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Abstract: 
This paper presents a method to automatically generate 

compact symbolic performance models of analog circuits 
with no prior specification of an equation template.  The 
approach takes SPICE simulation data as input, which 
enables modeling of any nonlinear circuits and circuit 
characteristics.  Genetic programming is applied as a 
means of traversing the space of possible symbolic 
expressions.  A grammar is specially designed to constrain 
the search to a canonical form for functions.  The approach 
generates a set of symbolic models that collectively 
provide a tradeoff between error and model complexity.  
Experimental results show that the symbolic models 
generated are compact and easy to understand, making this 
an effective method for aiding understanding in analog 
design.  The models also demonstrate better prediction 
quality than posynomials. 

 

1. Introduction 
Symbolic models of analog circuits have many 

applications.   Fundamentally, they increase a designer’s 
understanding of a circuit, which leads to better decision-
making in circuit sizing, layout, verification, and topology 
design.  Automated approaches to symbolic model 
generation are therefore of great interest. 

In symbolic analysis, models are derived via topology 
analysis. [1] is a survey.  Its main weakness is that it is 
limited to linear and weakly nonlinear circuits.  Leveraging 
SPICE in modeling is promising because simulators 
readily handle nonlinear circuits, as well as environmental 
effects, manufacturing effects, and different technologies. 
Simulation data has been used to train neural networks as 
in [2,3,4]. However, such models provide no insight. 

The aim of symbolic modeling is to use simulation data 
to generate interpretable mathematical expressions that 
relate the circuit performances to the design variables.  In 
[5,6], symbolic models are built with posynomials. 
Unfortunately, the models are constrained to templates, 
which restricts the functional form and also imposes bias.  
Also, the models have dozens of terms, limiting their 
interpretability.   Finally, the approach assumes 
posynomials can fit the data; in analog circuits there is no 
guarantee of this, and one might never know in advance. 

The problem we address in this paper is how to 
generate symbolic models with more open-ended 
functional forms (i.e. without a pre-defined template), for 
arbitrary nonlinear circuits, and at the same time ensure 
that the models are interpretable. A target flow that reflects 
these goals is shown in Figure 1.   

We approach the question by starting with genetic 
programming (GP) [7], but constraining it via a grammar 
designed to generate interpretable models.  We name the 
approach CAFFEINE: Canonical Functional Form 
Expressions in Evolution. 

 
Figure 1: Template-free symbolic modeling flow 

The contributions of this paper are as follows: 
• To the best of our knowledge, a first-ever tool to do 
template-free symbolic modeling, with the flexibility of 
SPICE simulations therefore allowing modeling of any 
nonlinear circuits. 
• A means to make the models compact and 
understandable, yet with arbitrary accuracy; in fact 
providing a tradeoff between accuracy and complexity.  
Final models are highly predictive. 

This paper is organized as follows.  Section 2 defines 
the problem.  Sections 3 and 4 describe CAFFEINE and 
the grammar.  Section 5 has results; section 6 concludes.    

2. Problem Formulation 
Given: A set of {x(t),y(t)},t=1..N data samples where x(t) 
is a d-dimensional design point t and y(t) is a 
corresponding circuit performance value measured from 
simulation, and no model template 
Determine: A set of symbolic models *f F∈  that provide 
a tradeoff between prediction error and complexity.   



3. CAFFEINE 
Genetic Programming (GP) [7] is an evolutionary 

algorithm, where GP individuals (points in the design 
space) are trees.  It can evolve unrestricted functional 
forms, but those functions are virtually un-interpretable.  

CAFFEINE extends GP, attacking interpretability in 
two main ways: a multi-objective approach [8] that 
provides a set of models that trade off normalized mean-
squared error and complexity, and more notably, a 
specially designed grammar to constrain the search to 
specific functional forms without cutting out good 
solutions.  “Complexity” is dependent on the number of 
basis functions, the number of nodes in each tree, and the 
exponents of “variable combos” (VCs, described later): 
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where wb is a constant to give a minimum cost to each 
basis function, nnodes(j)  is the number of tree nodes of 
basis function j, nvc(j) is number of VCs of basis function 

j, and 
dim 1

vccost(vc) abs(vc(dim))
d

vcw
=

= � . 

