
CAFFEINE: Template-Free Symbolic Model
Generation of Analog Circuits via Canonical
Form Functions and Genetic Programming

Trent McConaghy, Tom Eeckelaert, Georges Gielen

K.U. Leuven, ESAT-MICAS, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

{trent.mcconaghy},{tom.eeckelaert},{georges.gielen}@esat.kuleuven.ac.be

Abstract:
This paper presents a method to automatically generate

compact symbolic performance models of analog circuits
with no prior specification of an equation template. The
approach takes SPICE simulation data as input, which
enables modeling of any nonlinear circuits and circuit
characteristics. Genetic programming is applied as a
means of traversing the space of possible symbolic
expressions. A grammar is specially designed to constrain
the search to a canonical form for functions. The approach
generates a set of symbolic models that collectively
provide a tradeoff between error and model complexity.
Experimental results show that the symbolic models
generated are compact and easy to understand, making this
an effective method for aiding understanding in analog
design. The models also demonstrate better prediction
quality than posynomials.

1. Introduction
Symbolic models of analog circuits have many

applications. Fundamentally, they increase a designer’s
understanding of a circuit, which leads to better decision-
making in circuit sizing, layout, verification, and topology
design. Automated approaches to symbolic model
generation are therefore of great interest.

In symbolic analysis, models are derived via topology
analysis. [1] is a survey. Its main weakness is that it is
limited to linear and weakly nonlinear circuits. Leveraging
SPICE in modeling is promising because simulators
readily handle nonlinear circuits, as well as environmental
effects, manufacturing effects, and different technologies.
Simulation data has been used to train neural networks as
in [2,3,4]. However, such models provide no insight.

The aim of symbolic modeling is to use simulation data
to generate interpretable mathematical expressions that
relate the circuit performances to the design variables. In
[5,6], symbolic models are built with posynomials.
Unfortunately, the models are constrained to templates,
which restricts the functional form and also imposes bias.
Also, the models have dozens of terms, limiting their
interpretability. Finally, the approach assumes
posynomials can fit the data; in analog circuits there is no
guarantee of this, and one might never know in advance.

The problem we address in this paper is how to
generate symbolic models with more open-ended
functional forms (i.e. without a pre-defined template), for
arbitrary nonlinear circuits, and at the same time ensure
that the models are interpretable. A target flow that reflects
these goals is shown in Figure 1.

We approach the question by starting with genetic
programming (GP) [7], but constraining it via a grammar
designed to generate interpretable models. We name the
approach CAFFEINE: Canonical Functional Form
Expressions in Evolution.

Figure 1: Template-free symbolic modeling flow

The contributions of this paper are as follows:
• To the best of our knowledge, a first-ever tool to do
template-free symbolic modeling, with the flexibility of
SPICE simulations therefore allowing modeling of any
nonlinear circuits.
• A means to make the models compact and
understandable, yet with arbitrary accuracy; in fact
providing a tradeoff between accuracy and complexity.
Final models are highly predictive.

This paper is organized as follows. Section 2 defines
the problem. Sections 3 and 4 describe CAFFEINE and
the grammar. Section 5 has results; section 6 concludes.

2. Problem Formulation
Given: A set of {x(t),y(t)},t=1..N data samples where x(t)
is a d-dimensional design point t and y(t) is a
corresponding circuit performance value measured from
simulation, and no model template
Determine: A set of symbolic models *f F∈ that provide
a tradeoff between prediction error and complexity.

3. CAFFEINE
Genetic Programming (GP) [7] is an evolutionary

algorithm, where GP individuals (points in the design
space) are trees. It can evolve unrestricted functional
forms, but those functions are virtually un-interpretable.

