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Abstract—Custom circuit designers have long favored manual early equation-based design phase typically ignores ti@mia
equation-based approaches in early design stages, because ifraditionally, this has not been an issue: if variation etiéel
gives excellent insight and control over the design. However, this gerformance up to 10-15%, for most circuits early-stagéges

flow is threatened: as modern process nodes advance, proces Id def iati ies t foll ¢ f vadati
variation affects circuit performance more strongly, hurting the ~¢OU'0 G€l€r variaion worries 1o a follow-up step of vareen

accuracy of existing equations. Because designers are typicallyaware _tuning and verification o
not statistical modeling experts, it is difficult to adapt the equa- But in modern processes, variation can cause performance

tions to inco_rpor_ate stati_stical variations. _This paper presents a to vary not just by 10-15%, but by orders of magnitude [4].
fast, deterministic technique to help designers revise equations ~ommercial tools cannot help directly: they are designed fo

to account for statistical variation. Specifically, the technique follow- tunina. not making a topology more fundamen-
extracts compact equations of performance as a function of W-up tuning, ing pology u

process variables, even for cases when there are thousands ofally variation-aware. Thl.JS, the initial-stage design nimy
possible variables and the equations are highly nonlinear. In fact, extremely prone to variation.

it provides a whole set of equations that trade off simplicity versus  To handle massive variation without compromising design
accuracy compared to SPICE. The technique is validated on a nerformance or yield, early stage designs need to be created
broad range of custom integrated circuit modeling problems. . - .
with variation-awareness. One may consider manually devel
. INTRODUCTION oping equations that account for process variation. This is
fa great challenge, because there are so many variables, the
%esigner “rules of thumb” about what matters can change with
ach new process node, and finally, designers are experts at
rcuits, not statistical modeling.

With Moore’s Law driving the continual shrinking o
semiconductor devices [1], small random imperfections
manufacturing are having an increasing effect on circuit pee.
formance and therefore yield. As variation issues worseH
variation-aware design is becoming increasingly impdrtan

in custom integrated circuit design (analog, mixed-signal (Manual) develop (Auto) extract eqns.
memory, and radio frequency circuits). eqns. of design — of process var. —
performance performance
~
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\ P ) (topology, init. sizing) aware
1 | ) ’
e N\ Not variation- - ! N
Early-stage design aware. May lead _
(topol%gy ?nit sizi%g) to variation-prone Variation-aware
P topology or sizing. tuning & verification
\_ J/
| ) -
’ \ 1
Variation-aware [ Layout ]
tuning & verification
N l d Fig. 2. Proposed design flow.
Layout This paper explores an approach to help designers develop
y g equations in early-stage design that account for process va
Fig. 1. Status quo design flow. ation. Figure 2 illustrates the flow. Specifically, this pape

proposes a fast, scalable, deterministic algorithm cafEX
Figure 1 illustrates a typical custom design flow. It hagFast Function Extraction) to extract interpretable noggir

an early-stage design step, where the designer is devglopi
y 9 9 P 9 glop anhese days, this follow-up step is well supported by commkveigation-

a or S.eleCtilng_ a tOPO'Og}’y and performing manual .SiZierare tools that reconcile corner-based design with vatifin, with scaling
from first-principles equations [2], [3]. Unfortunatelyhi$ to tens of thousands of devices and millions of simulations.



equations that map process variables to performance. tn fatll. BACKGROUND: PATHWISE REGULARIZED LEARNING

it provides a whole set of equations: some simple but 1ess) o5t squares (LS) learning aims to find the values for each
accurate, then more equations Wlth increasing accurad:y (r@oeﬁicientai in equation (L) that minimizely — X * a||2,
ative to SP,ICE) but also increasing complexity. The' def"gn\ﬁlhere theX andy are training data. Therefore LS learning
canhthen pick oge of these equations, and merge it with liS,s to minimize training error; it does not acknowledge
or her existing design equations. Merging can be as SiMpieying error (future model prediction error). Becausesit |

as summing tr,]e design equauor]’s comp_onents and the ,‘@ﬂigularly focused on training error, LS learning may retur
ation equation’s components. With variation-aware eQuati e coefficients: where a few coefficients are extremely

in hand, .the designer can proceed wiitriation-aware early- large, making the model overly sensitive to those coeffisien
stage design. _ _  This is overfitting.

