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Abstract—This paper presents IBMG, an approach to generate 
behavioral models of nonlinear analog circuits, with the special 
distinction that it generates models that are compact, 
interpretable expressions, which do are not restricted to any 
pre-defined functional templates.  IBMG outputs a small set of 
interpretable nonlinear differential equations that 
approximate the time-domain behavior of the circuit being 
modeled.  The approach uses genetic programming (GP), 
which evolves functions, but GP has been heavily modified so 
that the behavioral expressions follow a special “canonical 
functional form” grammar to remain interpretable. IBMG has 
explicit error control: it provides a set of models that trade off 
complexity and accuracy.  Experimental results on a strongly 
nonlinear latch circuit demonstrate the usefulness of IBMG. 

I. INTRODUCTION  
Fast, effective system-level analog design practices are 

becoming increasingly important due to the rise in the use of mixed-
signal ICs and communication circuits in particular.  How sub-
circuits are modeled for design and verification heavily influences 
speed and risk of system-level design.  Using SPICE to simulate a 
single system-level design can easily take hours or days, which 
makes verification painful and automated sizing infeasible.   

A potential means to speed up simulation is via behavioral 
models which approximate the dynamic behavior of sub-circuits but 
simulate orders of magnitude faster [1].  These models can be 
manually created.  This makes them understandable (because they 
are interpretable expressions, and a human generated them), and 
therefore somewhat trustworthy.  However, creating of such models 
takes weeks to years, and even then the validity of the model could 
expire with new technology generations.   

An alternative is to generate models automatically.  Model 
order reduction (MOR) and regression are the two main approaches.  
MOR uses projections to transform the system’s states into a 
smaller set that retain the essence of the system’s behavior.  Early 
MOR research focused on linear circuits, but more recent research 
has tackled weakly nonlinear circuits and finally strongly nonlinear 
circuits. [2] is a recent survey.   For nonlinear circuits, piecewise 
linear [3] and piecewise polynomial approaches [4] each tie 
together a group of linear or polynomial models along likely 
trajectories in state space.  Kernel methods [5][6] transform the 

nonlinear state space into a high-dimensional linear feature space 
which is more readily handled.  MOR uses the circuit’s internal 
dynamics to retain some trust; however, since they are not 
interpretable they can be less preferable to many designers.  Also, 
they are subject to the biases imposed by the particular choice of 
regression.  Specifically, polynomials extrapolate poorly; distance-
based kernels (e.g. radial basis kernels) and inner product kernels 
place equal importance on all state variables even though some state 
variables may affect the dynamics far more than others.  That is 
why [5] mentioned high sensitivity of model error to the scaling of 
the state variables.  Finally, nonlinear MOR approaches divide the 
problem into two sub-problems that are solved sequentially (finding 
a projector, finding the corresponding regressor); the only way this 
division could be optimal is if the two sub-problems are completely 
independent, and there is no reason to believe this is so.  Thus, the 
approaches sacrifice their chances of optimality, most notably the 
compressibility aspect (which directly influences interpretability).  

On the other hand, regression or “black-box” approaches create 
models that learn from the simulation waveforms of the circuit’s 
inputs and outputs [7].  The topology and internal states of the 
circuit are not considered.  As the problem is not sub-divided into 
sub-problems, it has (at least the theoretical) opportunity to 
optimally capture the dynamics.  The models can be compact.  
However, they are not interpretable, which impedes designer trust.  
Because they do not aim to project the dynamics of the detailed 
system onto a smaller system, they do not “gain back” some trust. 

This paper presents IBMG: Interpretable Behavioral Model 
Generator. IBMG uses genetic programming [8], which evolves 
functions, but modified so that differential equations follow a 
special canonical form.  Trust is gained because the models are 
readily-interpretable equations.    IBMG creates compositions of 
functions that best fit the problem at hand; i.e. is not constrained to 
any specific basis function nor any predefined functional template.   

This paper is organized as follows. Section II describes the 
problem; section III provides background on GP; sections IV and V 
describe IBMG and its grammar.  Section VI provides experimental 
results, followed by the conclusion.   

II. PROBLEM DESCRIPTION 
We consider a p-input q-output nonlinear dynamical system, 

specifically a circuit, of the form:  
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where x(t) is the system’s n-dimensional state (i.e. node 
voltages and branch currents in the circuit), u(t) is the p inputs at 
time t, and y(t) is the q outputs at time t.  f(x, u) is an arbitrary 
nonlinear function vector field that describes how the state changes. 
y(t) is a linear function of x(t) and u(t).  

