
IBMG: Interpretable Behavioral Model Generator for
Nonlinear Analog Circuits via Canonical Form

Functions and Genetic Programming

Trent McConaghy
ESAT-MICAS
K.U. Leuven

Leuven, Belgium

Georges Gielen
ESAT-MICAS
K.U. Leuven

Leuven, Belgium

Abstract—This paper presents IBMG, an approach to generate
behavioral models of nonlinear analog circuits, with the special
distinction that it generates models that are compact,
interpretable expressions, which do are not restricted to any
pre-defined functional templates. IBMG outputs a small set of
interpretable nonlinear differential equations that
approximate the time-domain behavior of the circuit being
modeled. The approach uses genetic programming (GP),
which evolves functions, but GP has been heavily modified so
that the behavioral expressions follow a special “canonical
functional form” grammar to remain interpretable. IBMG has
explicit error control: it provides a set of models that trade off
complexity and accuracy. Experimental results on a strongly
nonlinear latch circuit demonstrate the usefulness of IBMG.

I. INTRODUCTION
Fast, effective system-level analog design practices are

becoming increasingly important due to the rise in the use of mixed-
signal ICs and communication circuits in particular. How sub-
circuits are modeled for design and verification heavily influences
speed and risk of system-level design. Using SPICE to simulate a
single system-level design can easily take hours or days, which
makes verification painful and automated sizing infeasible.

A potential means to speed up simulation is via behavioral
models which approximate the dynamic behavior of sub-circuits but
simulate orders of magnitude faster [1]. These models can be
manually created. This makes them understandable (because they
are interpretable expressions, and a human generated them), and
therefore somewhat trustworthy. However, creating of such models
takes weeks to years, and even then the validity of the model could
expire with new technology generations.

An alternative is to generate models automatically. Model
order reduction (MOR) and regression are the two main approaches.
MOR uses projections to transform the system’s states into a
smaller set that retain the essence of the system’s behavior. Early
MOR research focused on linear circuits, but more recent research
has tackled weakly nonlinear circuits and finally strongly nonlinear
circuits. [2] is a recent survey. For nonlinear circuits, piecewise
linear [3] and piecewise polynomial approaches [4] each tie
together a group of linear or polynomial models along likely
trajectories in state space. Kernel methods [5][6] transform the

nonlinear state space into a high-dimensional linear feature space
which is more readily handled. MOR uses the circuit’s internal
dynamics to retain some trust; however, since they are not
interpretable they can be less preferable to many designers. Also,
they are subject to the biases imposed by the particular choice of
regression. Specifically, polynomials extrapolate poorly; distance-
based kernels (e.g. radial basis kernels) and inner product kernels
place equal importance on all state variables even though some state
variables may affect the dynamics far more than others. That is
why [5] mentioned high sensitivity of model error to the scaling of
the state variables. Finally, nonlinear MOR approaches divide the
problem into two sub-problems that are solved sequentially (finding
a projector, finding the corresponding regressor); the only way this
division could be optimal is if the two sub-problems are completely
independent, and there is no reason to believe this is so. Thus, the
approaches sacrifice their chances of optimality, most notably the
compressibility aspect (which directly influences interpretability).

On the other hand, regression or “black-box” approaches create
models that learn from the simulation waveforms of the circuit’s
inputs and outputs [7]. The topology and internal states of the
circuit are not considered. As the problem is not sub-divided into
sub-problems, it has (at least the theoretical) opportunity to
optimally capture the dynamics. The models can be compact.
However, they are not interpretable, which impedes designer trust.
Because they do not aim to project the dynamics of the detailed
system onto a smaller system, they do not “gain back” some trust.

This paper presents IBMG: Interpretable Behavioral Model
Generator. IBMG uses genetic programming [8], which evolves
functions, but modified so that differential equations follow a
special canonical form. Trust is gained because the models are
readily-interpretable equations. IBMG creates compositions of
functions that best fit the problem at hand; i.e. is not constrained to
any specific basis function nor any predefined functional template.

This paper is organized as follows. Section II describes the
problem; section III provides background on GP; sections IV and V
describe IBMG and its grammar. Section VI provides experimental
results, followed by the conclusion.