_The CAFFEINE equation-extraction tool [5] had similar gy arized learning aims to minimize the model’s sensitiv-
aims. But it was limited by scalabilityX100 variables), i 5 overfit coefficient values, by adding minimization rtes
runtime (10 minutes or more), and consistency (stochasfi,; ;e dependent solely on the coefficienist|? or |[al;.
algorithm). In contrast, we will show FFX solve problemstwit 1.« has the implicit effect of minimizing expected future

>1000 variables, deterministically ir20 s. A key enabler ,qe| prediction error. The overall problem formulation is
is a recently-developed technique from the machine legrnin

literature: pathwise regularized learning [7].
This paper verifies the FFX approach on a variety of custom a* = minimize ||y — X * al|*> + Xa||a||* + M |lall;  (2)
circuits: an opamp, a voltage reference, a bitcell, a semge a
a GMC filter, and a comparator.
The rest of this paper is organized as follows. Section

Including both regularization terms is alastic net formula-
ﬁipn of regularized learning [8] To make the balance between

mathematically describes the problem. Section 11l inticetu A1 and )‘_2 explicit, we can _set>\_1 = A gnd A2 :.(1 _“p). *./\’
pathwise regularized learning, a key component of FFYX/N€reA is now the regularization weight, andis a "mixing
Section 1V describes the FFX algorithm in detail. Sections parameter.

and VI present the experimental setup and results, regpcti A Path of solutions sweeps across a set of possibialues;
Section VII concludes. returning ana for each\. Interestingly, we can start athraige

value of \, where alla; are zero; then work towards smallgr
[l. PROBLEM DEFINITION uniformly on a log scale. Figure 3 illustrates: the pathtstan

) ) ] the far left, and the witth decreasing (going right), coefficients
The problem of extracting equations is known as templatgi- take nonzero values one at a time.

free symbolic modeling [5], with inputs and outputs as fato
Given:

L) 37
e X andy: A setof{x;,y;},j = 1..N data samples where | ==
x; is a Ng-dimensional poing andy; is a corresponding ‘ :;

output value. In our applicatiodX will be process variable ol
values from Monte Carlo sampling, angl will be the /
0.0 -\.\

output values from SPICE-simulating the samples. .
-0.2} \'\\

e No model template
4é4 3é4 29‘4 15_"4

Lambda

Coefficient for base

Determine:

e A set of symbolic models (equationg) that provide a
tradeoff between minimizing model complexitfy and
minimizing future model prediction errafs.

Each modeln maps anV,-dimensional inpute to a scalar

output valuey, i.e. j = m(:c) Future model prediction err.or Fig. 3. A path of regularized regression solutions: eachicadrslice of

fo = E, ,L(m) whereL(m) is the squared-error loss functionthe plot gives a vector of coefficient valuesfor each of the respective

Y — m(az))Q. basis functions. Going left to right (decreasiky each coefficient; follows

‘ . . . its own path, starting at zero then increasing in magnitudel @metimes
We restrict ourselves to the class of generalized linegl; easing).

models (GLMSs) [6]. A GLM is a linear combination a¥g

basis functionsB;;i = 1,2, ..., Np: An extremely fast variant of pathwise regularized learning

was recently developed / rediscovered: coordinate de$épnt

1The middle term (quadratic term, like ridge regression), ermges
correlated variables to group together rather than lettingingle variable
. . . dominate, and makes convergence more stable. The last iertarfn, like
We measure complexity simply as the number of basis fungzse)  drives towards a sparse model with few coefficients discourages

tions (bases) in modeh; that is,complexity(m) = Np(m). any coefficient from being too largéalls =, |as|.

Np
§=m(@)=ao+ Y a;*Bi(x) (1)
i=1



: . TABLE |
At each point on the path, coordinate descent solves for STEP ONE: GENERATEBASES()

coefficient vector by: looping through each; one at a time,

updating thea; through a trivial formula while holding the Inputs: X  #input training data
rest of the parameters fixed, and repeating untitabilizes, ~OUtPuts: B #list of bases
For speed, it uses “hot starts”: at each new point on the path; Generate univariate bases
coordinate descent starts with the previous poiat's 1. Bi={}

