for the electrical behavior of “differential
amplification” can expand into one of the four blocks in
Fig. 6. A small change to the genotype will not change the
qualitative behavior—they all do differential amplification—
but that genotype change could choose a different structure to
implement the differential amplification.

C. Example of an “Individual”

The search space is a set of circuit building blocks, and
is equivalently all derivations of a parameterized grammar.
Therefore, a point in the search space is a circuit, and
equivalently is a sentence. In EA terms, it is an individual.



McCONAGHY et al.: TRUSTWORTHY GENETIC PROGRAMMING-BASED SYNTHESIS OF ANALOG CIRCUIT TOPOLOGIES 561

Fig. 7. Example individual (“PMOS-input Miller OTA”) shown in schematic
form, annotated with MOJITO building blocks.

TABLE I

Example Individual: Values for Topology Choice Variables

Variable Name Value
chosen−part−index 1
stage1−loadrail−is−vdd 0
stage1−input−is−pmos 1
stage1−degen−choice 0
stage1−inputcascode−is−wire 1
stage1−inputcascode−recurse 0
stage1−load−chosen−part−index 1
stage2−loadcascode−recurse 0
stage2−load−part−index 0
stage2−inputcascode−is−wire 1
stage2−loadrail−is−vdd 1
stage2−input−is−pmos 0
stage2−degen−choice 0
stage2−inputcascode−recurse 0

This section illustrates the different ways one can view an
individual’s structure.

We begin with the schematic. It is a graphical depiction
how the devices are connected in the topology, with domain-
specific symbols for each device type. It concretely defines the
circuit, yet is intuitive to analog designers. Fig. 7 is an example
individual shown in schematic form. From an analog designer
perspective, this schematic is a “PMOS-input Miller OTA”
with two stages, the first stage having differential PMOS inputs
and simple current mirror load, second stage having single-
ended NMOS input and output with single-device PMOS load,
and Miller-style feedback with one capacitor.

The schematic is annotated to illustrate its hierarchical com-
position of the circuit blocks. A choice has been made for each
flexible block. The root node is dsViAmp2−VddGndPorts, (as
indicated in the top left corner of the schematic). Its sub-
blocks are dsViAmp1 (first stage), ssViAmp1 (second stage),
and viFeedback (Miller feedback capacitor), which subdivide
further until Atomic blocks (leaf nodes) like nmos4, pmos4,
and capacitor.

The individual can be represented as a tree, or as a vector
of parameter values. The vector’s parameters are those needed

TABLE II

Example Individual: Values for Device-Value Variables

Variable Name Value
feedback−C 1.1883e-11 F
stage1−Ibias 0.016297 A
stage1−Ibias2 0.015746 A
stage1−Vds−internal 1.4584-V
...

... (30 more)

to instantiate the root block, “ds amp vdd/gnd ports.” Some
parameters are for topology choices (chosen−part−index), and
others are for setting specific device values (Is and Vs which
translate to Ws and Ls). Tables I and II give the example
individual’s topology choice values and device-setting values,
respectively.

Each parameter in Table I relates to one of the flexible block
choices. The parameter chosen−part−index decides between
one and two stages. A value of 1 indicates that two stages were
chosen; this is confirmed by the two-stage schematic in Fig.
7. stage1−loadrail−is−vdd = 0 means that stage 1’s loadrail
is not set to vdd, but to gnd instead, as already observed. And
so on. Note that some variables may be ignored, depending
on values of other variables, e.g., if chosen−part−index=0 to
choose a one-stage topology, then all variables related to the
second stage have no effect (i.e., neutrality, see Section V-B).

Table II gives an example of device-setting values. These are
parameters which do not affect the topology. Parameters are
Is and Vs, not Ws and Ls because an operating-point driven
formulation is used [37], where Is and Vs get translated into
Ws and Ls at the level of NMOS4 and PMOS4 netlisting.

A final view of an individual is the SPICE netlist. It is a text-
based listing, where each line gives a device’s connections,
type (e.g., resistor), and parameters (e.g., resistance). This is
the form used as input to the SPICE circuit simulator, to
estimate the individual’s performance values.

D. Size of Search Space

These building blocks were used for the design of an
opamp topologies DB, integrated into MOJITO. It allows
for: one-and two-stage amplifiers, PMOS versus NMOS
loads, PMOS versus NMOS inputs, stacked versus folded
cascode versus non-cascode inputs, cascode versus non-
cascode versus resistor loads, level shifting, different current
mirrors, single-ended and differential inputs, and single-ended
outputs. Thirty building blocks hierarchically combine to
allow 3528 different topologies, counted via simple bottom-up
combinatorial counting rules.3 The space was further extended
by supporting symmetrical operational transconductance
amplifiers (OTAs), as Fig. 8 (left) shows, by adding current
mirror folding blocks. Support was also added for cascoding

3These are the topology-counting rules: the count for an atomic block is
one; for a flexible block, it is the sum of the counts of each choice block; for a
compound block, it is the product of the counts of each of its sub-blocks. But
there are subtleties. Subtlety: for a given choice of flexible block, other choice
parameters at that level may not matter. Example: if a one-stage amplifier is
chosen, do not count choices related to second stage. Subtlety: one higher-level
choice might govern >1 lower-level choices, so do not overcount. Example: a
two-transistor current mirror should have two choices (NMOS versus PMOS),
not four (NMOS versus PMOS x 2).



562 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 4, AUGUST 2011

Fig. 8. Left: symmetrical OTA. Right: folded cascoded folder OTA.

TABLE III

Size of Opamp Topology Spaces

Technique # Topologies Trustworthy?
GP without reuse, e.g., [18] � billions NO
DARWIN [34] 24 YES
MINLP [35] 64 YES
GP with reuse: MOJITO 3528 and 101 904 YES

of folding transistors, as Fig. 8 (right) shows. These changes
increase the count to 101 904 possible topologies. Table
III compares the topology count for different synthesis
approaches. It shows that the MOJITO space has ≈1500x
more trusted topologies compared to previous work [34],
[35]. Topologies can have up to 15 devices: 11 devices for the
first stage (e.g., Fig. 8, right), and four devices for the second
stage. It is possible to increase the number of components in
a topology by adding more complex building blocks, though
of course the larger search space will lower convergence rate.

We can compare computational effort for a naive approach
that optimizes each topology, one at a time, then merges the
results. Assuming that an optimization takes 2000 individuals
on average, then 100 000 * 2000 = 200 million individuals are
needed. In comparison, we show later that MOJITO does well
with 100 000 individuals (2000x fewer).

A large set of options can qualitatively change the designer’s
perception of the process: rather than doing “selection” from
a few dozen topologies, the tool is “synthesizing” the optimal
combination of building blocks from a large set of possi-
bilities. The available topologies are broad enough to meet
performance aims for many real-world problems. Since the
topologies DB only needs to be defined once for a given
problem type (e.g., opamp), the designer does not need to view
it as an input to the tool, not even if the process node changes.

V. MOJITO Search Algorithm

MOJITO search is a MOEA that uses an age-layered
population structure (ALPS) [5] to balance exploration versus
exploitation. Some operators traverse the grammatical space
in a tree fashion (like [6]), and some operators traverse it in
a vector fashion (like [7]) .