II. PROBLEM DESCRIPTION
We consider a p-input q-output nonlinear dynamical system,

specifically a circuit, of the form:

((), ())

() () ()

dx
f x t u t

dt

y t Cx t Du t

=

= +

 (1.1)

where x(t) is the system’s n-dimensional state (i.e. node
voltages and branch currents in the circuit), u(t) is the p inputs at
time t, and y(t) is the q outputs at time t. f(x, u) is an arbitrary
nonlinear function vector field that describes how the state changes.
y(t) is a linear function of x(t) and u(t).

The task of the behavioral modeling system is to create a more
compact form of the given dynamical system, i.e. one with m states
where m n� . The model must be interpretable behavioral
expressions, i.e. easily readable functional forms that describe how
the state changes. Finally, the approach must have error control by
actually generating a set of models that trade off between error and
complexity. The generator’s inputs are u(t) and y(t), taken from a
transient simulation using a standard SPICE simulator. With the
aim of interpretability, x(t) is not an input, even though it creates a
more difficult learning problem. The expressions to be generated
must take the form:

((), ())

() () ()

dz
g z t u t

dt

y t Ez t Fu t

=

= +

 (1.2)

where z is the system’s state, and g, E, and F are the reduced-system
equivalents of f, C, and D respectively. Initial system state is set to
be z(0) = (0,0,…). IBMG must “learn” the vector valued function
g(z, u) as well as E and F. Learning E and F is merely a set of
linear learning problems (one for each output variable) once z(t) for
each t is known. Learning g(z, u) is the major challenge, as each
point g in the search space of possible G’s involves a choice of the
number of basis functions, and the functional form of each of those
basis functions (which takes the other basis functions and u as an
input). Any possible composition of functions is allowed.

We could have formulated the problem more generally, i.e. y as
a nonlinear function of x and u. But IBMG approximates nonlinear
mappings via state variables that do not appear in f(), which relate x
and u to y in a nonlinear fashion. In making this choice we simplify
IBMG and also encourage re-use of expressions for outputs.

Let us define our goals more specifically. We want to generate
a set of models that trade off according to these objectives:

 {m in (,)

m in ()

hto tnm se y y

com plexity h

h H∈

 (1.3)

where h is a model in model space H; a given h is composed of a g,
E, and F. nmsetot is defined as follows:

 ()1 1
(, , ,) (,) (,)

1 2

p
nmse y y dy dy nmse y y nmse dy dytot g g g gip

�= +
=

(1.4)

where dy(t) = y(t)-y(t-dt) and nmse follows the usual definition:

2
() () ()1 2

(,)2 1() max() min()

len y y j y jref ref
nmse y yref jlen y y yref ref ref

−
�=
= −

� �
� �
� �

(1.5)

where len(y) is the number of samples in y.

The speed of model building is not considered a goal at this
point.

III. BACKGROUND: GENETIC PROGRAMMING
Genetic Programming (GP) [8] is an evolutionary algorithm,

with the distinguishing characteristic that GP individuals (points in
the design space) are trees. While GP has been used previously to
evolve differential equations [9], this paper is the first to have an
up-front emphasis on interpretability, to create tradeoffs of
complexity and error, and to model circuits. The functional form of
results from canonical GP is completely unrestricted, hindering
interpretability. This is exacerbated by the observation that GP-
evolved functions tend to bloat with improved fitness [10]. The
main challenge is to find a way to restrict the form enough to make
the expressions interpretable, without actually constraining away
from any possible functional forms.