. . . . 2. for each input variable = {z1, 2, ...}
Some highly useful properties of pathwise regularizediear 3 for each exponentzp = {0.5. 1.0, 2.0}

ing are: 4. let expressiome,, = vo=P
. . 5. if ok(evalbesp, X
e Learning speed is comparable or better than LS. 6 éddbiﬂo B)l)
e Unlike LS, can learn when there are fewer samples tharf- for each operatosp = {abs(), logio, -}
coefficientsN < n. 8. let expressioop = op(beas)
0. if ok(evalpop, X))
e Can learn thousands or more coefficients. 10. addbop to By

e It returns a wholefamily of coefficient vectors, with # Generate interacting-variable bases

different tradeoffs between number of nonzero coefficientstl- Bz = {}
12. fori = 1 to lengthB1)

and training accuracy. 13 let expression; — Bi [i]
For further details, we refer the reader to [7][8]. 14.  forj=1toi—1 .
15. let expressio; = B1[j]
16. if b; is not an operator # disallowp() * op()
IV. FFX ALGORITHM 17. let expression;,te, = b; * bj
18. if ok(evalpinier, X))
A. FFX Introduction 19. addb;,ter t0 B2

20. returnB = B1 U B2

The FFX algorithm has these steps:

e First, from a smaller set of input variables, it generates a
massive set of basis functions, where each basis functioriThe operators used arebs(z), log1o(z), maz(0,z — thr),
combines one or more interacting nonlinear subfunctiorsnd max (0, thr — ). The latter two operators atgénge op-

e Then, it uses regularized learning to rapidly identify thrators [9], famously used in multivariate adaptive reges
important basis functions from the set of bases and théplines (MARS) [10]. Hinge operators add model flexibility,
corresponding coefficients. In fact, it exploits the speci&llowing it to “turn off” some regions of input space and
“path-following” property of regularized learning, to ide focus on remaining regions. For each hinge operator at each

tify the best coefficients and bases when there are 0 basg¥iable z;, we allowed 5 different threshold valugdr,

e Finally, it filters the candidate functions to a nondominate""% T0-8%(maza; —minz;); wheremina; andmaza,; are
the minimum and maximum values seen fgrin all training
set that trades off number of bases and error. samples

For maximum coverage of possible functions, FFX lever- 1 scale to hundreds or thousands of input variables, we
ages a special technique to include rationals, with ndgégi made a small change to the procedure in Table I: after step

extra computational cost. 10, do a pilot run of linear learning on the univariate bases
The rest of this section elaborates upon each the three Fjfd remember the magnitude of the coefficients; then generat
steps, and the rational functions trick. interacting-variable bases with priority to the univagistases
having highest-magnitude coefficients; and stop addingdas
B. FFX Sep One once a maximum number of bases (e.g. 10000) is exceeded.

Here, FFX generates a massive set of basis functions,
where each basis function combines one or more interactiﬁg FFX Step Two
nonlinear subfunctions. Table Il gives the pseudocode. Steps 1-2 create a large
Table | gives the pseudocode. Steps 1-10 generate un&variaatrix X g which has evaluated input matriX on each of
bases, and steps 11-20 generate bivariate bases (and hittebasis functions imB. Steps 3-4 determine a log-spaced
orders of univariate bases). The algorithm simply has destget of Nj,mi4. Values; see [8] for motivations here. Steps 5-
loops to generate all the bases. Theal function (line 5, 16 are the main work, doing path-following. At each iteratio
9, and 18) evaluates a basaiven input dataX. The ok() of the loop it performs an pathwise linear fit (line 11) from
function returnsFalse if any evaluated value isnf, -inf, Xp — y to find the linear coefficienta. A key to the speed
or NaN, e.g. as caused by divide-by-zero, log on negativa this linear fit is reusing the previous iteration’s valdes
values, or negative exponents on negative values. Thetefar. There are several options to implement the actual fitting;
ok filters away all poorly-behaving expressions. Line 16 meamge use coordinate descent [7].
that expressions of the forap() «op() are not allowed; these FFX step two is like standard regularized-linear path-
are deemed too complex. following, except that whereas the standard approach covers a



whole range of\ such that all coefficients eventually get infunctions, with negligible extra computational cost. Theng

cluded, FFX stops as soon as there are more Man, _pases

(e.g. 250) nonzero coefficients (line 9).

