
Trent McConaghy

Bitcoin Startups Berlin
Oct 28, 2014

Blockchain, Throughput,
and Big Data

Conclusion
Rare Events, HSMC, And BeyondOutline

• Throughput numbers
• Big data
• Consensus algorithms
• ACID
• BlockchainBig data?

Throughput numbers
• Bitcoin – typical 1 transactions per second
• Blockchain size is 25Gb. >10Gb / yr.
• Takes ≈1d to download

Nov’13 Nov’14

11 Gb

25 Gb

[blockchain.info, retrieved Oct 29, 2014]

Conclusion
Rare Events, HSMC, And BeyondThroughput numbers

• Bitcoin – 1 tps (observed)
• Bitcoin – 7 tps (theoretical max due to

block size limit)
• VISA – 2000 tps
• Twitter – 5000 tps
• Twitter – 150,000+ tps at peak

[https://en.bitcoin.it/wiki/Scalability]

https://blog.twitter.com/2013/new-

tweets-per-second-record-and-how

Conclusion
Rare Events, HSMC, And BeyondThroughput numbers

What ifs on Bitcoin, all else equal:
• 2000 tps → 10Gb*2000/7 = 1.42 Pb/yr

= 3.9 Gb/day (grows faster than you can download!)

• 150,000 tps →214 Pb/yr

You might say “we only need unspent outputs”. But
there are many use cases where we want to see all past
transactions (blockchain apps, transparency, auditing, ..
– almost anything beyond simple payment.)

Conclusion
Rare Events, HSMC, And BeyondThroughput numbers

What ifs on Bitcoin, all else equal:
• 2000 tps → 10Gb*2000/7 = 1.42 Pb/yr

= 3.9 Gb/day (grows faster than you can download!)

• 150,000 tps →214 Pb/yr

Q: Why not just focus on unspent outputs?
A: There are many use cases where we want to see
all past transactions. Auditing, compliance,
ownership history, other Blockchain apps -- maybe
most things beyond a simple payment?)

Conclusion
Rare Events, HSMC, And BeyondScaling up blockchain?

• How?

• Is this the right question to ask?

• What does “Big Data” have to say?

Conclusion
Rare Events, HSMC, And BeyondBlock chain: what

"A block chain is a transaction database
shared by all nodes participating in a system
based on the Bitcoin protocol.”

https://en.bitcoin.it/wiki/Block_chain

From Big Data: Cassandra DB. Scale-up linearity!

http://1.bp.blogspot.com/-

ZFtW7MFMqZQ/TrG5ujuDGdI/AAAAAAAAAW

w/heceeMD50x4/s1600/scale.png

Cassandra DB: How it works

http://stevenpoitras.com/the-nutanix-bible/

http://1.bp.blogspot.com/-

Hsr6O8pwyzU/TrG5didDPjI/AAAAAAAAAWM/

A3vL3wMkQgw/s1600/global.png

Cassandra DB: Consensus

“Paxos Algorithm”

(more later)

Conclusion
Rare Events, HSMC, And BeyondBlock chain DB: Consensus

“Bitcoin uses the block chain algorithm to
achieve distributed consensus on who
owns what coins.”

https://en.bitcoin.it/wiki/Alternative_chain

Conclusion
Rare Events, HSMC, And Beyond

A walk down history lane: a
gauntlet was thrown down

“Can you implement a distributed
database that can tolerate the failure of
any number of its processes (possibly all
of them) without losing consistency, and
that will resume normal behavior when
more than half the processes are again
working properly?”
-Leslie Lamport to colleagues, 1980
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html (referring to Paxos)

Gauntlet 2, Byzantine problem
Before [1], it was generally assumed that a three-processor system
could tolerate one faulty processor. This paper shows that
"Byzantine" faults, in which a faulty processor sends inconsistent
information to the other processors, can defeat any traditional
three-processor algorithm. (The term Byzantine didn't appear until
[46].) In general, 3n+1 processors are needed to tolerate n faults.
However, if digital signatures are used, 2n+1 processors are
enough.
This paper introduced the problem of handling Byzantine faults.
I think it also contains the first precise statement of the consensus
problem.

-Lesley Lamport
[1] L. Lamport et al, Reaching Agreement in the Presence of Faults , J. ACM 27(2), April 1980

http://research.microsoft.com/en-
us/um/people/lamport/pubs/pubs.html

Conclusion
Rare Events, HSMC, And Beyond

Towards Practical Solutions to
Byzantine Generals Problem

"A fault-tolerant file system called Echo was built at SRC in
the late 80s. The builders claimed that it would maintain
consistency despite any number of non-Byzantine faults,
and would make progress if any majority of the
processors were working. As with most such systems, it
was quite simple when nothing went wrong, but had a
complicated algorithm for handling failures based on
taking care of all the cases that the implementers could
think of. I decided that what they were trying to do was
impossible, and set out to prove it.” http://research.microsoft.com/en-

us/um/people/lamport/pubs/pubs.html

Conclusion
Rare Events, HSMC, And Beyond
The Practical Solution to

Byzantine Generals Problem
"I decided that what they were trying to do was
impossible, and set out to prove it.