The task of the behavioral modeling system is to create a more 
compact form of the given dynamical system, i.e. one with m states 
where m n� .  The model must be interpretable behavioral 
expressions, i.e. easily readable functional forms that describe how 
the state changes.  Finally, the approach must have error control by 
actually generating a set of models that trade off between error and 
complexity.  The generator’s inputs are u(t) and y(t), taken from a 
transient simulation using a standard SPICE simulator. With the 
aim of interpretability, x(t) is not an input, even though it creates a 
more difficult learning problem.  The expressions to be generated 
must take the form:  
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where z is the system’s state, and g, E, and F are the reduced-system 
equivalents of f, C, and D respectively.  Initial system state is set to 
be z(0) = (0,0,…).  IBMG must “learn” the vector valued function 
g(z, u) as well as E and F.  Learning E and F is merely a set of 
linear learning problems (one for each output variable) once z(t) for 
each t is known.  Learning g(z, u) is the major challenge, as each 
point g in the search space of possible G’s involves a choice of the 
number of basis functions, and the functional form of each of those 
basis functions (which takes the other basis functions and u as an 
input).  Any possible composition of functions is allowed.  

We could have formulated the problem more generally, i.e. y as 
a nonlinear function of x and u.  But IBMG approximates nonlinear 
mappings via state variables that do not appear in f(), which relate x 
and u to y in a nonlinear fashion.  In making this choice we simplify 
IBMG and also encourage re-use of expressions for outputs. 

Let us define our goals more specifically.  We want to generate 
a set of models that trade off according to these objectives: 
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where h is a model in model space H; a given h is composed of a g, 
E, and F.    nmsetot is defined as follows:   

 ( )1 1
( , , , ) ( , ) ( , )

1 2

p
nmse y y dy dy nmse y y nmse dy dytot g g g gip

�= +
=

(1.4) 

where dy(t) = y(t)-y(t-dt) and nmse follows the usual definition: 
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where len(y) is the number of samples in y. 

The speed of model building is not considered a goal at this 
point.   

III. BACKGROUND: GENETIC PROGRAMMING 
Genetic Programming (GP) [8] is an evolutionary algorithm, 

with the distinguishing characteristic that GP individuals (points in 
the design space) are trees.  While GP has been used previously to 
evolve differential equations [9], this paper is the first to have an 
up-front emphasis on interpretability, to create tradeoffs of 
complexity and error, and to model circuits.  The functional form of 
results from canonical GP is completely unrestricted, hindering 
interpretability.  This is exacerbated by the observation that GP-
evolved functions tend to bloat with improved fitness [10].  The 
main challenge is to find a way to restrict the form enough to make 
the expressions interpretable, without actually constraining away 
from any possible functional forms.   

IV. DESCRIPTION OF IBMG 
IBMG uses an altered form of CAFFEINE [11].  CAFFEINE 

took GP as a starting point, but extended it to properly address 
creating static mappings that were interpretable.  It attacked 
interpretability via a multi-objective approach that provides a 
tradeoff between error and complexity, and most notably a specially 
designed grammar to constrain search to specific functional forms.    
IBMG uses a state-of-the-art multi-objective evolutionary 
algorithm, NSGA-II [12], to generate a set of models that, 
collectively, trade off nmsetot and complexity.  “Complexity” is 
dependent on the number of basis functions, the number of nodes in 
each tree, and the exponents of “variable combos” (VCs; more on 
that later). It is measured as: 
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where wb is a constant to give a minimum cost to each basis 
function, nnodes(j)  is the number of tree nodes of basis function j, 
nvc(j) is the number of VCs of basis function j, and 
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during generation via pressure to lower complexity.  The user 
avoids a priori decisions on the error and complexity because 
IBMG provides a tradeoff set of alternatives. 

V. GRAMMAR AND OPERATORS 
A grammar can constrain the GP search space, as in [13]. 

Evolutionary operators respect the derivation rules of the grammar, 
i.e. only subtrees with the same root can be crossed over, and 
random generation of trees must follow the derivation rules.  A 
basis function is the leaf nodes (terminal symbols) of the tree; 
internal nodes (nonterminal symbols) reflect the underlying 
structure; the tree root is the start symbol.  