TABLE I
STEP TWO: PATHWISELEARN()

Inputs: X, y, B #input data, output data, bases
Outputs: A #list of coefficent-vectors

# ComputeX g
1. fori =1 to length®B)
2. X g[i] = evalB[i], X)

# Generate\yec = range of\ values
3. Amaz = maz(|XTy|)/(N * p)
4. Ayec = logspace(logio(Amaz * €ps), log10(Amaz), Nx)

eral idea is: learning the coefficients of a rational functi@an
be cast into a linear regression problem, solved with linear
regression, then back-transformed into rational functam.
Let us elaborate:
A rational function has the form:

NenN
) ap+ Y ;5" a; * Bi(x)
j=m(z) = N
1.0+ Zi:BNBN+1 a; * Bi(x)
where N is the number of numerator basd$gy) plus the
number of denominator based £p).

Let us perform simple algebraic manipulations to transform
this problem. First, we multiply both sides by the denononat

®3)

# Main path-following

5. A = {} N’B NBN

6. N, ases =0 . . — . .

7 z‘io y*(l.O—i— Z al*Bl($)> =ag+ Zal*Bl(as) (4)
8. a=1{0,0,...} i=Npn+1 i=1

9. while Npases < Nmagz—bases aNdi i length@vee) Then we expand the left-hand side:

10. A = Avecli]

11. a = pathwiseLinearFitX g, y, A, p, a)

12. Npases = number of nonzero values i (not counting offset) N N

13. if Nbases < Nmaz—bases 5 oy

14, adda to A y+ > axBi(@)xy=ao+ Y a;*Bi(x) (5)
15, i=i+1 i=Npn+1 i=1

16. returnA

where B;(x) *y is element-wise multiplication, i.€3;(X;)
y; for each data poing. Now, subtract to isolatgy on the
D. FFX Sep Three left-hand side:

Here, FFX filters the candidate functions to a nondominated
set t|’t1)|at trades o:]f numbsr ofdbases and erroli. A o Non N

Table Il gives the pseudocode. Steps 1-8 take the coefficient
and bases determined in previous FFX steps, and simply? ~ %" ; axBi@- Y, axBi@xy (6

. . i=N
combine them to create a set of candidate modléls, ;. Steps =NBN

9-13 apply standard nondominated filtering to the modelth wi Finally, let us define a new set of basis functions.

objectives to minimize complexity and test error.

TABLE Il
STEP THREE: NONDOMINATEDFILTER()

Inputs: A, B # coefficient vectors, bases
Outputs: M # Pareto-optimal tradeoff of equations

# Construct candidate models

Meana = {}

for ¢ = 1 to length{| A|)

a=Alt

ao = a[0] # offset

an. = nonzero values im (ignoring offset)

B,,. = expressions irB corr. to nonzero values ia
m = model@o, anz, Bnz), following egn. (1)
addm to M,.gng

ONoOogArWNE

# Nondominated filtering
9. f1 = complexity(m) for eachm in M¢qnq

10. f2 = testError(m) or trainError(m) for eachm in M.4nq

11. J = nondominatedindiceg(, f2)
12. M = Mqnaqlj] for eachj in J
13. returnM

E. Rational Functions Trick

) B 1 < Npn
Bi= {BZ- xy otherwise (7)

At the end of FFX step one, we hadp basis functions.
Before we start step 2, we insert allz functions into both the
numerator and denominator; therefafsy = Ngp = Np,
and N = 2« Ng. We redefine the basis functions according
to eqn. (7). Then, all the subsequent FFX steps are performed
with these new basis functions. Once the coefficients are
found, the final model is extracted by applying the algebraic
manipulations in reverse: egn. (6), then eqn. (5), then ggn.

V. EXPERIMENTAL SETUP
A. Problem Setup

We tested on the circuits and outputs shown in table IV.
For space reasons, we show just a few schematics. The
opamp is shown in Figure 4, on TSMC 0,48 CMOS. Figure
5 gives schematics for the bitcell and sense amp memory cir-
cuits. The bitcell’s temp=25C, power supply voltag®,;;,=1.0
V, andV,,,=0.0 V. The sense amp’s environmental conditions
were: load capacitano@;=1e-15 F, temp=2%C, andV,;;=1.0

For maximum coverage of possible functions, FFX leveM. The technology for the bitcell was TSMC 45nm CMOS,
ages a special technique inspired by [11] to include rationand for the sense amp 28nm CMOS.