The algorithm’s aim is formulated as a constrained multi-
objective optimization problem

minimize fi(φ) i = 1...Nf

s.t. gj(φ) ≤ 0 j = 1...Ng

hk(φ) = 0 k = 1...Nh

φ ∈ �

(1)

where � is the “general” space of possible topologies and
sizings. The algorithm traverses � to return a Pareto-optimal

set Z = {φ∗
1, φ

∗
2, · · · , φ∗

NND
} on Nf objectives, Ng inequality

constraints, and Nh equality constraints. Each individual φ∗
l is

Pareto-optimal. Without loss of generality, we can minimize
all objectives and use ≤ 0 inequalities. By definition, a design
φ is feasible if it meets all constraints: {gj(φ) ≤ 0}∀j,
{hk(φ) = 0}∀k, φ ∈ �. By definition, all the designs in Z

are nondominated, i.e., no design φ in Z dominates any other
design in Z. A feasible design φa dominates another feasible
design φb if {fi(φa) ≤ fi(φb)}∀i, and {fi(φa) < fi(φb)}∃i.
We follow the dominance rules of NSGA-II [38] for handling
constraints: a feasible design always dominates an infeasible
design, and if two designs are infeasible, then the one with
smallest constraint violation is considered dominant.

The next subsection describes the high-level search algo-
rithm, and subsequent sections describe details.

A. High-Level Search Algorithm

We use an EA as the base of our search algorithm because
EAs can readily search in a grammar-defined space [6], [7],
perform constrained multiobjective optimization (e.g., [38]),
and offer flexibility in overall algorithm design [39], [40].

A key issue with most EAs is premature convergence, where
the algorithm finds a locally-optimal design and makes no
further improvements. This is an issue in synthesis because
some sub-blocks may get little chance to size properly before
being filtered out via selection. We need to ensure an ade-
quate supply of building blocks [41]. Possible tactics include
very large populations like [11], larger mutation rate, larger
mutation size, restarting like [42], preselection [43], crowding
[44], and deterministic crowding [45]. Many MOEAs have
some diversity preservation by including the Pareto set in
selection. For example, NSGA-II [38] and SPEA2 [46] have
limited-size Pareto archives that are directly included in the
selection population; archive size is limited by deterministic
crowding and clustering, respectively. The approach [47] has
an unlimited-size Pareto archive, from which individuals are
periodically selected for reuse in the main population. All
these approaches, MOEA and otherwise, can prematurely
converge because their genetic building block supply is from
just the initial generation; if that material does not include the
optimal material, then the run could fail.

Periodic injection of randomly-drawn individuals might
help because it allows new genetic material to enter.
However, random individuals compete poorly against existing
individuals which have already had many generations to
improve. To preserve random individuals until they are
competitive, the technique of hierarchical fair competition
[48] segregates individuals into fitness layers, and restricts
competition to within layers. Unfortunately, near-stagnation
can occur at some fitness levels because the best individuals
per level have no competition.

To overcome this issue, the ALPS [5] segregates by genetic
age instead of fitness. Each age layer Pk holds NL individuals.
By example, P1 might allow individuals with age 0–19, P2

allows age 0–39, and so on; the top level PK allows age 0–
∞. If an individual gets too old for a fitness layer, it gets
removed from that layer. Genetic age is how many generations
an individual’s oldest genetic material has been around: the age



McCONAGHY et al.: TRUSTWORTHY GENETIC PROGRAMMING-BASED SYNTHESIS OF ANALOG CIRCUIT TOPOLOGIES 563

Fig. 9. Structure of MojitoSynthesis(), which uses a multiobjective age-
layered population structure (ALPS).

TABLE IV

Procedure MojitoSynthesis()

Inputs: �, Na, K, NL

Outputs: Z

1. Ngen = 0; Z = ∅; P = ∅
2. while stop(Ngen, . . . ) �= True:
3. if (Ngen%Na) = 0:
4. if |P | < K:
5. P|P |+1 = ∅
6. P0,i = InitialCircuit(�), i = 1...NL

7. for k = 1 to |P |:
8. (Pk, Z) = OneMOEAGeneration(Pk , Pk−1, Z)
9. Ngen = Ngen + 1
10. return Z

of an initial individual is 0; the age of a child is the maximum
of its parents’ ages; age is incremented by 1 each generation.
Selection at an age layer k uses the individuals at that layer k

and layer k − 1 as candidates, such that younger high-fitness
individuals can propagate to higher layers. Every Na (“age
gap”) generations, a new age layer may be added, and initial
individuals enter layer k = 0 as random individuals.

MOJITO search uses ALPS. Fig. 9 and Table IV show
MOJITO search structure and behavior, respectively.

We adapted ALPS to handle multiple objectives, via a
MOEA at each age layer k (line 9 in Table IV). Whereas a
canonical MOEA would select at just layer k, ALPS-based
MOEA selection also considers the individuals from layer
k − 1. An external archive holding the Pareto-optimal set
Z is maintained.4 Stopping conditions (line 2) can include
a maximum number of individuals Nind,max or a maximum
number of generations Ng,max.

Table V shows the algorithm for the MOEA at each age
layer R, for one generation. Note how individuals from the
lower layer k − 1 are imported for selection.

4The Pareto archive has no size limit. While the archive’s information does
not feed back to the search process, the MOEA search algorithm may maintain
its own subset, e.g., as NSGA-II does.

TABLE V

Procedure OneMOEAGeneration()

Inputs: Pk , Pk−1, Z

Outputs: P ′
k
, Z′

1. Psel = SelectParents(Pk ∪ Pk−1)
2. Pch = ApplyOperators(Psel)
3. Pch = Evaluate(Pch)
4. P ′

k
= Psel ∪ Pch

5. Z′ = NondominatedFilter(Z ∪ Pch)
6. return (P ′

k
, Z′)

The next three sections elaborate on the search operators,
multiobjective selection, and generation of initial individuals.

B. Search Operators

1) Trees Versus Vectors, and Neutrality: Recall from
Section IV that the search space is all derivations of a
parameterized grammar. To traverse this space, we could use a
grammar-based GP approach which operates on individuals as
trees [6], or a grammar-based GP approach which operates on
individuals as vectors [7]. A vector-oriented approach is the
simplest, though it has issues by ignoring the hierarchy. First,
change some of the individual’s variables may not change the
resulting sized topology at all, because those variables are in
sub-blocks that are turned off. From the perspective of a search
algorithm, this means that there is neutrality [49], which makes
performance more unpredictable [8]. For EAs, another issue
is that an n-point or uniform crossover operator could readily
disrupt the values of the building blocks in the hierarchy,
e.g., the sizes of some sub-blocks’ transistors change while
others stay the same, thereby hurting the resulting topology’s
likelihood of having decent behavior. From an EA perspective
this means that the “building block mixing” is poor [41].

To overcome these issues, the search algorithm uses both
tree-style and vector-style operators, and directly accounts for
neutrality.