CAFFEINE (Canonical Functional Form Expressions in 
Evolution) [11] included a carefully designed grammar specifically 
for modeling functional forms.  The grammar allowed all functional 
compositions, but in just one canonical form.  A CAFFEINE 
individual consisted of a set of trees.  The root node of each tree 
(basis function) was a product of sums; and the weights on the basis 
functions could be linearly learned from y.  In IBMG, however, the 
usage of the set of basis functions is different: the expressions are 



simulated in a dynamic fashion, starting from an initial state z(0), 
and each the change in state dx/dt at time t is a function of the 
current state x(t) and inputs u(t).  Thus, linear weights on the basis 
functions cannot be determined by linear learning.  This means that 
the form for the root should be more open-ended; it can be either a 
weighted sum of basis functions or a product of variables and/or 
nonlinear functions.  Once the system is simulated, which computes 
z(t) for each t, then linear learning can be employed on z and y to 
determine E and F.  Accordingly, the IBMG grammar makes just 
one adjustment to the CAFFEINE grammar: it adds the first line in 
the grammar.  The IBMG grammar is: 
ROOTSYM => W + REPADD | REPVC

REPVC => VC | REPVC * REPOP | REPOP

REPOP => REPOP * REPOP | 1OP( W + REPADD ) |

2OP( 2ARGS ) | ... (3OP, 4OP etc)

2ARGS => W + REPADD, MAYBEW | MAYBEW, W + REPADD

MAYBEW => W | W + REPADD

REPADD => W * REPVC | REPADD + REPADD

2OP => DIVIDE | MAX | ...

1OP => INV | LOG10 | ...

REPVC and REPOP is a product of variables and/or nonlinear 
functions.  Within each nonlinear function is a weighted sum of 
basis functions (REPADD).  Each basis function can be, once again, 
a product of variables and/or nonlinear functions. And so on.   

IBMG treats basis function operators slightly different than 
CAFFEINE because expression inputs are more tightly tied to the 
basis functions.  In CAFFEINE the order of the basis functions was 
not important because the output was a weighted sum.  In IBMG, 
the location i of a basis function describes the state variable z(i) that 
it updates.  With this in mind, basis function operators include: 
uniform crossover of basis functions from two parents; deleting a 
random basis function (therefore making its location empty); adding 
a randomly generated tree as a basis function;  copying a subtree 
from one individual to make a new basis function for another. 

The grammar is context-free, with two exceptions for the sake 
of enhanced search: weights and variable combinations (VCs).  At 
each weight (W) node, a real value is stored in the range [-2*B, 
+2*B].  During interpretation of the tree the value is transformed 
into [-1e+B,-1e-B] � [0.0] � [1e-B, 1e+B].  B is user-set, e.g. 10. In 
this way parameters can take on very small or very large negative or 
positive values.  Cauchy mutation is the operator. Each VC has an 
accompanying vector that has one integer value per variable as the 
variable’s exponent.  There is one variable for each of the p system 
inputs and one variable for each of the basis functions in the 
candidate model.  For interpretability, only integer exponents are 
allowed.  VC operators include: one point crossover, and randomly 
adding or subtracting to an exponent value. 

VI. EXPERIMENTAL COMPARISON 

A. Experimental Setup 
A prototype IBMG system was written in about 2000 lines of 

Matlab code.  The grammar was defined in a separate text file.  Run 
settings were: maximum number of basis functions 10, population 
size 250, number of generations 1500, maximum tree depth 8, 
weight setting B=4, complexity measure settings wb = 10, wvc = 
0.25.  All operators had equal probability, except parameter 
mutation was five times more likely.  Single-input operators 

allowed were: x , loge(x), log10(x), 1/x, abs(x), x2, sin(x), cos(x), 
tan(x), max(0, x), and min(0,x), 2x, 10x, where x is an expression.  
Dual-input operators allowed are x1+x2, x1*x2, max(x1,x2), 
min(x1,x2), power(x1,x2), and x1/x2. Also, lte(testExpr, condExpr, 
exprIfTestLessThanCond, elseExpr) and lte(testExpr, 0, 
exprIfTestLessThan0, elseExpr) were used, along with gte.  We 
could have turned off any unwanted rules or operators, e.g. to 
restrict the search to linear functions or rationals, but we kept the 
search open-ended.  Experiments are on a 3.0 GHz Pentium IV PC 
running Matlab 6.5 on Red Hat Linux.    

