
Simultaneous Multi-Topology Multi-Objective Sizing
Across Thousands of Analog Circuit Topologies

Trent McConaghy, Pieter Palmers, Georges Gielen, Michiel Steyaert
K.U. Leuven, ESAT-MICAS
Kasteelpark Arenberg 10
B-3001 Leuven, Belgium

trent.mcconaghy, pieter.palmers, georges.gielen, michiel.steyaert @esat.kuleuven.be

ABSTRACT
This paper presents MOJITO, a system which optimizes across
thousands of analog circuit topologies simultaneously, and returns
a set of sized topologies that collectively provide a performance
tradeoff. MOJITO defines a space of possible topologies as a
hierarchically organized combination of trusted analog building
blocks. To minimize the setup burden: no topology selection
rules or abstract behaviors need to be specified, and performance
calculations are SPICE-based. The search algorithm is a novel
multi-objective evolutionary algorithm that uses an age-layered
population structure to balance exploration vs. exploitation.
Results are shown for a space having 3528 one- and two-stage
operational amplifier topologies.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Analog, Algorithms, Design, Synthesis

Keywords
Analog, mixed-signal, integrated circuits, computer-aided design.

1. INTRODUCTION
The choice of cell-level analog circuit topology can have a giant
impact on the performance of a system, and its implications
resonate throughout the rest of the design cycle. Even the best
circuit optimizers can only produce as good a result as the chosen
topology allows [18]. Unfortunately, a suboptimal choice can
occur: it may not suit larger statistical variations or new effects
such as proximity [6] when the process changes; functionality
requirements may be qualitatively new to the designer; or the
designer may unknowingly miss an advance in topology design.
The process to choose a topology has traditionally been very
iterative, and intertwined with the choice of specifications. As
Figure 1 (a) shows, many topologies may be tried for a fixed set
of specifications, and if needed, the specs themselves may
change. As Figure 1 (b) shows, one can remove the iteration over
topology choices by making it part of the search itself; but that
still needs iterations over specs, and means that just a feasible (not

optimal) solution will be found. Multi-objective sizers [4] bypass
the specs issue by optimizing on >1 goals to generate
performance tradeoffs as part of the search task. But so far,
multiobjective sizers have only worked on one topology at a time.
This means that to get an optimal tradeoff across multiple
topologies, one needs one sizing run per topology before merging
the topologies, as Figure 1 (c) shows. In system-level design,
tradeoffs of topologies are merged; then, search at higher-level
blocks implicitly performs topology selection of lower-level
blocks [7]. But tradeoff-merging has limits: it would be
extremely tedious and time-consuming to do a different sizing run
for each of 100 or 1000 topologies. Figure 1 (d) shows the ideal
approach, which simultaneously considers a large number of
possible topologies and returns a multi-topology tradeoff across
specs, all in one sizing run.

Figure 1: Single- vs. multi-objective and single- vs. multi-

topology sizing flows
Cell-level multi-topology sizing approaches also have limits.
OASYS [9], BLADES [8], and others [1][2][11][16][21][23]
depend on rule-based reasoning or abstract models having
transforms to structural descriptions, and therefore have an
undesirable amount of up-front setup effort. DARWIN [13] and
MINLP [14] only require structural information, but rely on a
sneaky definition of a flat combinatorial search space to define
possible topologies; they do not show a clear path to generalize

 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC ’07, June 4–8, 2007, San Diego, CA, USA.
Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

(a)

(c) (d)

(b)

and are restricted to <100 topologies. Approaches like
[3][12][20] search across unstructured combinations of transistors,
but that flexibility makes them notorious for exploiting missing
goals, which compromises designer trust [15].

This paper presents MOJITO, a system for multi -objective and
multi–topology sizing. It uses inputs and outputs that are
acceptable for industrial single-topology sizing tools (e.g. [19]),
with one exception: rather than a single parameterized netlist, it
requires a hierarchically organized set of building blocks with
respective implementation choices. MOJITO does not need a
special decision rule base, or abstract models with mappings to
refined structures. This makes it straightforward to switch
technologies or add new building blocks. It uses off-the-shelf
simulators rather than specially designed performance estimators.
Its output is a tradeoff of sized circuits (potentially with different
topologies), for final selection by a designer or within a
hierarchical methodology like MOBU [7].

This paper is organized as follows. Sections 2 and 3 describe the
MOJITO search space and search algorithm, respectively. Section
4 presents experimental results. Section 5 concludes.