4. Grammar and Operators 
A grammar can constrain GP [9]. Evolutionary 

operators must respect the derivation rules of the grammar, 
i.e. only subtrees with the same root can be crossed over, 
and random generation of trees must follow the derivation 
rules.  Even though grammars can usefully constrain 
search, none have yet been carefully designed for 
functional forms.  CAFFEINE is for functions:  
REPVC => ‘VC’ | REPVC ‘*’ REPOP | REPOP
REPOP => REPOP ‘*’ REPOP | 1OP ‘(‘ ‘W’ ‘+’ REPADD
‘)’ | 2OP ‘(‘ 2ARGS ‘)’ | ... 3OP, 4OP etc
2ARGS => ‘W’ ‘+’ REPADD ‘,’ MAYBEW | MAYBEW ‘,’
‘W’ ‘+’ REPADD
MAYBEW => ‘W’ | ‘W’ ‘+’ REPADD
REPADD => ‘W’ ‘*’ REPVC | REPADD ‘+’ REPADD
2OP => ‘DIVIDE’  | ‘POW’ | ‘MAX’ | ... 
1OP => ‘INV’ | ‘LOG10’ | ...

Terminal symbols are in quotes; the remaining symbols 
are nonterminal, which means that they expand.  Each 
nonterminal symbol has a set of derivation rules separated 
by ‘|’.  The start symbol is REVPC.  An individual is a set 
of trees (set of basis functions); basis functions are linearly 
weighted using least-squares learning. Basis function 
operators include: creating a new individual by randomly 
choosing >0 basis function from each of 2 parents; deleting 
a random basis function; adding a randomly generated tree 
as a basis function;  copying a subtree from one individual 
to make a new basis function for another. 

The root is a product of variables and/or nonlinear 
functions (REPVC and REPOP).  Within each nonlinear 
function is a weighted sum of basis functions (REPADD).  
Each basis function can be, once again, a product of 
variables and/or nonlinear functions. And so on.   

A ‘VC’ is a rational combination of variables.  With 
each VC, a vector holding an integer value per design 
variable as the variable’s exponent.  An example vector is 
[1,0,-2,1], which means 2

1 4 3
( * ) ( )x x x .  VC operators 

include: one point crossover, and randomly adding or 
subtracting to an exponent value. 

 
Figure 2: Schematic of high-speed CMOS OTA 

5. Experiments 

5.1 Experimental Setup 
The circuit being modeled is a high-voltage CMOS 

OTA as shown in Figure 2.  The goal is to discover 
expressions for low-frequency gain (ALF), unity-gain 
frequency (fu), phase margin (PM), input-referred offset 
voltage (voffset), and the positive and negative slew rate 
(SRp, SRn).  To allow a direct comparison to posynomials 
[6], an identical problem setup was used, with the 
exception that we did not pre-scale the data (in the aim of 
interpretable expressions).  

For model input variables, we used an operating-point 
driven formulation [10] (device sizes could have been 
readily used instead).  For training inputs, orthogonal-
hypercube Design-Of-Experiments (DOE) sampling of 
design points was used, with scaled dx=0.1 to have 243 
samples with three simulations each. Testing inputs were 
also sampled with DOE and 243 samples, but with 
dx=0.03.  Run settings were: maximum number of basis 
functions = 15, population size 200, 5000 generations, 
maximum tree depth 8, wb = 10, and wvc = 0.25.  Single-
input operators allowed were: ln, log10, 1/x, abs, sin, cos, 
tan, max(0, x), min(0,x), 2x, 10x, sqrt, and sqr.   Double-
input operators allowed are add, mult, divide, and power. 
Also, a lte() variant was used.   

5.2 Results and Discussion 
Figure 3 illustrates CAFFEINE-generated tradeoffs 

between training error (qwc) and complexity.  Each point is 
a different model.  As expected, the number of basis 
functions usually rises with the complexity, but not always, 
as larger trees increase complexity too. Figure 3 also 
shows testing error (qtc).  Unlike training error, it is not 
monotonically decreasing as complexity rises, which 
means that some less complex models are more predictive 



than more complex ones.  However, because our goal is 
interpretable expressions, we can prune away models not 
on the testing error vs. complexity tradeoff.   

Note the testing error is almost always lower than the 
training error.  While odd at first glance, this is actually 
alright, because this testing data tests interpolation ability 
(training had dx=0.10, but testing had dx=0.03).

 
Figure 3: Models’ training error (qwc), testing error (qtc), and number of bases vs. complexity 

Test error 
(%) 

Train error 
(%) 