Instead, I discovered the Paxos algorithm... At the heart

of the algorithm is a three-phase consensus protocol.
..to my knowledge, Paxos contains the first three-phase
commit algorithm that is a real algorithm, with a clearly
stated correctness condition and a proof of correctness..”

L. Lamport et al, "The Byzantine Generals Problem“, ACM Transactions on
Programming Languages and Systems 4 (3): 382–401, July 1982

http://research.microsoft.com/en-
us/um/people/lamport/pubs/pubs.html

Conclusion
Rare Events, HSMC, And BeyondExtensions to Paxos

“Byzantine Paxos[8][10] adds an extra message
(Verify) which acts to distribute knowledge and
verify the actions of the other processors”
http://en.wikipedia.org/wiki/Paxos_(computer_science)#Byzantine_Paxos

[8] Lamport, Leslie (2005). "Fast Paxos".
[10] Castro, Miguel (2001). "Practical Byzantine Fault Tolerance".

Conclusion
Rare Events, HSMC, And BeyondOpinions on Paxos

“there is only one consensus protocol, and that’s
Paxos”
-Mike Burrows, inventor of Chubby service at Google

“all other approaches are just broken versions of
Paxos.”

“The Paxos protocol .. is famously subtle and a bit
difficult to .. it’s clear that a good consensus
protocol is surprisingly hard to find.”

http://the-paper-trail.org/blog/consensus-
protocols-two-phase-commit/

Conclusion
Rare Events, HSMC, And Beyond
Production Use of Paxos

• Google – all products that use BigTable or
Spanner (search, analytics, email, ..)

• Clustrix - distributed SQL DB
• Apache Cassandra – distributed NoSQL
• FoundationDB – distributed NewSQL
• Neo4j HA – graph DB
• (and most other modern distributed

DBs!)
• Heroku / Salesforce, Microsoft, IBM, …
[wikipedia, more]

Conclusion
Rare Events, HSMC, And Beyond

Explaining Paxos:
Two Phase Commit (2PC)

• (1) “Do you?” (2) “I do!” “I do!”
• Problem: inconsistent result if node

failure after “Do you?”

http://the-paper-trail.org/blog/consensus-protocols-

two-phase-commit/

Conclusion
Rare Events, HSMC, And Beyond

Explaining Paxos:
Three Phase Commit (3PC)

• Break the “I do” part into two phases
• Prepare to commit. (“Don’t listen to

any more do-you’s for now”)
• Commit. “I do!”

Can still fail: one site is in “prepared to
commit” when another is not.

http://the-paper-trail.org/blog/consensus-

protocols-three-phase-commit/

Conclusion
Rare Events, HSMC, And BeyondExplaining Paxos: The Algorithm

http://the-paper-

trail.org/blog/consensu

s-protocols-paxos/

Explaining Paxos: The Algorithm

http://the-paper-

trail.org/blog/consensus-

protocols-paxos/

Conclusion
Rare Events, HSMC, And BeyondBlock chain: A design decision…

“The block chain is broadcast to all nodes
on the networking [sic] using a flood
protocol”
[https://en.bitcoin.it/wiki/Block_chain]

(Very inefficient!)

My thoughts:
Two approaches to scale up

• Big data-fy the blockchain
• Builds on man-decades of work
• Significant scalability hurdles?

<or>
• Blockchain-ify big data
• Builds on man-centuries (millennia?) of work
• Scalability challenges already resolved
• Needs distributed control (which isn’t easy

either!)

Conclusion
Rare Events, HSMC, And BeyondQuestions I have

• Why doesn’t the Bitcoin community talk more about
Paxos? (Yet it does talk about Byzantine Generals)

• Why isn’t the blockchain itself partially distributed?
(in the sense that pieces of it are sharded throughout
the network, rather than a full duplicate everywhere)
• Am I missing something? Is there something

fundamentally wrong with “blockchain-ifying big
data?”

Summary
• The blockchain is a DB, as are modern “Big Data”

NoSQL and NewSQL DBs. They’re all distributed.
• Distributing a DB by making a full copy on every node

scales extremely poorly.
• Distributed DBs need a consensus algorithm. Posed as

the Byzantine Generals problem (Lesley Lamport)
• Most modern “Big Data” DBs use the Paxos Algorithm.

“all other approaches are just broken versions of Paxos.”

• Open Q’s summary:
• Paxos <-> BTC relation?
• Can we blockchain-ify big data?