 

Figure 1: Latch circuit 

To test IBMG, we model a strongly nonlinear circuit: a latch 
used in a DAC system similar to [15], shown in Figure 1.  It 
synchronizes the digital, differential input data at nodes Bit-nBit 
with the clock Clk. Bit, nBit and Clk have been passed 
through buffers.  All the transistors except M14 and M13 form a 
David-Goliath (strong-weak) inverter structure.  The David 
inverters regenerate the signals on the gates of M0/M1/M9/M10 and 
hold them while the pass transistors M14 and M13 are off.  The 
technology is 0.18�m CMOS.  Vdd, Vdd_sub, Vss, and 
Vss_sub are 1.8V, 1.8V, 0.0V, and 0.0V respectively.  Figure 2 
shows the circuit’s input and output waveforms.   IBMG’s goal is to 
build a model that produces similar outputs given those same 
inputs.  Vdd and Vss are also treated as inputs to IBMG.  Each 
waveform had 2001 samples. 

 

Figure 2: Input and target output waveforms (nBit, not shown, is merely 
the inverse of Bit) 

B. Model Prediction Results 
We ran IBMG to build models for the latch.  Runtime was 72 

hours (a compiled implementation would be about an order of 
magnitude faster).  Figure 3 shows the best-performing result, 
which achieved nmsetot of 1.31%.  This is a fairly tight fit, 
especially given that IBMG did not use the circuit’s internal state 
information and instead had to invent its own states and state 
transition equations.  Examining the waveform, we see that the 
sharp nonlinear transitions are handled quite gracefully, though the 



model output jumps around somewhat at around 0.5 ns.  The output 
is fairly smooth over time in part thanks to minimization of error of 
derivatives.  Thus, IBMG has accomplished the error-minimization 
goal.   

 

Figure 3: Target output signals and model output signals 

 

Figure 4: Tradeoff of complexity vs. normalized mean-squared error 

% Err Expression 
15.1 dx1/dt = nBit, dx2/dt = Bit * x1 
6.25 dx1/dt = - 21.3  - 9.28e-03 * bufclk * x1  

             + 1.0e+04 * nBit * bufclk 
3.32 dx1/dt = 2.21e-02 - 3.72e-02 * x1 - 21.8  * Bit*nBit * bufclk 

dx2/dt = nBit * bufclk * x1, dx6/dt = x1 
1.31 dx1/dt = 78.2 + 1.06e-03 * Bit * x1 - 2.11e-02 * bufclk * x1  

             - 4.85 * Bit * nBit * bufclk * x10 
dx2/dt = nBit * bufclk * x1 
dx3/dt = x1 
dx4/dt = Bit * nBit * bufclk * x1 * x10 
dx6/dt = Bit * nBit * bufclk * x1 
dx8/dt = Bit * nBit * bufclk 
dx9/dt = bufclk * x1 
dx10/dt = 25.9 + 1.44e-04 * Bit * x1 - 1.89e-03 * x10 

Table I: Some behavioral models of the latch generated by IBMG 

Figure 4 illustrates the outcome of IBMG’s error-control 
strategy: a set of about 50 behavioral models that collectively trade 
off model complexity with error.  Table I shows some IBMG 
models.  The most complex one, in the bottom row, achieved 1.31% 
error, yet is readily interpretable.  It effectively only has two state 
variables (x1 and x10); the other six only act to create nonlinear 
mappings from x and u to y, which is fine, as section 1 discussed.  
Interestingly, polynomials almost exclusively dominated the final 

models, though some expressions had max and some intermediate 
results with error less than 2.0% had used lte0 and square.  This is 
reasonable, as polynomials are among the smoothest, simplest 
expressions. 

CONCLUSIONS 
We have presented IBMG, an approach to generate behavioral 

models of nonlinear analog circuits, with the special distinction that 
the models are compact, interpretable expressions that are not 
restricted to any pre-defined functional templates.  The key is the 
use of a specialized grammar within the context of genetic 
programming.  To test IBMG, we used it to model a strongly 
nonlinear circuit, namely a latch.  IBMG successfully generated 
compact, interpretable models that trade off complexity with error.  
Even the best-fit model (1.3% error) was very interpretable, which 
greatly aids trust.  
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