2. THE MOJITO SEARCH SPACE

2.1 Search Space Framework
This section describes a topology space (library) that is specified
by structural information only, searchable, trustworthy, and
flexible. It is defined with hierarchically organized blocks. Like
analog HDLs, each block has external ports and parameters for an
interface. To fully netlist a given block, the only extra
information needed is a value for each parameter of the block.
Just three block types are needed:

• Atomic Blocks. Have no sub-blocks.

• Compound Blocks. Have sub-blocks, which can have
internal connections among themselves and to the block’s
external ports. Sub-block parameters are a function of the
block’s parameters.

• Flexible Block. Have the special topological parameter
chosen_part_index, which during netlisting, selects one of
several candidate sub-blocks and respective connections.

2.2 A Highly Searchable Op Amp Library
We use the framework to define a cell-level library of operational
amplifiers. One challenge: if a designer makes a small conceptual
change to a circuit that corresponds to a small change in
performance, there may be a drastic change in the netlist. While
this complicates the design of an appropriate search
representation, it is needed for changes like folding an input or
flipping all NMOS transistors to PMOS. Myriad examples can be
found in any analog text [17]. The structural-only op amp
approaches [13][14] do cover some of these examples, but are
designed into a flat space, need special heuristics just to work in
their small spaces, and do not readily generalize. An example
limitation: [14] had a single parameter to choose whether NMOS
vs. PMOS inputs, but did not reconcile that with folded vs.
cascode which can flip the load being NMOS vs. PMOS.

To resolve this, we exploit the chosen_part_index parameter,
which allows highly flexible blocks because it can (a) be a
function of one or more higher-level parameters, and (b) choose
between sub-blocks that are identical except how those sub-blocks
are wired to their parent block. In the MOJITO library, we set the
parameter is_pmos to become the value of chosen_part_index for
the MOS4 flexible block having subblock choices of atomic
blocks NMOS4 and PMOS4. How is_pmos gets set is dependent
on the block’s context in the library hierarchy and therefore the
values of its parent blocks’ parameters. Let’s see how that affects
folding, etc. A block for a 1-stage amplifier is a flexible block
with Vdd and Gnd ports, and has two sub-block choices. Both
choices are for the same subblock -- the choice specifies only how
to connect that subblock: one choice ties the subblock’s loadrail
port to Vdd and its opprail to Gnd; for the other choice, vice
versa. It also passes on the chosen_part_index value as a
parameter to lower-level subblocks, mapping it to the appropriate
name loadrail_is_vdd. Another parameter that starts at the
amplifier level and propagates downwards is input_is_pmos. To
resolve folding, the input cascode block’s parameter is_folded is
calculated by (input_is_pmos == loadrail_is_vdd). Once that is
resolved, the flexible block uses is_folded to choose between a
folded cascode subblock and a stacked subblock. Each of those
cascode subblocks can readily set is_pmos parameters for all
subblocks.
For space reasons, we do not describe the whole MOJITO
amplifier library; but, using the core concepts as a guide, the other
building blocks can be defined in a straightforward fashion. For
example, a current mirror block is a flexible block that chooses
from one of three current mirror choices. The library also
includes: 2 level shifter choices (one choice is a wire); 2 choices
of how to allocate Vdd/Gnd ports for a 1-stage amplifier and 4 for
a 2-stage amplifier; 3 source-degeneration choices; 3 single-ended
load choices; and more.
Table 1 shows that MOJITO increases the op amp count by 50x.
To calculate that: the count for an atomic block is one; for a
flexible block, it's the sum of the counts of each choice block; for
a compound block, it's the product of the counts of each of its
sub-blocks; but there are subtleties. Subtlety: for a given choice
of flexible block, other choice parameters at that level may not
matter. Example: if a one-stage amplifier is chosen, do not count
choices related to second stage. Subtlety: one higher-level choice
might govern >1 lower-level choices, so don't overcount.
Example: a two-transistor current mirror should have two choices
(nmos vs. pmos), not four (nmos vs. pmos x 2).

Table 1: Size of Op Amp Topology Spaces

Technique #
topologies

Trustworthy?

Genetic Prog., e.g. [12] >>billions NO
DARWIN [13] 24 YES
MINLP [14] 64 YES
MOJITO (this work) 3528 YES

3. THE MOJITO SEARCH ALGORITHM
MOJITO search is an evolutionary algorithm (EA). To avoid
premature convergence, it injects randomness using ALPS [10],
which segregates individuals by genetic age as shown in Figure 2.

Selection at a level l considers individuals at only level l and level
l-1; therefore younger high-fitness individuals can propagate to
higher levels. Genetic age is the number of generations of an
individual’s oldest genetic material: a random individual is age 0;
the age of a child is the maximum of its parents’ ages. Putting
NSGA-II [5] at each age level makes search multi-objective.