CAFFEINE extends GP, attacking interpretability in
two main ways: a multi-objective approach [8] that
provides a set of models that trade off normalized mean-
squared error and complexity, and more notably, a
specially designed grammar to constrain the search to
specific functional forms without cutting out good
solutions. “Complexity” is dependent on the number of
basis functions, the number of nodes in each tree, and the
exponents of “variable combos” (VCs, described later):

nvc()

,

1 1

complexity() (nnodes() vccost())
M jf

b k j

j k

f w j vc
= =

= + +� � (1)

where wb is a constant to give a minimum cost to each
basis function, nnodes(j) is the number of tree nodes of
basis function j, nvc(j) is number of VCs of basis function

j, and
dim 1

vccost(vc) abs(vc(dim))
d

vcw
=

= � .

4. Grammar and Operators
A grammar can constrain GP [9]. Evolutionary

operators must respect the derivation rules of the grammar,
i.e. only subtrees with the same root can be crossed over,
and random generation of trees must follow the derivation
rules. Even though grammars can usefully constrain
search, none have yet been carefully designed for
functional forms. CAFFEINE is for functions:
REPVC => ‘VC’ | REPVC ‘*’ REPOP | REPOP
REPOP => REPOP ‘*’ REPOP | 1OP ‘(‘ ‘W’ ‘+’ REPADD
‘)’ | 2OP ‘(‘ 2ARGS ‘)’ | ... 3OP, 4OP etc
2ARGS => ‘W’ ‘+’ REPADD ‘,’ MAYBEW | MAYBEW ‘,’
‘W’ ‘+’ REPADD
MAYBEW => ‘W’ | ‘W’ ‘+’ REPADD
REPADD => ‘W’ ‘*’ REPVC | REPADD ‘+’ REPADD
2OP => ‘DIVIDE’ | ‘POW’ | ‘MAX’ | ...
1OP => ‘INV’ | ‘LOG10’ | ...

Terminal symbols are in quotes; the remaining symbols
are nonterminal, which means that they expand. Each
nonterminal symbol has a set of derivation rules separated
by ‘|’. The start symbol is REVPC. An individual is a set
of trees (set of basis functions); basis functions are linearly
weighted using least-squares learning. Basis function
operators include: creating a new individual by randomly
choosing >0 basis function from each of 2 parents; deleting
a random basis function; adding a randomly generated tree
as a basis function; copying a subtree from one individual
to make a new basis function for another.

The root is a product of variables and/or nonlinear
functions (REPVC and REPOP). Within each nonlinear
function is a weighted sum of basis functions (REPADD).
Each basis function can be, once again, a product of
variables and/or nonlinear functions. And so on.

A ‘VC’ is a rational combination of variables. With
each VC, a vector holding an integer value per design
variable as the variable’s exponent. An example vector is
[1,0,-2,1], which means 2

1 4 3
(*) ()x x x . VC operators

include: one point crossover, and randomly adding or
subtracting to an exponent value.

Figure 2: Schematic of high-speed CMOS OTA

5. Experiments

5.1 Experimental Setup
The circuit being modeled is a high-voltage CMOS

OTA as shown in Figure 2. The goal is to discover
expressions for low-frequency gain (ALF), unity-gain
frequency (fu), phase margin (PM), input-referred offset
voltage (voffset), and the positive and negative slew rate
(SRp, SRn). To allow a direct comparison to posynomials
[6], an identical problem setup was used, with the
exception that we did not pre-scale the data (in the aim of
interpretable expressions).

For model input variables, we used an operating-point
driven formulation [10] (device sizes could have been
readily used instead). For training inputs, orthogonal-
hypercube Design-Of-Experiments (DOE) sampling of
design points was used, with scaled dx=0.1 to have 243
samples with three simulations each. Testing inputs were
also sampled with DOE and 243 samples, but with
dx=0.03. Run settings were: maximum number of basis
functions = 15, population size 200, 5000 generations,
maximum tree depth 8, wb = 10, and wvc = 0.25. Single-
input operators allowed were: ln, log10, 1/x, abs, sin, cos,
tan, max(0, x), min(0,x), 2x, 10x, sqrt, and sqr. Double-
input operators allowed are add, mult, divide, and power.
Also, a lte() variant was used.