PM Expression 

3.98 15.4 90.2 
3.71 10.6 90.5 + 186.6 * id1    + 22.1 * id2 / vds2   
3.68 10.0 90.5 + 190.6 * id1 / vsg1  +  22.2 * id2 / vds2 
3.39 8.8 90.1 + 156.85 * id1 / vsg1 - 2.06e-03 * id2 / id1 + 0.04 * vgs2 / vds2 
3.31 8.0 91.1 - 2.05e-3 * id2 / id1 + 145.8 * id1 + 0.04 * vgs2 / vds2  - 1.14 / vsg1  
3.20 7.7 90.7 - 2.13e-3 * id2 / id1 + 144.2 * id1 + 0.04 * vgs2 / vds2  - 1.00 / (vsg1*vsg3)  
2.65 6.7 90.8 - 2.08e-3 * id2 / id1 + 136.2 * id1 + 0.04 * vgs2 / vds2 -1.14 / vsg1 + 0.04 * vsg3 / vsd5 
2.41 3.9 91.1 - 5.91e-4 * (vsg1*id2) / id1 + 119.79 * id1 + 0.03 * vgs2 / vds2 - 0.78 / vsg1 + 0.03 * vsg1 / vsd5  

-2.72e-7 / (vds2*vsd5*id1) +  7.11 * (vgs2*vsg4*id2) - 0.37 / vsg5 - 0.58 / vsg3 - 3.75e-6 / id2 - 5.52e-6 / id1 

Table II: CAFFEINE-generated models of PM, in order of decreasing error and increasing complexity 

Target (%)  Perf. 
qwc qtc 

Expression 

ALF 10 10 -10.3 + 7.08e-5 / id1  
  + 1.87 * ln( -1.95e+9 + 1.00e+10 / (vsg1*vsg3)+ 1.42e+9 *(vds2*vsd5) / (vsg1*vgs2*vsg5*id2)) 

fu 10 10 10^( 5.68 - 0.03 * vsg1 / vds2 - 55.43 * id1+ 5.63e-6 / id1 ) 
PM 10 10 90.5 + 190.6 * id1 / vsg1  +  22.2 * id2 / vds2 
voffset 10 10 - 2.00e-3 
SRp 10 10 2.36e+7 + 1.95e+4 * id2 / id1 - 104.69 / id2 + 2.15e+9 * id2 + 4.63e+8 * id1 
SRn 10 10 - 5.72e+7 - 2.50e+11 * (id1*id2) / vgs2 + 5.53e+6 * vds2 / vgs2 + 109.72 / id1 

Table I: CAFFEINE-generated symbolic models which have less than 10% training and testing error 



Table I shows the symbolic models that provide <10% 
error.  We can examine the equations in more detail to gain 
an understanding of how design variables in the topology 
affect performance.  For example, ALF is inversely 
proportional to id1, the current at the OTA’s differential 
pair.  Or, SRp is solely dependent on id1 and id2 and the ratio 
id1 / id2.  Or, within the design region sampled, the 
nonlinear coupling among the design variables is quite 
weak, typically only as ratios for variables of the same 
transistor. Or that each expression only contains a 
(sometimes small) subset of design variables.  Or, that 
transistor pairs M1 and M2 are the only devices affecting 
five of the six performances (within 10%).   

One may improve understanding by examining 
expressions of varying complexity for a performance 
characteristic.  Low-complexity models will show the 
macro-effects; alterations to get improved error show how 
the model is refined to handle details.  Table II shows PM 
models in decreasing training and testing error.  A constant 
of 90.2, while giving 15 % training error, had only 4% test 
error.  For better prediction, CAFFEINE injected two more 
basis functions; one basis being the current into the 
differential pair id1, the other basis, id2 / vds2, the ratio of 
current to drain-source voltage at M2.  The next model 
turns the input current term into a ratio id1 / vsg1. 
Interestingly, and reassuringly, almost all ratios use the 
same transistor in the numerator and denominator.  

 
Figure 4: CAFFEINE vs. posynomials 

Figure 4 compares CAFFEINE to posynomials [5]. To 
fairly pick CAFFEINE model, we fixed the training error 
to what the posynomial achieved, then compared testing 
errors.  In one case they both had low testing error (<1%), 
but in the remaining 5 cases, CAFFEINE had 2.2x to 5.2x 
less testing error. %.  What we saw in previous data, and 
we see again here, is that CAFFEINE has lower testing 
error than training error, which provides great confidence 
to the models.  In contrast, in all cases but voffset, the 
posynomials had higher testing error than training error, 
even on this interpolative data set.  With posynomials 
having weak prediction ability even in interpolation, in 
comparison to more compact models, one might question 
the trustworthiness of constraining models of analog 
circuits to posynomials.   

6. Conclusion 
This paper presented CAFFEINE, a tool which for the 

first time can generate interpretable, template-free 
symbolic models of nonlinear analog circuit performance 
characteristics.  CAFFEINE is built upon genetic 
programming, but its key is a grammar that restricts 
symbolic models to a canonical functional form.  

CAFFEINE generates a set of models that collectively 
trade off between error and complexity.  Visual inspection 
of the models demonstrates that the models are 
interpretable.  These models were also shown to be 
significantly better than posynomials in predicting unseen 
data. 
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