Figure 2: Multi-objective ALPS

MOJITO has a mutation operator and a crossover operator.
Mutating continuous-valued parameters follows a Cauchy
distribution; integer-valued chosen_part_index parameters follow
a discrete uniform distribution; other integer and discrete
parameters follow discretized Cauchy mutations. Crossover
works as follows: given two parent individuals, randomly choose
a sub-block in parent A, identify all the parameters associated
with that sub-block, and swap those parameters between parent A
and parent B. This effectively makes the search a hybrid between

tree-based and string-based search. To generate random
individuals, MOJITO merely randomly chooses a value for each
parameter using a uniform distribution.

4. EXPERIMENTAL RESULTS
This section describes application to two multi-objective multi-
op-amp topology sizing problems. The problems were set up as
follows. The search space had 50 variables (topology selection
variables and sizing variables). Simulator was HSPICE.
Technology was 0.18μ CMOS; supply voltage 1.8V; load
capacitance 1pF. Search objectives: maximize GBW, minimize
power, maximize DC Gain (Experiment Set 2). Constraints: phase
margin > 65°, all DOCs, DC Gain > 30dB (Experiment Set 1).
EA settings were: 100 individuals per age layer; 10 age layers,
maximum age per layer: 9, 19, …, 79, 89, infinity. Each run took
approximately 5 days on a single-core 2.0 GHz Linux machine,
covering 100,000 search points.

4.1 Experiment Set 1
These runs were to verify the algorithm’s ability to traverse the
search space and select different topologies. The problem was set
up such that the optimization end result was known a priori.
Three experiments were run, the only difference between them
being the common mode voltage (Vcmm,in) at the input. We know
that for Vcmm,in = 1.5V, topologies must have an NMOS input

individuals available for selection

individuals available for selection

NSGA-II at age level L

individuals available for selection

NSGA-II at age level 0

NSGA-II at age level 1

NSGA-II at age level 2

Figure 5: Results for a multi-topology multi-objective sizing run on 3 objectives: gbw, gain, and area.

(a)
(b)

(c)

Figure 4: Combined result plot for 3 optimization runs, illustrating some of the selected topologies. Set (a) shows a front for Vin =
1.5, set (b) is for Vin = 0.3V and set (c) is for Vin = 0.9

area area

randomly generated individuals

pair. For Vcmm,in = 0.3V, topologies must have PMOS inputs. At
Vcmm,in = 0.9V, there is no restriction between NMOS and PMOS
inputs. Figure 4 illustrates the outcome of the experiments. It
contains the combined results of three optimization runs. Result
(a) has Vcmm,in = 1.5V, and has only topologies with NMOS
inputs. It chose to use 1-stage and 2-stage amplifiers, depending
on the power-GBW tradeoff. Result (b) has Vcmm,in = 0.3V, and
MOJITO only returns PMOS input pairs. Note that result (a) is a
result before convergence in order to retain the 2-stage amplifier
in the result set. Older generations eliminate the 2-stage amplifier
in favor of the folded cascode amplifier, as in result (b). For
result (c) a Vcmm,in = 0.9V has been specified. Though both
NMOS and PMOS input pairs might have arisen, the optimization
preferred NMOS inputs. The curve clearly shows the switch in
topology around GBW=1.9GHz, moving from a folded cascode
input to a simple current-mirror amp. Interestingly, the search
retained a stacked current-mirror load for about 250MHz GBW.
Thus, Experiment 1 validated that MOJITO did find the
topologies that we had expected a priori.

4.2 Experiment Set 2
The second set of experiments was performed to verify that
MOJITO could get interesting groups of topologies in a tradeoff
of two or more objectives. The motivation is as follows: whereas
a single-objective multi-topology optimization can only return
one topology, the more objectives that one has in a multi-
topology search, the more opportunity there is for many
topologies to be returned, because different topologies naturally
lie in different regions of performance space. In this experiment,
a single run was performed, having three objectives: area, GBW,
and gain. The results are shown in Figure 5. We can see that
MOJITO determined (as expected): folded-cascode op amps gave
high gain-bandwidth but with high area, 2-stage amps give high
gain but at the cost of high area, the low-voltage current mirror
load is a 1-stage with high gain, and there are many other 1 stage
topologies which give a broad performance tradeoff.