2) Mutation Operator: The mutation operator varies one
or more parameters. Continuous-valued parameters follow
Cauchy mutation [50] which allows for both tuning and explo-
ration. Integer-valued chosen−part−index parameters follow
a discrete uniform distribution. Other integer and discrete
parameters follow discretized Cauchy mutations. The number
of parameters to vary is drawn from the discrete density
function of Table VI, which biases toward fewer variables,
but sometimes allows significantly more variables to change.

3) Crossover Operator: Crossover works as follows: given
two parent individuals, randomly choose a sub-block S in
parent A, identify all the parameters associated with sub-block
S, and swap those parameters between parent A and parent B.
It is possible that S shares parameters with other sub-blocks
that have the same higher-level block as S; and in that case
the new parameters for S will affect those other sub-blocks.

There are cases where operator change a genotypes without
affecting the phenotype; i.e., neutrality or stealth mutations
operations can exist. Some researchers have found this to be
beneficial to efficiency, while others have found it detrimental.
To avoid unpredictable changes to search efficiency, MOJITO



564 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 4, AUGUST 2011

TABLE VI

Number of Variables to Mutate is Chosen According to the

Following Distribution

# Variables to Mutate Probability Relative Bias
1 0.769 100
2 0.115 15
3 0.038 5
4 0.023 3
5 0.015 2
6 0.015 2
7 0.015 2
8 0.007 1
Sum 1.0 130

Probability of a specific # variables to mutate = (relative bias)/(sum of
relative biases).

avoids stealth operations, as recommended by [8]. Specifically,
in a mutation/crossover, the change is retained only if the phe-
notype (sized topology) changes. Mutation/crossover attempts
are repeated until a phenotype change occurs. This does not
typically impact synthesis runtime in practice, because the
bottleneck is in fitness evaluation.

C. Handling Multiple Objectives

In a MOEA, the key challenge is how to select NL parents
Psel from the candidate parents Pk ∪Pk−1 in a fashion that rec-
onciles the multiple objectives. MOJITO uses two approaches:
NSGA-II [38] which handles 2–3 objectives well, and TAPAS
[51] for �2 objectives.

1) Multiobjective Selection with 2–3 Objectives: NSGA-
II: NSGA-II [38] is a good starting point because it is
relatively simple, reliable, well-studied, and can readily in-
corporate constraints. It performs selection in three steps.
Its first step sorts the candidate parents into nondomination
layers Fi, i = 1...NND, where F1 is the nondominated set,
F2 is what would be nondominated if F1 was removed, F3

is what would be nondominated if F1 ∪ F2 was removed,
and so on, F contains all the candidates with no duplicates
F1 ∪ F2 ∪ · · · FND = Pk ∪ Pk−1. NSGA-II’s second step fills
Psel. It first adds all individuals from F1, if they all fit, i.e.,
if |Psel| + |F1| ≤ NL. If there is space left, it then adds all
individuals from F2 if they all fit. If there is space left, it
then adds all individuals from F3 if they all fit. And so on.
For the third NSGA-II step, once the Psel-filling step reaches
an Fi where not all of Fi’s individuals can fit, then a subset
of Fi’s individuals needs to be chosen. NSGA-II chooses this
subset as the individuals with the highest distance from other
Fi individuals in the performance space, i.e., deterministic
crowding [45].

Many analog design problems have �2–3 objectives [3].
Unfortunately, NSGA-II does poorly in this scenario [52]. The
reason is that with many objectives, all of the population can
be nondominated, i.e., there is just one nondomination layer
F1 = Pk ∪ Pk−1. So, the whole population is selected using
crowding, which biases toward the corners of the performance
space; and not the center points which are close to all designs.
That is, NSGA-II focuses on designs that are excellent on 1–2
objectives, yet poor at the rest.

TABLE VII

Procedure OneMOEA/DGen()

Inputs: Pk , Pk−1, Z, W

Outputs: P ′
k
, Z′

1. P ′
k

= Pk

2. for i in {1, 2, . . . , NL}:
3. B = {best ind. according to wi} ∪

{best ind. acc. to wj}∀j, j = N(wi)
4. Psel = {∼ unif (B), ∼ unif (B)}
5. φchild = ApplyOperators(Psel)
6. φchild = Evaluate(φchild )
7. Z′ = NondominatedFilter(Z ∪ φch)
8. for j in N(wi):
9. if φchild is better than P ′

k,j
acc. to wj :

10. replace ind. P ′
k,j

with φchild

11. return (P ′
k
, Z′)

2) Multiobjective Selection with �2 Objectives: This
section discusses approaches for �2 objectives, leading up to
TAPAS. The paper [52] benchmarked several approaches, and
found that adaptive ranking on Pareto front (ARF) performed
best. Like in crowding, ARF prefers some individuals in
the Pareto front over others. However, whereas crowding
biases to corners of the performance space, ARF biases to
individuals that do relatively well on each objective, via
the “Adaptive Rank” criterion AR(φ) =

∑Nf

i=1 rank(fi, φ, Z),
where rank(fi, φ, Z) is the rank of individual φ with reference
to the Pareto-optimal set Z, for objective fi. For a given
objective, the best individual has a rank value of 1, the second-
best has rank 2, and so on, ARF is implemented like NSGA-II
in the first two selection steps, but it differs in the third step:
if the Pareto front will fill up all of Psel, then the AR criterion
is used; otherwise the usual NSGA-II “crowding” criterion is
used. That is, use AR only if |Psel| + |F1| ≥ NL. Therefore,
ARF is only used to distinguish among Pareto-optimal individ-
uals, not among the remaining (Pareto-dominated) individuals.
While ARF handles �2–3 objectives better than NSGA-II, its
deficiency is the opposite: it gives poor spread across objective
space.

MOEA with decomposition (MOEA/D) [53] has char-
acteristics favorable to �2 objectives. Its idea is to run
NL single-objective local optimizations simultaneously, where
each local optimization i minimizes a weighted sum across
objective costs wi

T f (φ). Each local optimization points to a
different direction wi, and directions are well-spread W =
{w1, w2, . . . , wNL

}. Selection and crossover for a given di-
rection wi considers the individuals of neighboring directions
j ∈ N(wi). The MOEA/D version of OneMOEAGen() is in
Table VII and Fig. 10.

In preliminary experiments, we found that MOJITO with
MOEA/D could efficiently generate a smooth Pareto Front
without performance gaps, but it contained far fewer nondom-
inated individuals than NSGA-II. In a single-topology space
this may not be a problem, since the retained individuals
are the “best” for one (or more) weights. However, this is
undesirable when searching across �1 topologies, because
MOEA/D’s local-optimization perspective biases toward easy-
to-optimize topologies.



McCONAGHY et al.: TRUSTWORTHY GENETIC PROGRAMMING-BASED SYNTHESIS OF ANALOG CIRCUIT TOPOLOGIES 565

Fig. 10. MOEA/D multiobjective selection in action.

Fig. 11. TAPAS multiobjective selection in action.