IV. DESCRIPTION OF IBMG
IBMG uses an altered form of CAFFEINE [11]. CAFFEINE

took GP as a starting point, but extended it to properly address
creating static mappings that were interpretable. It attacked
interpretability via a multi-objective approach that provides a
tradeoff between error and complexity, and most notably a specially
designed grammar to constrain search to specific functional forms.
IBMG uses a state-of-the-art multi-objective evolutionary
algorithm, NSGA-II [12], to generate a set of models that,
collectively, trade off nmsetot and complexity. “Complexity” is
dependent on the number of basis functions, the number of nodes in
each tree, and the exponents of “variable combos” (VCs; more on
that later). It is measured as:

nvc()

,

1 1

complexity() (nnodes() vccost())
M jf

b k j

j k

f w j vc
= =

= + +� � (6)

where wb is a constant to give a minimum cost to each basis
function, nnodes(j) is the number of tree nodes of basis function j,
nvc(j) is the number of VCs of basis function j, and

dim 1

vccost (vc) abs(vc(dim))
d

vcw
=

= � . IBMG does simplification

during generation via pressure to lower complexity. The user
avoids a priori decisions on the error and complexity because
IBMG provides a tradeoff set of alternatives.

V. GRAMMAR AND OPERATORS
A grammar can constrain the GP search space, as in [13].

Evolutionary operators respect the derivation rules of the grammar,
i.e. only subtrees with the same root can be crossed over, and
random generation of trees must follow the derivation rules. A
basis function is the leaf nodes (terminal symbols) of the tree;
internal nodes (nonterminal symbols) reflect the underlying
structure; the tree root is the start symbol.

CAFFEINE (Canonical Functional Form Expressions in
Evolution) [11] included a carefully designed grammar specifically
for modeling functional forms. The grammar allowed all functional
compositions, but in just one canonical form. A CAFFEINE
individual consisted of a set of trees. The root node of each tree
(basis function) was a product of sums; and the weights on the basis
functions could be linearly learned from y. In IBMG, however, the
usage of the set of basis functions is different: the expressions are

simulated in a dynamic fashion, starting from an initial state z(0),
and each the change in state dx/dt at time t is a function of the
current state x(t) and inputs u(t). Thus, linear weights on the basis
functions cannot be determined by linear learning. This means that
the form for the root should be more open-ended; it can be either a
weighted sum of basis functions or a product of variables and/or
nonlinear functions. Once the system is simulated, which computes
z(t) for each t, then linear learning can be employed on z and y to
determine E and F. Accordingly, the IBMG grammar makes just
one adjustment to the CAFFEINE grammar: it adds the first line in
the grammar. The IBMG grammar is:
ROOTSYM => W + REPADD | REPVC

REPVC => VC | REPVC * REPOP | REPOP

REPOP => REPOP * REPOP | 1OP(W + REPADD) |

2OP(2ARGS) | ... (3OP, 4OP etc)

2ARGS => W + REPADD, MAYBEW | MAYBEW, W + REPADD

MAYBEW => W | W + REPADD

REPADD => W * REPVC | REPADD + REPADD

2OP => DIVIDE | MAX | ...

1OP => INV | LOG10 | ...

REPVC and REPOP is a product of variables and/or nonlinear
functions. Within each nonlinear function is a weighted sum of
basis functions (REPADD). Each basis function can be, once again,
a product of variables and/or nonlinear functions. And so on.

IBMG treats basis function operators slightly different than
CAFFEINE because expression inputs are more tightly tied to the
basis functions. In CAFFEINE the order of the basis functions was
not important because the output was a weighted sum. In IBMG,
the location i of a basis function describes the state variable z(i) that
it updates. With this in mind, basis function operators include:
uniform crossover of basis functions from two parents; deleting a
random basis function (therefore making its location empty); adding
a randomly generated tree as a basis function; copying a subtree
from one individual to make a new basis function for another.

The grammar is context-free, with two exceptions for the sake
of enhanced search: weights and variable combinations (VCs). At
each weight (W) node, a real value is stored in the range [-2*B,
+2*B]. During interpretation of the tree the value is transformed
into [-1e+B,-1e-B] � [0.0] � [1e-B, 1e+B]. B is user-set, e.g. 10. In
this way parameters can take on very small or very large negative or
positive values. Cauchy mutation is the operator. Each VC has an
accompanying vector that has one integer value per variable as the
variable’s exponent. There is one variable for each of the p system
inputs and one variable for each of the basis functions in the
candidate model. For interpretability, only integer exponents are
allowed. VC operators include: one point crossover, and randomly
adding or subtracting to an exponent value.