TABLE IV
SUMMARY OF TEST PROBLEMS

Circuit # Devices | # Process variables Outputs Modeled
opamp 30 215 AV (gain), BW (bandwidth), PM (phase margin)SR (slew rate)
bitcell 6 30 cell; (read current)
sense amp 12 125 delay, pwr (power)
voltage reference 11 105 DV REF (difference in voltage)PW R (power)
GMC filter 140 1468 ATTEN (attenuation), IL
comparator 62 639 BW (bandwidth)

y-values, then take every 4th point for testing. This isdast
than cross-validation, yet gives consistent, reliablenems.

B. FFX Setup

L ] o | : Up t0 Nyae—bases=250 bases are allowed. Exponents on

bld I 7 i ol SEd variables arer!/? (=/(z)), 2! (=z), and 2. The pathwise
R learning settings followed good defaults:= 0.5, A\, .0 =

max| X y|/(N * p), eps = 10~7°, and N,=1000.

VI. EXPERIMENTAL RESULTS

fit versus complexity, and actual equations output by FFX.
Each FFX run took 5-20 s on a single-core 1-GHz CPU.
Notably, this is orders of magnitude faster than the previou

407 J This section validates the flow by investigating the model
i T symbolic modeling approach CAFFEINE [5].

A. Test Error

Fig. 5. Left: bitcell schematic. Right: sense amp schematic Table V shows the lowest test error found by FFX, compared
to standard least-squares linear or quadratic approaERes.

performed the best, though it did find some outputs challeng-
Process variation is modeled as a joint probability densifyg.

function. We use the back-propagation of variance (BPV)
model of process variation [12], where random variabldgs Error Vs. Complexity
are “process variables” which model quantities [iRé,; Rather than pre-determining what the ideal balance is, FFX
(substrate doping concentration). In this model, thereabmit extracts a whole set of equations, ranging from the very l&mp
10 normal independent identically-distributed (NIID) d@m (but higher error) to the very complex (with lower error).€f)
variables per transistor, for local variation; along withoat the user can examine the tradeoff, and determine which model
10 NIID global process variables. is most appropriate for his particular design challenggufés

To generate data for use by FFX, we apply Monte Carl® to 8 show error vs. complexity tradeoffs for representativ
sampling and simulation. Specifically: for input points, w@roblems. Each square represents a different model with an
draw samples (process points) from this distribution. Toege associated test error and complexity. For a given subgiet, t
ate corresponding outputs, we simulate the process paidts gimplest model is a constant, at the far left. It also has the
apply measure statements. We use HSPREEEach circuit's highest error. As new bases are added (higher complexity)
device sizes were set to have “reasonable” first-cut valyes bmoving to the right, error drops.
custom circuit designer, leading to “reasonable” perfaroga  The curves have different signatures; we give a represen-
values. The opamp and voltage reference had 800 Monte Cattive plot for each. Figure 6 left shows the curve for opamp
sample points, the comparator and GMC filter 2000, and bitc&1¥ . It has a marked “knee”: above the knee at 2%, even small

and sense amp 5000. reductions in complexity lead to large increments in error;
We calculate normalized mean-squared error on the tralvelow the knee, reductions in error add substantial contglex
ing data and on the separate testing datanse = OpampAV and opampSR have similar “knee”-style curves.

Vi (@ — yi) /(max(y) — min(y))?). The testing error is  Figure 6 right shows the curve for opanfp/. It has no
ultimately the more important measure, because it measudéscernable knee, but instead has a smooth tradeoff, aystead
the model’s ability to generalize to unseen data. The sépareeduction in error as complexity increases (until about 20
testing data is chosen as follows: sort the data accorditigeto bases).



TEST ERROR(%) ON THE TEST PROBLEMS “QUAD (LS)”

TABLE V

FAILED WHEN IT HAD TOO FEW SAMPLES FOR THE NUMBER OF COEFFICNETS.

Approach || opampAV | opampBW opampP M opampSR bitcell cell; | sense amplelay
Lin (LS) 1.7 1.3 1.3 3.2 12.7 3.4
Quad (LS) || FAIL FAIL FAIL FAIL 125 3.5
FFX 1.0 0.9 1.0 2.0 12.4 3.0
Approach || sense amp voltage reference voltage refer-| GMC filter | GMC filter | comparatorBW
pwr DVREF encePWR | ATTEN IL
Lin (LS) 3.5 2.4 22.8 16.4 17.3 27.2
Quad (LS) || 2.9 2.8 40.4 FAIL FAIL FAIL
FFX 2.7 1.0 2.0 7.0 8.5 17.0
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S 10% 5 S 5 15%
& 8% o 10% o g
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Fig. 8. Error vs. Complexity: voltage referené®/ REF (left), GMC filter
Fig. 6. Error vs. Complexity: opampBW (left), opampPM (right). ATTEN (right).