5.2 Results and Discussion
Figure 3 illustrates CAFFEINE-generated tradeoffs

between training error (qwc) and complexity. Each point is
a different model. As expected, the number of basis
functions usually rises with the complexity, but not always,
as larger trees increase complexity too. Figure 3 also
shows testing error (qtc). Unlike training error, it is not
monotonically decreasing as complexity rises, which
means that some less complex models are more predictive

than more complex ones. However, because our goal is
interpretable expressions, we can prune away models not
on the testing error vs. complexity tradeoff.

Note the testing error is almost always lower than the
training error. While odd at first glance, this is actually
alright, because this testing data tests interpolation ability
(training had dx=0.10, but testing had dx=0.03).

Figure 3: Models’ training error (qwc), testing error (qtc), and number of bases vs. complexity

Test error
(%)

Train error
(%)

PM Expression

3.98 15.4 90.2
3.71 10.6 90.5 + 186.6 * id1 + 22.1 * id2 / vds2
3.68 10.0 90.5 + 190.6 * id1 / vsg1 + 22.2 * id2 / vds2
3.39 8.8 90.1 + 156.85 * id1 / vsg1 - 2.06e-03 * id2 / id1 + 0.04 * vgs2 / vds2
3.31 8.0 91.1 - 2.05e-3 * id2 / id1 + 145.8 * id1 + 0.04 * vgs2 / vds2 - 1.14 / vsg1
3.20 7.7 90.7 - 2.13e-3 * id2 / id1 + 144.2 * id1 + 0.04 * vgs2 / vds2 - 1.00 / (vsg1*vsg3)
2.65 6.7 90.8 - 2.08e-3 * id2 / id1 + 136.2 * id1 + 0.04 * vgs2 / vds2 -1.14 / vsg1 + 0.04 * vsg3 / vsd5
2.41 3.9 91.1 - 5.91e-4 * (vsg1*id2) / id1 + 119.79 * id1 + 0.03 * vgs2 / vds2 - 0.78 / vsg1 + 0.03 * vsg1 / vsd5

-2.72e-7 / (vds2*vsd5*id1) + 7.11 * (vgs2*vsg4*id2) - 0.37 / vsg5 - 0.58 / vsg3 - 3.75e-6 / id2 - 5.52e-6 / id1

Table II: CAFFEINE-generated models of PM, in order of decreasing error and increasing complexity

Target (%) Perf.
qwc qtc

Expression

ALF 10 10 -10.3 + 7.08e-5 / id1
 + 1.87 * ln(-1.95e+9 + 1.00e+10 / (vsg1*vsg3)+ 1.42e+9 *(vds2*vsd5) / (vsg1*vgs2*vsg5*id2))

fu 10 10 10^(5.68 - 0.03 * vsg1 / vds2 - 55.43 * id1+ 5.63e-6 / id1)
PM 10 10 90.5 + 190.6 * id1 / vsg1 + 22.2 * id2 / vds2
voffset 10 10 - 2.00e-3
SRp 10 10 2.36e+7 + 1.95e+4 * id2 / id1 - 104.69 / id2 + 2.15e+9 * id2 + 4.63e+8 * id1
SRn 10 10 - 5.72e+7 - 2.50e+11 * (id1*id2) / vgs2 + 5.53e+6 * vds2 / vgs2 + 109.72 / id1

Table I: CAFFEINE-generated symbolic models which have less than 10% training and testing error

Table I shows the symbolic models that provide <10%
error. We can examine the equations in more detail to gain
an understanding of how design variables in the topology
affect performance. For example, ALF is inversely
proportional to id1, the current at the OTA’s differential
pair. Or, SRp is solely dependent on id1 and id2 and the ratio
id1 / id2. Or, within the design region sampled, the
nonlinear coupling among the design variables is quite
weak, typically only as ratios for variables of the same
transistor. Or that each expression only contains a
(sometimes small) subset of design variables. Or, that
transistor pairs M1 and M2 are the only devices affecting
five of the six performances (within 10%).