To address this, TAPAS [51] builds on MOEA/D, by ex-
plicitly maintaining a set of unique topologies at each region
of the Pareto front. TAPAS stands for topology aware pareto
search. TAPAS is like the MOEA/D algorithm of Table VII,
except for line 3’s mechanism to compute B: for a weight wi

or wj , instead of choosing one best individual according to
the weight, the M best unique topologies are chosen. Fig. 11
illustrates (for M = 3).

In our experiments, we use NSGA-II for smaller problems
(having 2–3 objectives), and TAPAS for the larger problems.

D. Generation of Initial Individuals

This section describes how initial individuals are generated:
a simple method for the smaller problems (having 2–3 objec-
tives), and an improved method for the larger problems.

For smaller problems, Table VIII shows the algorithm to
generate initial individuals. Recall that an individual φ can be
specified by a vector d of Nd variables. A random φ is created
by drawing random vectors: for each variable i (line 3), either
draw a value from a continuous uniform random distribution
U([min, max]) in lines 4–5, or from a discrete set of values
with equal bias U({val1, val2, . . . }) in lines 6–7.

On larger problems, preliminary experiments showed that
the simple algorithm was inadequate. One issue was uneven
sampling of topology types; for example, it generates single-
stage amplifiers as frequently as two-stage amplifiers, de-
spite the fact that there are many more possible two-stage
topologies. This is because there is equal bias to choosing
each variable value, such as the choice between one and two
stages. To fix this, we instead give equal bias to each possible
topology by performing uniform sampling of sentences in a
grammar as in [54]. This is implemented by performing a one-
time computation of the number of possible topologies for
each building block (using the rules of Section IV), and using

TABLE VIII

Procedure InitialCircuit() (First Implementation)

Inputs: �

Outputs: φ ∈ �

1. d = topLevelVariables(�)
2. φ = ∅
3. for i = 1 to Nd :
4. if di is continuous:
5. φi ∼ U([di,min, di,max])
6. else: #di is discrete:
7. φi ∼ U({di,1, di,2, . . . , di,max})
8. return φ

TABLE IX

Procedure RandomDrawCircuit()

Inputs: �

Outputs: φ ∈ �

1. d = topLevelVariables(�)
2. φ = ∅
3. for i = 1 to Nd :
4. if di is a choice parameter:
5. φi ∼ ddf ({pi,1 for di,1, pi,2 for di,2, . . . })
6. else if di is continuous:
7. φi ∼ U([di,min, di,max])
8. else: #di is discrete:
9. φi ∼ U({di,1, di,2, . . . , di,max})
10. return φ

those counts c are used as the bias on corresponding Flexible
block chosen−part−index values on the top-level block. Table
IX illustrates. The key change is the introduction of lines 4–5,
where each choice variable i’s value is chosen according to
a discrete density function having a probability pi,j for each
possible value di,j , pi,j = ci,j/

∑jmax

j=1 ci,j ,
∑jmax

j=1 pi,j = 1, ci,j

is the number of sub-topologies if the jth value is used for
variable i.

With subsequent preliminary experiments, we found a sec-
ond issue: most randomly-generated higher-complexity cir-
cuits (e.g., folding topologies, 2-stage amplifiers) do not
survive more than a few generations. While ALPS generated
more topologies in later random injection phases, those would
die out too. Upon investigation, we found that randomly-
generated complex amplifiers’ performances were much worse
than simple ones due to poor initial sizing, and that they did
not improve as quickly. This is because the more complex
amplifiers have more sizing and biasing variables to set
reasonably in order to reach a minimal performance bar.

There is plenty of literature (EA and otherwise) reconciling
multiobjective optimization and constraint handling (e.g., [38],
[55]). However, for this problem domain, there is opportu-
nity to use domain knowledge to: 1) improve survival rate
of complex topologies, and 2) optimize each new topology
in an inexpensive fashion. Our approach is to defer com-
petition among topologies until each topology is at least
nearly feasible. It is acceptable to allow competition once
feasible, because each topology will occupy its own niche
in the performance space and will therefore be maintained
within the multiobjective framework. This is implemented by



566 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 4, AUGUST 2011

Fig. 12. Results for the experiment of Section VI-B. This plot shows results from three synthesis runs. Set (a) shows a Pareto front for Vcmm,in = 1.5-V,
set (b) is for Vcmm,in = 0.3-V, and set (c) is for Vcmm,in = 0.9-V. Aim is to minimize power and maximize gain-bandwidth. Each point is an optimally sized
topology; each topology has many different sets of sizings. The expected topologies were found.

TABLE X

Procedure InitialCircuit() (Improved Implementation)

Inputs: �

Outputs: φ ∈ �

1. φ = randomDrawCircuit(�)
2. while meetsFuncDOCs(φ) �= True:
3. φ′ = mutateSizings(φ)
4. if funcDOCsCost(φ′) < funcDOCsCost(φ):
5. φ = φ′

6. while meetsSimDOCs(φ) �= True:
7. φ′ = mutateSizings(φ)
8. if simDOCsCost(φ′) < simDOCsCost(φ):
9. φ = φ′

10. while meetsPerfConstraints(φ) �= True:
11. φ′ = mutateSizings(φ)
12. if perfCost(φ′) < perfCost(φ):
13. φ = φ′

14. Return φ

performing constraint satisfaction for each topology, using
computationally inexpensive constraints. The topology must
pass the most inexpensive constraints to proceed to the next
level of constraints. Table X illustrates.

The first gate (lines 2–5) has function device operating
constraints (DOCs) [56], which measure if current and volt-
age conditions are being met (e.g., “is the transistor in the
saturation operating region?”). Because currents and voltages
are part of the individual’s design point (see Section IV),
then these DOCs can be directly computed without needing
simulation. The second gate (lines 6–9) uses DOCs computed
from dc simulation. While slower than function DOCs, dc
simulation is less expensive than other analyses like transient.
The third gate (lines 10–13) uses performance constraints
across all the circuit analyses (ac, dc, transient, and so on).
It is the most thorough, but the most expensive. Note that
mutateSizings() is like the mutation operator of Section V-B,
except only non-topology parameters get changed.

These improvements enable the reliable generation of com-
plex topologies that are competitive against simpler topologies.

VI. Experimental Results

This section describes the experimental setup, and results
for questions regarding MOJITO performance and behavior.

A. Experimental Setup

Experiments of Sections VI-B and VI-C have 2–3 objectives
with NSGA-II for MOEA selection, and use the topology
DB with 3528 possible topologies. The experiment of Section
VI-D has six objectives with TAPAS for MOEA selection, and
uses the extended topology DB containing 101 904 topologies.
The top-level block had Nd = 50 parameters which include
both topology selection variables and sizing variables. In mea-
suring performance, ac/dc analyses took ≈1–4 s to simulate,
and transient analyses took ≈10–30 s. MOJITO’s search space
and search algorithm were implemented about 25 000 lines5

of Python code [36]. Table XI gives further parameters.