VI. EXPERIMENTAL COMPARISON

A. Experimental Setup
A prototype IBMG system was written in about 2000 lines of

Matlab code. The grammar was defined in a separate text file. Run
settings were: maximum number of basis functions 10, population
size 250, number of generations 1500, maximum tree depth 8,
weight setting B=4, complexity measure settings wb = 10, wvc =
0.25. All operators had equal probability, except parameter
mutation was five times more likely. Single-input operators

allowed were: x , loge(x), log10(x), 1/x, abs(x), x2, sin(x), cos(x),
tan(x), max(0, x), and min(0,x), 2x, 10x, where x is an expression.
Dual-input operators allowed are x1+x2, x1*x2, max(x1,x2),
min(x1,x2), power(x1,x2), and x1/x2. Also, lte(testExpr, condExpr,
exprIfTestLessThanCond, elseExpr) and lte(testExpr, 0,
exprIfTestLessThan0, elseExpr) were used, along with gte. We
could have turned off any unwanted rules or operators, e.g. to
restrict the search to linear functions or rationals, but we kept the
search open-ended. Experiments are on a 3.0 GHz Pentium IV PC
running Matlab 6.5 on Red Hat Linux.

Figure 1: Latch circuit

To test IBMG, we model a strongly nonlinear circuit: a latch
used in a DAC system similar to [15], shown in Figure 1. It
synchronizes the digital, differential input data at nodes Bit-nBit
with the clock Clk. Bit, nBit and Clk have been passed
through buffers. All the transistors except M14 and M13 form a
David-Goliath (strong-weak) inverter structure. The David
inverters regenerate the signals on the gates of M0/M1/M9/M10 and
hold them while the pass transistors M14 and M13 are off. The
technology is 0.18�m CMOS. Vdd, Vdd_sub, Vss, and
Vss_sub are 1.8V, 1.8V, 0.0V, and 0.0V respectively. Figure 2
shows the circuit’s input and output waveforms. IBMG’s goal is to
build a model that produces similar outputs given those same
inputs. Vdd and Vss are also treated as inputs to IBMG. Each
waveform had 2001 samples.

Figure 2: Input and target output waveforms (nBit, not shown, is merely
the inverse of Bit)

B. Model Prediction Results
We ran IBMG to build models for the latch. Runtime was 72

hours (a compiled implementation would be about an order of
magnitude faster). Figure 3 shows the best-performing result,
which achieved nmsetot of 1.31%. This is a fairly tight fit,
especially given that IBMG did not use the circuit’s internal state
information and instead had to invent its own states and state
transition equations. Examining the waveform, we see that the
sharp nonlinear transitions are handled quite gracefully, though the

model output jumps around somewhat at around 0.5 ns. The output
is fairly smooth over time in part thanks to minimization of error of
derivatives. Thus, IBMG has accomplished the error-minimization
goal.

Figure 3: Target output signals and model output signals

Figure 4: Tradeoff of complexity vs. normalized mean-squared error

% Err Expression
15.1 dx1/dt = nBit, dx2/dt = Bit * x1
6.25 dx1/dt = - 21.3 - 9.28e-03 * bufclk * x1

 + 1.0e+04 * nBit * bufclk
3.32 dx1/dt = 2.21e-02 - 3.72e-02 * x1 - 21.8 * Bit*nBit * bufclk

dx2/dt = nBit * bufclk * x1, dx6/dt = x1
1.31 dx1/dt = 78.2 + 1.06e-03 * Bit * x1 - 2.11e-02 * bufclk * x1

 - 4.85 * Bit * nBit * bufclk * x10
dx2/dt = nBit * bufclk * x1
dx3/dt = x1
dx4/dt = Bit * nBit * bufclk * x1 * x10
dx6/dt = Bit * nBit * bufclk * x1
dx8/dt = Bit * nBit * bufclk
dx9/dt = bufclk * x1
dx10/dt = 25.9 + 1.44e-04 * Bit * x1 - 1.89e-03 * x10

Table I: Some behavioral models of the latch generated by IBMG

Figure 4 illustrates the outcome of IBMG’s error-control
strategy: a set of about 50 behavioral models that collectively trade
off model complexity with error. Table I shows some IBMG
models. The most complex one, in the bottom row, achieved 1.31%
error, yet is readily interpretable. It effectively only has two state
variables (x1 and x10); the other six only act to create nonlinear
mappings from x and u to y, which is fine, as section 1 discussed.
Interestingly, polynomials almost exclusively dominated the final

models, though some expressions had max and some intermediate
results with error less than 2.0% had used lte0 and square. This is
reasonable, as polynomials are among the smoothest, simplest
expressions.