The curve in Figure 7 left is for bitcellell; (read current). C. Analysis of Extracted Equations

It has a soft knee between 2 and 5 bases. Then, error virtuallyrha core value of FEX comes from inspecting and using the
flattens as complexity is increased further. The outputs f8E1uations extracted by FFX, to make the early-stage custom
comparatorBW and voltage referenc&W R have similar design flow more variation-aware.
profiles. Table VI shows some functions that FFX extracted for
Figure 7 right is fc_>r sense amfelay. It has a soft knee (_at opamp PM. At O bases is a constant, of course. From 1 to
about 20 bases), with decent tradeoffs smoothly extending4 pases, FFX adds one more linear base at a time, gradually
both directions. Sense ampor has a similar profile. adding resolution to the model. At 5 bases, it adds a base
that has both ambs() operator, and an interaction term:

17%
abs(dvthn) x dvthn. It keeps adding bases up to a maximum

8%
16%

S 15% 5

o @

E 14% 7

13% .
12%

0 5 101520253035404550
Number of bases
Fig. 7. Error vs. Complexity: bitceltell;

6%

4%

2%
0 50 100 150 200 250 300
Number of bases

(left), sense amplelay (right).

of 46 bases. By the time it gets to 46 bases, it has actually
started using a rational model, as indicated by the+ .. .)
term.

There are two ways for designers to identify the most useful
variables and bases:

e First, simply seeing which terms get added first. For opamp
PM, the variables came in ordetzl, cgop, dvthn, and
dvthp. Because they are not subscripted by a device,
these indicate global process variables, which modifyrthei
respective values in the SPICE model.

Figure 8 left is the profile for voltage referendeF" REF. T i )
lts most remarkable feature is that more than 8 bases did n8t Second, in printing a given function, we order the bases
help; which also means it had a small number of models in from highest-magnitude coefficient to lowest. In the case
the tradeoff. of opampP M, it tends to have the highest coefficients on

In contrast, Figure 8 right, for GMC filtekTTEN, has the variables it adds firstifl, cgop, etc.); though this is
up to 250 bases with an equally large number of models, and Not always the case.

a very smooth tradeoff between error and complexity. GMC We saw the key variables in the equations for opafid
filter 1L has a similar profile. are global process variables. This means that variation on



TABLE VI
EQUATIONS FOR OPAMPP M, EXTRACTED BY FFX.

# Bases | Test error Extracted Function

0 15.5 59.6

1 6.8 59.6 — 0.303 * dxl

2 6.6 59.6 — 0.308 * dzl — 0.00460 * cgop

3 54 59.6 — 0.332 * dxl — 0.0268 * cgop + 0.0215 * dvthn

4 4.2 59.6 — 0.353 * dal — 0.0457 * cgop + 0.0403 * dvthn — 0.0211 * dvthp

5 4.1 59.6 — 0.354 * dzl — 0.0460 * cgop — 0.0217 * dvthp + 0.0198 * dvthn + 0.0134 * abs(dvthn) * dvthn

6 4.07 59.6—0.354+dxl—0.0466xcgop—0.0224xdvthp+0.0202xdvthn+0.0135xabs(dvthn)*xdvthn+0.000550« DX L
46 1.0 (58.9 — 0.136 * dzl + 0.0299 * dvthn — 0.0194 * max(0,0.784 — dvthn) +...)/(1.0+...)

opamp PM is dominated by global variation, rather tharD. Automated Sensitivity Analysis

VII, which is the equations for comparatdV'. In this case, sensitivities (impacts) via manual inspection of coeffitse
we see that the variables contributing to the model are l0G&lq tradeoffs. Another approach is suited to automation: se
variables (indicated by the subscript pointing to the iSIDg). the contribution of each variable as the sum of the absolute
Therefore the comparataBWW’s variation is dominated by coefficients of bases that use that variable; then normalee
local mismatch. Looking deeper, we see that the promingfk |X illustrates impacts for the lowest-error model of oya
variables all come from transistetl or m2 in current mirror pjs. Like we found from inspecting the equations, the top-
1 (eml), and that the particular type of variation I$nt. jmpacting variables are global process variablesandcgop.