B. Experiment: Hit Target Topologies?

Here, the aim of this experiment is to validate MOJITO’s
ability to find targeted topologies. The objectives were to
maximize GBW, and to minimize power. Three runs were
done; the only difference among them is the common-mode
voltage Vcmm,in at the input. We know that for Vdd = 1.8-V
and Vcmm,in = 1.5-V, topologies must have an NMOS input
pair. For Vcmm,in = 0.3-V, topologies must have PMOS inputs.
At Vcmm,in = 0.9-V, there is no restriction between NMOS and
PMOS inputs. Each run took ≈overnight on ten single-core
2.0 GHz Linux machines, covering ≈100 000 individuals.

Fig. 12 illustrates the outcome of the experiments. It con-
tains the combined results of the three MOJITO runs. Result

5The code breakdown is: 2500 for the building blocks, 500 for constraints
and objectives, 3000 for the EA, 2000 to call the simulator and retrieve results,
4000 for data structures, 2500 for parallel processing, and 10 000 for unit tests.



McCONAGHY et al.: TRUSTWORTHY GENETIC PROGRAMMING-BASED SYNTHESIS OF ANALOG CIRCUIT TOPOLOGIES 567

TABLE XI

Experimental Setup Parameters

Technology 0.18 μm CMOS
Testbench
parameters

Load capacitance = 1 pF, supply voltage = 1.8-V, output
DC voltage = 0.9-V

Simulator HSPICE [57]
Constraints Phase margin PM > 65 deg, DC gain > 30 dB, GBW

> 1 GHz, power < 100 mW, dynamic range > 0.1-V,
SR > 1e6-V/s, dozens of device operating constraints

Objectives See specific experiment
EA
settings

Num. age layers K = 10, num. individuals per age layer
NL = 100, age gap Na = 20, max. num. individuals
Nind,max = 100 000. TAPAS: 5 neighbors per weight,
M = 20 topologies per weight, 20 inds. in age layer
initialization

(a) has Vcmm,in = 1.5-V, and has indeed only topologies with
NMOS inputs. MOJITO chose to use 1-stage and 2-stage
amplifiers, depending on the power-GBW tradeoff. Result (b)
has Vcmm,in = 0.3-V, and MOJITO only returns amplifiers with
PMOS input pairs. For result (c), a Vcmm,in = 0.9-V has been
specified. Though both amplifiers with NMOS and PMOS
input pairs might have arisen, NMOS inputs were preferred.

The curve shows the switch in topology around GBW ≈
1.9 GHz, moving from a folded-cascode input (larger GBW)
to a simple current-mirror amp (smaller GBW). Note that there
would be more amplifiers with folded-cascode input at GBW
< 1.9 GHz, but they are not plotted here because they are
dominated by the current-mirror amp which needs lower power
for the same GBW. Equivalently, the tradeoff indicates that
the current-mirror amp has a maximum achievable GBW of
≈ 1.9 GHz, beyond which a higher-power amp is needed.
To get deeper insight, the designer can use his expertise and
experience for a deeper analysis. For example, the analog-
design explanation for the step in power is: going from a non-
folded to a folded input means that a second current branch is
needed, which has its own current/power needs. Interestingly,
the search retained a stacked current-mirror load for about 250
MHz GBW.

This experiment validated that MOJITO did find the topolo-
gies that we had expected a priori.

C. Experiment: Diversity?

The aim of this experiment is to verify that MOJITO could
get interesting groups of topologies in a tradeoff of three
objectives. The motivation is, whereas a single-objective struc-
tural synthesis can only return one topology, more objectives
means more possible topologies, because different topologies
naturally lie in different regions of the performance space.
In this experiment, one run was done. There objectives are:
maximize GBW, maximize gain, and minimize area.

Fig. 13 shows the results. We find that MOJITO found
diverse structures, as expected. MOJITO found that a folded-
cascode opamp gives high GBW but with high area; 2-stage
amps give high gain but at the cost of high area; the low-
voltage current mirror load is a 1-stage with high gain; and
there are many other 1-stage opamp topologies which give a
broad performance tradeoff. These are all results that a circuit
designer would expect.

Fig. 13. Results for the experiment of Section VI-C. This illustrates the
three-objective Pareto front (maximize GBW, maximize gain, minimize area),
two objectives as a time. Individuals are grouped according to some of their
structural characteristics (e.g., 1-stage versus 2-stage).

Fig. 14. Results for the experiment of Section VI-D. The plot shows a 2-D
cross-section of the 6-D Pareto front.

D. Experiment: Human-Competitive Results?

This section investigates whether MOJITO results are com-
petitive with human-selected and human-sized topologies. The
problem has six objectives: maximize DC gain, maximize
GBW, minimize power, minimize area, maximize dynamic
range (DR), and maximize slew rate (SR). Constraints were
device operating constraints, DC gain > 20 dB, GBW > 10
MHz, power < 100 mW, 10−14 ≤ area ≤ 10−4m2, PM
> 65deg, DR > 0.1-V, SR > 106-V/s. The search space
contained 101 904 topologies, plus sizes and biases for each.
Five 2x 4-core Xeon machines were run for 7 days.

Fig. 14 shows a cross section of the resulting Pareto front
in the gain-GBW plane. It has 17 438 designs, comprising 152
unique topologies having 1 or 2 stages. Many of these designs
include stages like those in Fig. 8. For comparison, we got a
reference design from an expert designer. We see that MOJITO
designs compete with the reference design along these axes.
MOJITO designs were competitive on all axes, as Table XII
shows. Indeed, MOJITO found 59 designs that were better
than the manual reference design, distributed over 12 unique
topologies. For further verification, we manually inspected the
topologies (three of the authors are analog designers); the



568 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 4, AUGUST 2011

TABLE XII

Comparison of MOJITO to Expert Reference Design (Experiment

of Section VI-D)

Performance Aim Manual MOJITO MOJITO
Topology − Symmetrical Telescopic Miller
Gain (dB) Max. 55 53.06 56.24
GBW (MHz) Max. 330 474 413
DR (V) Max. 1.2 1.01 1.53
SR (V/μs) Max. 380 389 554
Power (mW) Min. 2.26 1.02 7.40

Area (μm2) Min. − 218 3974
PM (deg) ≥ 65 65 67 65.18
DOCs met? YES YES YES

Fig. 15. Results for the experiment of Section VI-D. The plot shows cost
versus generation, for each ALPS age layer.

topologies were indeed trustworthy6 enough to consider for
physical silicon implementation.

Fig. 15 shows the convergence over time. Cost is merely
the sum of each TAPAS wi’s cost.7 This figure shows that
MOJITO has little risk of premature convergence as it searches
for the Pareto Optimal Set, because the lowest age level
continually introduces new genetic material, and intermediate
age layers allow the new material to compete fairly.

E. Comparison to Open-Ended GP Synthesis

Problems of comparative complexity took open-ended GP
100 million or more individuals [18], and those results were
not trustworthy by construction. It was estimated that to get
to get a reasonable degree of robustness would take 150 years
on a 1000 node 1 GHz cluster [59]. That is, it would have
taken [(150 years * 365 days/year * 24 h/day) * 1000 CPUs *
1 GHz]/[(150 h) * 1 CPU * 2 GHz] = 4.4 million times more
computational effort than MOJITO to get comparable results.
Even if a speedup of 1000x for open-ended GP was achieved,
it would still be 4000x slower than MOJITO. By ignoring
the domain knowledge that has accumulated over the decades,
open-ended GP creates a very difficult problem that could be
avoided. Since many disciplines accumulate structural domain
knowledge as they mature, codifying this knowledge improves
search runtime and result quality.