CONCLUSIONS
We have presented IBMG, an approach to generate behavioral

models of nonlinear analog circuits, with the special distinction that
the models are compact, interpretable expressions that are not
restricted to any pre-defined functional templates. The key is the
use of a specialized grammar within the context of genetic
programming. To test IBMG, we used it to model a strongly
nonlinear circuit, namely a latch. IBMG successfully generated
compact, interpretable models that trade off complexity with error.
Even the best-fit model (1.3% error) was very interpretable, which
greatly aids trust.

ACKNOWLEDGMENT
Thanks to J. Deveugele for helping set up the latch problem.

REFERENCES
[1] G. Gielen, R.A. Rutenbar, “Computer aided design of

analog and mixed-signal integrated circuits,” Proc. of the
IEEE Vol. 88(12), 2000, pp. 1825-1849.

[2] J. Roychowdhury, “Automated macromodel generation for
electronic systems,” BMAS 2003, San Jose, CA

[3] M. Rewienski, J. White, “A trajectory piecewise-linear
approach to model order reduction and fast simulation of
nonlinear circuits and micromachined devices,” Proc. ICCAD
2001, San Jose, CA, 2001, pp. 252-257

[4] N. Dong, J.S. Roychowdhury, “Piecewise polynomial
nonlinear model reduction,” DAC 2003: 484-489

[5] J.R. Phillips, J. Afonso, A.L. Oliveira, L.M. Silveira, “Analog
macromodeling using kernel methods,” ICCAD 2003, pp.
446-453

[6] J.R. Phillips, “A statistical serspective on nonlinear model
reduction,” BMAS 2003, San Jose, CA

[7] D.E. Root, J. Wood, N. Tufillaro, “New techniques for non-
linear behavioral modeling of microwave/RF ICs from
simulation and nonlinear microwave methods,” DAC 2004

[8] J.R. Koza. Genetic Programming. MIT Press, 1992.
[9] H. Cao, L. Kang, Y. Chen, J. Yu, “Evolutionary Modeling of

Ordinary Differential Equations with Genetic Programming,”
Genetic Programming and Evolvable Machines 1(4), Oct.
2000, pp. 309-337

[10] W. B. Langdon, R. Poli, “Fitness Causes Bloat: Mutation,”
Lecture Notes in Comp. Sci. 1391, Springer, 1998, pp. 37-48

[11] T. McConaghy, T. Eeckelaert, G. Gielen, “CAFFEINE:
Template-free symbolic model generation of analog circuits
via canonical form functions and genetic programming”,
DATE 2005 (not published)

[12] K. Deb, S. Agrawal, A. Pratap, T.A. Meyarivan, “A fast elitist
non-dominated sorting genetic algorithm for multi-objective
optimization: NSGA-II,” PPSN VI 2000, pp. 849-858

[13] P. Whigham, “Grammatically-based genetic programming,”
Workshop on GP: From Theory to Real-World Apps., 1995.

[14] J.R. Phillips, “Projection-based approaches for model
reduction of weakly nonlinear, time-varying systems,” IEEE
Trans CAD, Feb. 2003, pp. 453

[15] J. Deveugele, M. Steyaert, “A 10b 250MS/s binary-weighted
current-steering DAC,” ISSCC 2004

	Introduction
	Problem Description
	Background: Genetic Programming
	Description Of IBMG
	Grammar and Operators
	Experimental Comparison
	Experimental Setup
	Model Prediction Results

	Conclusions
	
	
	
	Acknowledgment
	References