Variablesdxl,qr0 andvthp,q-o get added next. However, after| g¢g] process variables such @\/1_M1_ nsmm_LINT
5 bases, the model still does a poor job of explaining th§e much farther down the list.

mapping (with error at 17.9%); and even adding significantly
more bases it still gets to just 17%.

In many modeling problems, FFX determined that just linear

TABLE IX
HIGHEST-IMPACT VARIABLES FOR OPAMP P M .

and quadratic terms were appropriate for the best equations % Impact | Variable Name
Besides the functions above, these include the GMC filter 465% | dal
GMC filter ATTEN, opampSR (for errors > 2.5%), and 102% | cgop
bitcell cell;*. 9.7% dvthn
But in some problems, FFX used more strongly nonlinear 7.4% dvthp
functions, which of course would be much more challenging 3.9% RCN__nsmm_DXL
for the custom IC designer to develop without the aid of 3.8% RCP_nsmm_DXL
automation. These include the voltage referei?€ REF, 3.6% dxw
sense amplelay, and sense ampwr. Let us explore some 3.1% cgon
of these. 23% | RCP_nsmm_DXW
Table VIII shows some functions that FFX extracted for 2.1% RCN_nsmm_DXW
voltage referencdV REF. It always determines that a ratio- 1.1% cjswn
nal with a constant numerator is the best option. It uses the 0.8% cjn
hinge-style basis functions, including interactions wigeor 0.7% dzlr
more bases are used. It only needs 8 bases (in the denorinator 0.5% dtoxn
to capture error of 0.9%. Of the 105 possible variables, FFX 0.3% CM1_M1_nsmm_LINT
determined that variablévthn was highly useful, by reusing 0.3% dtoze
it in many ways.dvthp anddzw also had prominence. Once 0.3% CMB2_M1__nsmm_NSUB
again, the use of global variables indicates that globaatian 0.3% cjswp
is causing the main variation issues oV REF'. 0.2% drshrpo
0.2% CMB2_M1_nsmm_VFB
1A warning on the bitcell: just 5000 Monte Carlo samples weliera

therefore not stressing the bitcell into its nonlinear ksigma failure regions.



TABLE VI
EQUATIONS FOR COMPARATORBW , EXTRACTED BY FFX.

# Bases | Test error Extracted Function

0 18.6 1.72e7

1 18.3 1.72€7 — 3.71€5 * Tem1,m1 lint * Tem1,m2,lint

2 18.3 1.72¢7 — 3.81€5 * Tem1,m1,lint * Teml,m2,lint + 2327 % a2 | .

3 18.1 1.71e7 — 4.57€5 * Tepm,ma,lint * Teml,m2,lint + 5.23ed xx2 . +4.80ed*a? | .

4 18.0 1.71e7—4.86e5%Tcm1,m1,lint ¥ Tem1,m2,lint +7~2464*x(2:m1’m1 Liny T6.82edxa? | o —2.24edxdalyaro

5 17.9 1.70€7 — 5.22€5 * Tem1,m1,lint * Teml,m2,lint + 9.80ed * xzml,ml,lmt 1 9.26e4 * x?:ml,m?,lint — 5.40e4 %
dxlyaro + 2.54e4 * dvthpyaro

TABLE VIl
EQUATIONS FOR VOLTAGE REFERENCEDV REF', EXTRACTED BY FFX.
# Bases | Test error Extracted Function
0 2.6 512.7
1 2.1 504/(1.0 + 0.121 % maz(0, dvthn + 0.875))
2 18 503 — 199 * max (0, dvthn + 1.61) — 52.1 * max(0, dvthn + 0.875)
3 1.6 496/(1.0 — 0.0447 * max(0, —1.64 — dvthp) * maxz(0, dvthn + 0.875) — 0.0282 * maxz(0, —1.90 — dzw) *
max (0, dvthn + 0.875) — 0.0175 * max (0, —1.64 — dvthp) * maxz (0, dvthn + 0.142))
8 0.9 476/(1.040.105*max(0, dvthn+1.61) —0.0397 x maxz (0, —1.64 — dvthp) *maz(0, dvthn +0.875) —0.0371 *
maz (0, —1.90 — dzw) *max (0, duthn+0.875) — 0.0151 x maxz (0, —1.64 — dvthp) xmazx (0, dvthn+0.142) .. .)
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