6See definition in Section I.
7A convenient single y-variable to track convergence with is a bonus of

using MOEA/D or TAPAS, compared to NSGA-II or ARF.

F. MOJITO Applications and Use Cases

To apply MOJITO to other circuit problems, one needs to
modify the topologies DB and objectives/constraints. The DB
can be modified by building up different blocks, or using a
different block as the root node. In this fashion, MOJITO was
used for designing current mirrors robust to electromagnetic
compatibility effects [60], complex computational circuits
[61], and flash analog-to-digital converters [61].

MOJITO has several industrially-applicable use cases. Once
it is run for a particular process technology (e.g., 45 nm
TSMC), its Pareto-optimal set can be stored as a database,
ready to be queried by different designers for different spec-
ifications. This is particularly useful for “jellybean IP”—
off-the-shelf designs where a simple, non-aggressive solution
is quickly needed. The designs can be used in the context
of larger designs; for example, MOJITO-designed cell-level
opamps can be used in system-level analog-to-digital convert-
ers, which themselves can be in chip-level designs such as
Wi-Fi or GSM having >100 000 transistors. MOJITO itself
can be used to explore system-level or chip-level designs, by
using Pareto-optimal designs from lower levels in its blocks
DB, and sufficiently fast simulation (e.g., with FastSPICE [58]
or behavioral modeling [62]). To migrate to a different process,
one merely switches simulator model files. In another use case,
MOJITO can help designers to creatively design novel blocks:
the designer enters the novel block into the blocks DB, runs
MOJITO, then determines the region of Pareto front for which
the block has provided benefit, and what surrounding circuitry
is needed.8

The approach generalizes beyond circuits into domains
having an accumulation of structural domain knowledge, such
as engineering problems (e.g., automotive design, robotics),
or scientific modeling problems (e.g., reverse engineering of
biological systems). The domain must have trusted building
blocks and trusted compositional design principles. To apply,
one specifies the building blocks DB, genotype-to-phenotype
mapping, phenotype evaluation, and objectives/constraints.

In using a MOJITO styled approach for circuits or other
domains, challenges arise. It can take significant effort to
capture a field’s key structural domain knowledge—days,
weeks, or months, depending on the domain and the size
of the set. There can be dozens of parameters in the larger
blocks, which takes some care to manage. Synthesis runtime
for problems that take seconds or minutes to evaluate an
individual can still be significant (though of course parallel
processing helps). On faster-evaluating problems, it may take
repeated applications of the search operators to take a non-
neutral step, which may become a bottleneck. But for many
domains, these disadvantages are outweighed by the benefits
of trustworthy-by-construction synthesis.

VII. Conclusion

This paper presented MOJITO, a novel approach for
EA-based synthesis of trustworthy structures. MOJITO inputs

8A small modification to MOJITO enables it to automatically create and
test novel building blocks in the context of otherwise-trustworthy topologies;
[63] elaborates on this.



McCONAGHY et al.: TRUSTWORTHY GENETIC PROGRAMMING-BASED SYNTHESIS OF ANALOG CIRCUIT TOPOLOGIES 569

domain knowledge in the form of field-specific, hierarchically-
composed building blocks. These blocks have been developed
over the years by domain experts. The building blocks DB
is organized as a parameterized grammar. MOJITO’s EA
searches through combinations of these possible blocks to
return a Pareto-optimal set of trustworthy structures. It has
both tree-oriented and vector-oriented means of searching the
derivations of the grammar, and avoids stealth mutations by
testing for gene expression before fitness evaluation. MOJITO
is demonstrated in the problem domain of analog circuit
topology synthesis. It searches across >100 000 different one-
stage and two-stage opamp topologies, and returns thousands
of trustworthy Pareto-optimal sized topologies. MOJITO can
be applied to other problem domains which have built up
structural domain knowledge, such as automotive design and
scientific modeling.

References

[1] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[2] International Technology Roadmap for Semiconductors. (2008, Apr.)
[Online]. Available: http://public.itrs.net

[3] B. Razavi, Design of Analog CMOS Integrated Circuits. New York:
McGraw-Hill, 2000.

[4] W. M. C. Sansen, Analog Design Essentials. Berlin, Germany: Springer,
2006.

[5] G. S. Hornby, “ALPS: The age-layered population structure for reducing
the problem of premature convergence,” in Proc. Genet. Evol. Comput.
Conf., 2006, pp. 815–822.

[6] P. A. Whigham, “Grammatically-based genetic programming,” in Proc.
Workshop Genet. Progr., 1995, pp. 33–41.

[7] M. O’Neill and C. Ryan, Grammatical Evolution: Evolutionary Auto-
matic Programming in an Arbitrary Language. Norwell, MA: Kluwer,
2003.

[8] F. Rothlauf, Representations for Genetic and Evolutionary Algorithms,
2nd ed. Berlin, Germany: Springer-Verlag, 2006.

[9] J. R. Koza, F. H. Bennett, D. Andre, M. A. Keane, and F. Dunlap,
“Automated synthesis of analog integrated circuits by means of genetic
programming,” IEEE Trans. Evol. Comput. vol. 1, no. 2, pp. 109–128,
Jul. 1997.

[10] J. D. Lohn and S. P. Colombano, “Automated analog circuit synthesis
using a linear representation,” in Proc. 2nd Int. Conf. Evol. Syst. Biol.
Hardw., 1991, pp. 125–133.

[11] J. R. Koza, D. Andre, F. H. Bennett, III, and M. Keane, Genetic
Programming 3: Darwinian Invention and Problem Solving. San Mateo,
CA: Morgan Kaufman, 1999.

[12] J. B. Grimbleby, “Automatic analogue circuit synthesis using genetic
algorithms,” IEEE Proc. Circuits Syst. Devices, vol. 147, no. 6, pp. 319–
323, Dec. 2000.

[13] R. Zebulum, M. Vellasco, and M. Pacheco, “Variable length represen-
tation in evolutionary electronics,” Evol. Comput., vol. 8, no. 1, pp.
93–120, 2000.

[14] C. Goh and Y. Li, “GA automated design and synthesis of analog circuits
with practical constraints,” in Proc. Congr. Evol. Comput., vol. 1. 2001,
pp. 170–177.

[15] H. Shibata, S. Mori, and N. Fujii, “Automated design of analog circuits
using cell-based structure,” in Proc. Nasa/DoD Conf. Evol. Hardw.,
2002, pp. 85–92.

[16] T. Sripramong and C. Toumazou, “The invention of CMOS amplifiers
using genetic programming and current-flow analysis,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 21, no. 11, pp. 1237–
1252, Nov. 2002.

[17] R. Zebulum, M. Pacheco, and M. Vellasco, Evolutionary Electronics:
Automatic Design of Electronic Circuits and Systems by Genetic Algo-
rithms. Boca Raton, FL: CRC Press, 2002.