5. CONCLUSION
This paper presented MOJITO, which does multi-topology, multi-
objective sizing. It considers thousands of topologies
simultaneously, which is possible due to a flexible yet searchable
set of trusted building blocks. For industrial relevance, it does not
use a rule-base or behavioral abstractions to guide search, and
uses SPICE for performance calculation. MOJITO performs
search in a hybrid vector/tree space, with a novel multiobjective
EA. MOJITO was applied to a space having 3528 different
operational amplifier topologies. In one set of experiments, we
showed how MOJITO successfully found appropriate topologies
trading off power and gain-bandwidth for different common-mode
input voltages. In another experiment, we showed how MOJITO
evolves different topologies for different regions of the tradeoff
among gain, gain-bandwidth, and area.

6. REFERENCES
[1] B.A.A. Antao, A.J. Brodersen, “ARCHGEN: Automated

Synthesis of Analog Systems”, IEEE Trans. VLSI 3(2), June
1995, pp. 231-244

[2] E. Berkcan et al., “Analog Compilation Based on Successive
Decompositions,” Proc. DAC, 1988, pp. 369-375

[3] T.R. Dastidar et al, “A Synthesis System for Analog Circuits
Based on Evolutionary Search and Topological Reuse,”
IEEE Trans. Ev. Comp. 9(2), April 2005, pp. 211-224

[4] B. De Smedt and G. Gielen, “WATSON: Design Space
Boundary Exploration and Model Generation for Analog and
RFIC Design,” IEEE Trans. CAD 22(2), 2003, pp. 213-224

[5] K. Deb et al., “A Fast and Elitist Multi-Objective Genetic
Algorithm: NSGA-II,” IEEE Trans. Ev. Comp. 6(2), 2002

[6] P. Drennan et al., “Implications of Proximity Effects for
Analog Design”, Proc. CICC, 2006

[7] T. Eeckelaert et al, “An Efficient Methodology for
Hierarchical Synthesis of Mixed-Signal Systems with Fully
Integrated Building Block Topology Selection,” Proc.
DATE, 2007

[8] F.M. E1-Turky, R.A. Nordin, “BLADES: An Expert System
For Analog Circuit Design,” Proc. ISCAS, 1986, pp.552- 555

[9] R. Harjani et al., “OASYS: A Framework for Analog Circuit
Synthesis,” IEEE Trans. CAD 8(12), pp. 1247-1266, 1992

[10] G.S. Hornby, “ALPS: The Age-Layered Population Structure
for Reducing the Problem of Premature Convergence,” Proc.
Genetic and Ev. Comp. Conf. (GECCO), 2006, pp. 815-822

[11] H.Y. Koh et al., “OPASYN: A Compiler for CMOS
Operational Amplifiers,” IEEE Trans. CAD vol. 9, Feb 1990

[12] J.R. Koza et al. Genetic Programming IV. Kluwer, 2003
[13] W. Kruiskamp and D. Leenaerts, “DARWIN: CMOS Opamp

Synthesis by Means of a Genetic Algorithm”, DAC, 1995
[14] P.C. Maulik et al., “Integer Programming Based Topology

Selection of Cell Level Analog Circuits”, IEEE Trans. CAD
14(4), April 1995

[15] T. McConaghy and G. Gielen, “Genetic Programming in
Industrial Analog CAD: Applications and Challenges”,
Genetic Programming Theory and Practice III, Riolo et al,
eds., Springer, 2005, ch. 19

[16] Z. Ning et al., "SEAS: A Simulated Evolution Approach for
Analog Circuit Synthesis," Proc. CICC, 1991

[17] B. Razavi, Design of Analog CMOS Integrated Circuits.
McGraw-Hill, 2000

[18] R.A. Rutenbar, G.E. Gielen, and B.A. Antao, eds.,
Computer-Aided Design of Analog Integrated Circuits and
Systems, IEEE Press, Piscataway, 2002

[19] A.H. Shah et al., “High-Performance CMOS-Amplifier
Design Uses Front-To-Back Analog Flow,” EDN, Oct, 2002

[20] T. Sripramong and C. Toumazou, “The Invention of CMOS
Amplifiers Using Genetic Programming and Current-Flow
Analysis,” IEEE Trans. CAD 21(11), 2002, pp. 1237-1252

[21] K. Swings et al., “HECTOR: a Hierarchical Topology-
Construction Program for Analog Circuits Based on a
Declarative Approach to Circuit Modeling,” CICC, 1991

[22] S. Tiwary et al., “Generation of Yield-Aware Pareto Surfaces
for Hierarchical Circuit Design Space Exploration,” Proc.
DAC, 2006, pp. 31-56

[23] C. Toumazou et al, “ISAID - A Methodology for Automated
Analog IC Design,” Proc. ISCAS, vol. 1, 1990, pp. 531-555.