One may improve understanding by examining
expressions of varying complexity for a performance
characteristic. Low-complexity models will show the
macro-effects; alterations to get improved error show how
the model is refined to handle details. Table II shows PM
models in decreasing training and testing error. A constant
of 90.2, while giving 15 % training error, had only 4% test
error. For better prediction, CAFFEINE injected two more
basis functions; one basis being the current into the
differential pair id1, the other basis, id2 / vds2, the ratio of
current to drain-source voltage at M2. The next model
turns the input current term into a ratio id1 / vsg1.
Interestingly, and reassuringly, almost all ratios use the
same transistor in the numerator and denominator.

Figure 4: CAFFEINE vs. posynomials

Figure 4 compares CAFFEINE to posynomials [5]. To
fairly pick CAFFEINE model, we fixed the training error
to what the posynomial achieved, then compared testing
errors. In one case they both had low testing error (<1%),
but in the remaining 5 cases, CAFFEINE had 2.2x to 5.2x
less testing error. %. What we saw in previous data, and
we see again here, is that CAFFEINE has lower testing
error than training error, which provides great confidence
to the models. In contrast, in all cases but voffset, the
posynomials had higher testing error than training error,
even on this interpolative data set. With posynomials
having weak prediction ability even in interpolation, in
comparison to more compact models, one might question
the trustworthiness of constraining models of analog
circuits to posynomials.

6. Conclusion
This paper presented CAFFEINE, a tool which for the

first time can generate interpretable, template-free
symbolic models of nonlinear analog circuit performance
characteristics. CAFFEINE is built upon genetic
programming, but its key is a grammar that restricts
symbolic models to a canonical functional form.

CAFFEINE generates a set of models that collectively
trade off between error and complexity. Visual inspection
of the models demonstrates that the models are
interpretable. These models were also shown to be
significantly better than posynomials in predicting unseen
data.

7. References

[1] G. E. Gielen, “Techniques and Applications of
Symbolic Analysis for Analog Integrated Circuits: A
Tutorial Overview”, in Computer Aided Design of Analog
Integrated Circuits And Systems, R.A. Rutenbar et al.,
eds., IEEE, 2002, pp. 245-261

[2] P. Vancorenland, G. Van der Plas, M. Steyaert, G.
Gielen, W. Sansen, “A Layout-aware Synthesis
Methodology for RF Circuits,” Proc. ICCAD 01, Nov.
2001, p.358

[3] H. Liu, A. Singhee, R.A. Rutenbar, L.R. Carley,
“Remembrance of Circuits Past: Macromodeling by Data
Mining in Large Analog Design Spaces,” Proc. DAC 02,
June 2002, pp. 437-442

[4] G. Wolfe, R.Vemuri, “Extraction and Use of Neural
Network Models in Automated Synthesis of Operational
Amplifiers.” IEEE Trans. CAD, Feb. 2003

[5] W. Daems, G. Gielen, and W. Sansen, “An
Efficient Optimization-based Technique to Generate
Posynomial Performance Models for Analog Integrated
Circuits”, Proc. DAC 02, June 2002

[6] W. Daems, G. Gielen, W. Sansen, "Simulation-
based generation of posynomial performance models for
the sizing of analog integrated circuits," IEEE Trans. CAD
22(5), May 2003, pp. 517-534

[7] John R. Koza. Genetic Programming. MIT Press,
1992.

[8] K. Deb, S. Agrawal, A. Pratap, T.A. Meyarivan, “A
Fast Elitist Non-dominated Sorting Genetic Algorithm for
Multi-objective Optimization: NSGA-II,” Proc. PPSN VI,
Sept. 2000, pp. 849-858

[9] P. A. Whigham, “Grammatically-based Genetic
Programming,” Proc. Workshop on GP: From Theory to
Real-World Applications, J.R. Rosca, ed., 1995.

[10] F. Leyn, G. Gielen, W. Sansen, “An Efficient Dc
Root Solving Algorithm with Guaranteed Convergence for
Analog Integrated CMOS Circuits”, Proc. ICCAD 98,
Nov. 1998

	A
	Introduction
	Problem Formulation
	CAFFEINE
	Grammar and Operators
	Experiments
	Experimental Setup
	Results and Discussion

	Conclusion
	References