[18] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G.
Lanza, Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Norwell, MA: Kluwer, 2003.

[19] S. Ando, M. Ishizuka, and H. Iba, “Evolving analog circuits by variable
length chromosomes,” in Advances in Evolutionary Computing, A.
Ghosh and S. Tsutsui, Eds. New York: Springer, 2003, pp. 643–662.

[20] J. Hu and E. Goodman, “Robust and efficient genetic algorithms with
hierarchical niching and sustainable evolutionary computation model,”
in Proc. Genet. Evol. Comput. Conf., 2004, pp. 1220–1232.

[21] T. R. Dastidar, P. P. Chakrabarti, and P. Ray, “A synthesis sys-
tem for analog circuits based on evolutionary search and topological
reuse,” IEEE Trans. Evol. Comput., vol. 9, no. 2, pp. 211–224, Apr.
2005.

[22] C. Mattiussi and D. Floreano, “Analog genetic encoding for the evolution
of circuits and networks,” IEEE Trans. Evol. Comput., vol. 11, no. 5,
pp. 596–607, Oct. 2007.

[23] A. Das and R. Vemuri, “Topology synthesis of analog circuits based on
adaptively generated building blocks,” in Proc. Design Autom. Conf.,
Jun. 2008, pp. 44–49.

[24] Y. Sapargaliyev and T. G. Kalganova, “Unconstrained evolution of ana-
logue computational ‘QR’ circuit with oscillating length representation,”
in Proc. Int. Conf. Evol. Syst., LNCS 5216. 2008, pp. 1–10.

[25] A. Thompson, “Evolving electronic robot controllers that exploit hard-
ware resources,” in Proc. 3rd Eur. Conf. Artif. Life, 1995, pp. 640–656.

[26] A. Stoica, D. Keymeulen, R. Zebulum, A. Thakoor, T. Daud, G.
Klimeck, Y. Jin, R. Tawel, and V. Duong, “Evolution of analog circuits
on field programmable transistor arrays,” in Proc. NASA/DoD Conf.
Evol. Hardw., 2000, pp. 99–108.

[27] R. A. Rutenbar, G. G. E. Gielen, and B. A. A. Antao, Eds., Computer
Aided Design of Analog Integrated Circuits and Systems. Piscataway,
NJ: IEEE Press, 2002, pp. 3–30.

[28] F. M. El-Turky and R. A. Nordin, “BLADES: An expert system for
analog circuit design,” in Proc. Int. Conf. Circuits Syst., 1986, pp. 552–
555.

[29] R. Harjani, R. A. Rutenbar, and L. R. Carley, “OASYS: A framework
for analog circuit synthesis,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 8, no. 12, pp. 1247–1266, Dec. 1992.

[30] H. Y. Koh, C. H. Séquin, and P. R. Gray, “OPASYN: A compiler for
CMOS operational amplifiers,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 9, no. 2, pp. 113–125, Feb. 1990.

[31] B. A. A. Antao and A. J. Brodersen, “ARCHGEN: Automated synthesis
of analog systems,” IEEE Trans. Very Large Scale Integr. Circuits, vol.
3, no. 2, pp. 231–244, Jun. 1995.

[32] A. Doboli and R. Vemuri, “Exploration-based high-level synthesis of
linear analog systems operating at low/medium frequencies,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 22, no. 11, pp.
1556–1568, Nov. 2003.

[33] E. Martens and G. G. E. Gielen, “Top-down heterogeneous synthesis of
analog and mixed-signal systems,” in Proc. Des. Autom. Test Eur., 2006,
pp. 275–280.

[34] W. Kruiskamp and D. Leenaerts, “DARWIN: CMOS opamp synthesis
by means of a genetic algorithm,” in Proc. Des. Autom. Conf., 1995, pp.
433–438.

[35] P. C. Maulik, L. R. Carley, and R. A. Rutenbar, “Integer programming
based topology selection of cell level analog circuits,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 14, no. 4, pp. 401–412,
Apr. 1995.

[36] Python. (2008, Apr. 23). Python Programming Language [Online].
Available: http://www.python.org

[37] F. Leyn, G. G. E. Gielen, and W. M. C. Sansen, “An efficient dc root
solving algorithm with guaranteed convergence for analog integrated
CMOS circuits,” in Proc. Int. Conf. Comput.-Aided Design, 1998, pp.
304–307.

[38] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[39] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. Berlin, Germany: Springer, 1998.

[40] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[41] D. E. Goldberg, The Design of Innovation: Lessons From and For
Competent Genetic Algorithms. Berlin, Germany: Springer, 2002.

[42] A. Auger and N. Hansen, “A restart CMA evolution strategy with
increasing population size,” in Proc. IEEE Congr. Evol. Comput., 2005,
pp. 1769–1776.

[43] D. J. Cavicchio, “Adaptive search using simulated evolution,” Ph.D.
dissertation, Dept. Commun. Comput. Sci., Univ. Michigan, Ann Arbor,
1970.

[44] K. A. DeJong, “Analysis of the behavior of a class of genetic adap-
tive systems,” Ph.D. dissertation, Dept. Comput. Commun. Sci., Univ.
Michigan, Ann Arbor, 1975.

[45] S. W. Mahfoud, “Crowding and preselection revisited,” in
Parallel Problem Solving from Nature 2, R. Manner and B.



570 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 4, AUGUST 2011

Manderick, Eds., Amsterdam, The Netherlands: Elsevier, 1992, pp.
27–36.

[46] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm for multiobjective optimization,” in Proc.
Evol. Methods Design, Optim. Control Appl. Ind. Prob., 2002, pp. 95–
100.

[47] G. Smits and M. Kotanchek, “Pareto-front exploitation in symbolic
regression,” in Genetic Programming Theory and Practice II, U.-M.
O’Reilly, T. Yu, R. Riolo, and B. Worzel, Eds. Berlin, Germany:
Springer, 2004, pp. 283–289.

[48] J. Hu, E. K. Goodman, K. Seo, Z. Fan, and R. Rosenberg, “The
hierarchical fair competition framework for sustainable evolutionary
algorithms,” Evol. Comput., vol. 13, no. 2, pp. 241–277, 2005.

[49] P. Schuster, W. Fontana, P. F. Stadler, and I. Hofacker, “From sequences
to shapes and back: A case study in RNA secondary structures,” Proc.
Roy. Soc. (London) B, vol. 255, pp. 279–284, Mar. 1994.

[50] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, Jul. 1999.

[51] P. Palmers, T. McConaghy, M. Steyaert, and G. G. E. Gielen, “Massively
multi-topology sizing of analog integrated circuits,” in Proc. Des. Autom.
Test Eur. Conf., 2009, pp. 706–711.

[52] D. Corne and J. Knowles, “Techniques for highly multiobjective opti-
mization: Some nondominated points are better than others,” in Proc.
Genet. Evol. Comput. Conf., 2007, pp. 773–780.

[53] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

[54] H. Iba, “Random tree generation for genetic programming,” in Proc. 4th
PPSN Int. Conf. Evol. Comput., LNCS 1141. 1996, pp. 144–153.

[55] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern Heuristics.
Berlin, Germany: Springer, 2004.

[56] H. E. Graeb, S. Zizala, J. Eckmueller, and K. Antreich, “The sizing
rules method for analog integrated circuit design,” in Proc. Int. Conf.
Comput.-Aided Des., 2001, pp. 343–349.

[57] Synopsys, Inc. (2009, Aug. 21). Product Page: HSPICE [Online]. Avail-
able: http://www.synopsys.com/Tools/Verification/AMSVerification/
CircuitSimulation/HSPICE/Pages/default.aspx

[58] Synopsys, Inc. (2009, Aug. 21). Product Page: CustomSim
[Online]. Available: http://www.synopsys.com/Tools/Verification/
AMSVerification/CircuitSimulation/Pages/CustomSim-ds.aspx

[59] T. McConaghy and G. G. E. Gielen, “Genetic programming in industrial
analog CAD: Applications and challenges,” in Genetic Programming
Theory and Practice III, T. Yu, R. L. Riolo, and B. Worzel, Eds. Berlin,
Germany: Springer, 2005, ch. 19, pp. 291–306.

[60] J. Loeckx, T. Deman, T. McConaghy, and G. G. E. Gielen, “A novel
EMI-immune current mirror topology obtained by genetic evolution,” in
Proc. Conf. Electro Magnetic Compatibility, 2009.

[61] P. Gao, T. McConaghy, and G. G. E. Gielen, “ISCLEs: Importance sam-
pled circuit learning ensembles for trustworthy analog circuit topology
synthesis,” in Proc. Int. Conf. Evol. Syst., Sep. 2008, pp. 11–21.

[62] K. Kundert and O. Zinke, The Designer’s Guide to Verilog-AMS.
Norwell, MA: Kluwer, 2004.

[63] T. McConaghy, P. Palmers, G. G. E. Gielen, and M. Steyaert, “Genetic
programming with reuse of known designs,” in Genetic Programming
Theory and Practice V, R. L. Riolo, T. Soule, and B. Worzel, Eds.
Berlin, Germany: Springer, 2007, pp. 161–186.

Trent McConaghy (S’95–M’99) received the
B.E. and B.S. degrees in computer science (both
with great distinction) from the University of
Saskatchewan, Saskatoon, SK, Canada, in 1999,
and the Ph.D. degree in electrical engineering from
Katholieke Universiteit Leuven, Leuven, Belgium, in
2008.

He is currently a Co-Founder and the Chief Sci-
entific Officer with Solido Design Automation, Inc.,
Saskatoon. He was a Co-Founder and the Chief Sci-
entist with Analog Design Automation, Inc., Ottawa,

ON, Canada, which Synopsys, Inc., Mountain View, CA, acquired in 2004.
Prior to that, he did research for the Canadian Department of National
Defense, Ottawa. He has more than 30 peer-reviewed technical papers and
20 patents granted/pending. He is the author of “variation-aware structural
synthesis of analog circuits: a computational intelligence approach,” and a
Co-Editor of Genetic Programming Theory and Practice VII and Genetic
Programming Theory and Practice VIII. His current research interests include
statistical machine learning and evolutionary computation, with transistor-

level computer-aided design applications of variation-aware design, knowledge
extraction, symbolic modeling, and analog topology design.

Dr. McConaghy’s thesis won the International EDAA “Outstanding Disser-
tation Award.”

Pieter Palmers (S’04–M’09) was born in Leuven,
Belgium, in 1980. He received the Masters degree
in electronic engineering from the Katholieke Uni-
versiteit Leuven, Leuven, Belgium, in 2003, and
has recently received the Ph.D. degree from ESAT-
MICAS, Katholieke Universiteit Leuven.

He is currently with Mephisto Design Automation,
Leuven. His current research interests include the
field of high speed data converter design and analog
design automation.

Michiel Steyaert (SM’92–F’04) received the Mas-
ters degree in electrical-mechanical engineering and
the Ph.D. degree in electronics from the Katholieke
Universiteit Leuven, Leuven, Belgium, in 1983 and
1987, respectively.

From 1983 to 1986, he received the IWNOL
Fellowship from the Belgian National Foundation
for Industrial Research, Brussels, Belgium, to work
as a Research Assistant with the ESAT Laboratory,
Katholieke Universiteit Leuven. In 1987, he was re-
sponsible for several industrial projects in the field of

analog micro power circuits with ESAT as an IWONL Project Researcher. In
1988, he was a Visiting Assistant Professor with the University of California,
Los Angeles. In 1989 he was appointed by the National Fund of Scientific
Research, Belgium, as a Research Associate, in 1992 as a Senior Research
Associate, and in 1996 as a Research Director with ESAT. From 1989 to 1996,
he was a Part-Time Associate Professor. He is currently a Full Professor with
Katholieke Universiteit Leuven and the Chair of the Department of Electrical
Engineering. He authored or co-authored over 400 papers and over 15 books.
His current research interests include high-performance and high-frequency
analog integrated circuits for telecommunication systems and analog signal
processing.

Dr. Steyaert received the 1990 and 2001 European Solid-State Circuits
Conference Best Paper Award. He received the 1991 and 2000 NFWO Alcatel-
Bell-Telephone Award for Work in Telecommunications ICs. He received the
1995 and 1997 IEEE-ISSCC Evening Session Award, and the 1999 IEEE
Circuit and Systems Society Guillemin-Cauer Award. He was recognized as
one of the top ten authors in the 50 year history of ISSCC.

Georges G. E. Gielen (S’87–M’92–SM’99–F’02)
received the M.S. and Ph.D. degrees in electrical en-
gineering from the Katholieke Universiteit Leuven,
Leuven, Belgium, in 1986 and 1990, respectively.

He is currently a Full Professor with Katholieke
Universiteit Leuven. He has authored or co-authored
five books and more than 300 peer-reviewed papers.
His current research interests include the design of
analog and mixed-signal integrated circuits, espe-
cially analog and mixed-signal computer-aided de-
sign (CAD) tools and design automation (modeling,

simulation and symbolic analysis, analog synthesis, analog layout generation,
analog and mixed-signal testing). He is a Coordinator or Partner of several
industrial research projects in this area, including several European projects
(EU, MEDEA, ESA).

Dr. Gielen is regularly a member of program committees of international
conferences (DAC, ICCAD, ISCAS, DATE, CICC, and so on), and served as
the General Chair of DATE in 2006 and of the International Conference on
Computer-Aided Design in 2007. He serves on editorial boards of international
journals like IEEE Transactions on Circuits and Systems, Springer
International Journal on Analog Integrated Circuits and Signal Processing,
and Elsevier Integration. He received the 1995 Best Paper in the Wiley
International Journal on Circuit Theory and Applications, and was the 1997
Laureate of the Belgian Royal Academy on Sciences, Literature and Arts in
the discipline of engineering. He served as an elected member of the Board
of Governors of the IEEE Circuits and Systems (CAS) Society. He was the
President of the IEEE CAS Society in 2005. He received the IEEE Computer
Society Outstanding Contribution Award and the IEEE Circuits and Systems
Society Meritorious Service Award in 2007.


