Chapter 10

GENETIC PROGRAMMING WITH REUSE OF
KNOWN DESIGNS FOR INDUSTRIALLY
SCALABLE, NOVEL CIRCUIT DESIGN

Trent McConaghy, Pieter Palmers Georges Gieleh and Michiel Steyaert
IKatholieke Universiteit Leuven, Leuven, Belgium

Abstract This paper shows how aggressive reuse of known designssbdrdgrs-of-
magnitude reduction in computational effort, and simwtausly resolves trust
issues for synthesized designs, for genetic programmipgjeapto automated
structural design. Furthermore, it uses trustworthinesdetoffs to handle addi-
tion of novelty in a trackable fashion. It uses a multi-olijge algorithm with
an age-layered population structure to avoid prematureezgence. While the
application here is analog circuit design , the methodolegeneral enough for
many other problem domains.

Keywords: synthesis, industrial, analog, integrated circuits, CAD

1. Introduction
Background: GP for Automated Structural Design

A core reason that genetic programming (GP) (Koza, 1992jtésesting is
its natural ability to handle search spaces with tree-likd graph-like struc-
tures (topologies), which makes it a natural fit for autordateention of struc-
tures. One focus has been design of analog circuit topdpgigch as those
in (Koza et al., 1999; Koza et al., 2003a; Koza et al., 2004;aHd Good-
man, 2004; Lohn and Colombano, 1998; Shibata et al., 200&;a&mong and
Toumazou, 2002; Dastidar and Chakrabarti, 2005). In thisalo, GP has
evolved several patent-quality circuits (Koza et al., 2008ssentially “from
scratch”, which is a remarkable success by almost any meagtis an es-
pecially notable accomplishment from an artificial ingdlihce perspective be-
cause “patent-worthiness” is a good measure of succesedting techniques
in automated “creative” design.

162 GENETIC PROGRAMMING THEORY AND PRACTICE V

GP has been used for structural design in other fields as ingllohn et al.,
2004), Hornby and Lohn evolved an antenna design for NASAcwhias
successfully deployed in space. In several works includByector, 2004),
Spector has evolved quantum circuits. Several groups lee@@P as a means
to suggest a “design” in the form of a mathematical equafidrese designs get
manually filtered and tweaked, then deployed in the fieldhsaag chemical
sensors (Castillo et al., 2004), geological exploration €Y al., 2006), and
financial markets (Becker et al., 2006; Korns, 2006). Uniiieeother domains
mentioned, GP for circuit design has never been deployeadnsitry.

GP has not been deployed for circuit design in industry beega) new
designs cost millions of dollars to fabricate and test, d)d3P-synthesized
designs so far have not had the combination of sufficient dexitg and trust-
worthiness to make the cost worth it. If the design failsnttieere is not only
a new fabrication needed for the revised design (“re-spithigre is lost time
to market. A new analog topology has higher chance of faitlue to lack of
experience with that topology; it is risky coming from an erpnced designer
and even more risky coming from an untrusted black box. N@eltmies only
come about if there is no other way — if idea has possible erdémagni-
tude payoff that it's worth the money to try, or if there is semway to make
trying it zero risk. It gets worse: addressing even just stbess (a subset of
the trustworthiness issue) on a sufficiently complex pnobleould take 150
years on athousand-CPU 1-GHz cluster; faster CPUs with #e@baw (ITRS,
2007) can't help because the problem becomes more diffistM@ore’s Law
progresses (McConaghy and Gielen, 2005). Aerospace dkeaggsimilar re-
sistance to new structural ideas, except there if the nevgnuldails it means
that the plane or rocket crashes. Is there a path out?

Background: The Power of Domain Knowledge

Domain knowledge, if applied in the right places, can bribgw orders of
magnitude reduction in size of the search space, improvemeanntime, or
improvement in quality of results. If we are interested idustrial applications
then speed and quality of results are of utmost importanueabedding do-
main knowledge can be well worth it. Domain knowledge can fiyglied at
multiple levels of generality. We now give some illustratexamples from both
evolutionary computation (EC) and other fields. In EC, edctnese brought
one or more orders of magnitude speedup or improvement uitrgaality:
generative representations and modularity in general,(elgrnby, 2003); per-
mutation design via floating point representations (Rathl2006); avoiding
“danglers” in circuit topology design e.g. (Koza et al., 3a8)) machine-code
symbolic regression (Nordin, 1994), machine-code ditpigic design (Poliand
Langdon, 1999), avoiding the need for learning the lineagtits in symbolic

Genetic Programming with Reuse of Known Designs 163

regression (Keijzer, 2004); thorough exploration of serabluilding blocks,

e.g. one variable at a time in symbolic regression (Korn§630and more. It
has been shown that GP can learn about the structure of thaidl@mone run

to help subsequent runs (Keijzer, 2005). Some interesttagples outside of
EC include: in splines, 10x-1000x or more speedup in regyadyy iteratively

updating the least-squares learning matrix rather thamgdafull update (Fried-
man, 1991); 1,000,000x speedup when building behavioraeatsaf circuits,

by using knowledge of its connectivity (Phillips, 1998),00& by exploiting

sparsity in matrices (Lai and Roychowdhury, 2006); 100xcsp@duction via
cheap-to-compute “device operating constraints” in ¢isc{(Ding and Vemuiri,

2005), 1,000,000x space reduction by reformulating thepesdent design
variables of a design problem to more natural variables r{8elinis et al.,

2005); and more. For non-trivial practical applicationspdhin knowledge is
key.

Reuse of Structural Domain Knowledge

In (Koza et al., 2003b), Koza et. al note: “Anyone who has éeaked at a
blueprint for a building, an electrical circuit, a corpaairganizational chart, a
musical score, a city map, or a computer program will be &timcthe ubiqui-
tous reuse of certain basic substructures within the ohgralture...Reuse can
accelerate automated learning by avoiding ‘reinventirgvtheel’ on each oc-
casion requiring a particular sequence of already-leastejls. We believe that
reuse is the cornerstone of meaningful machine intelligénall scientific and
engineering fields accumulate knowledge of useful strestorer time; added
new structures are literally advances in the field. For mattes, this includes
new theorems and proofs; for computer science, algoritHorssoftware en-
gineering, design patterns, and libraries of code; fordggl new theories and
models; for analog circuit design, taken to mean new cirtygblogies.

Interestingly, “reuse” in GP systems has been reuse oftstes that were
found by GP during the run, or in a previous run, and not redsstractural
domain knowledge. For automotive design, GP would litgradlve to reinvent
the wheel-and the piston, crankshaft, transmission, esuek which emerge
are: reinvention takes a huge amount of computational teffbit is even
tractable at all; there is no guarantee that the functignalill be hit; and
because GP does not distinguish the known structures froml istructures,
final designs can look very odd and therefore are less trusted

This paper shows how reuse of structural domain knowledgaltneously
solves the GP issues of computational efficiency and of, tirmsthose problems
which have a sufficient amount of accumulated structuralaorknowledge.
Figure 10-1 illustrates the general approach to such pnofléVe demonstrate

164

GENETIC PROGRAMMING THEORY AND PRACTICE V

the approach to analog circuit design, which has accunmlatiarge amount
of structural knowledge over the decades (Razavi, 2000s&3gr2006).

Define / choose a
general data structure
to hold the knowledge

l

(Optional) Re-loop and
embed outcome of run
into data structure

Extract domain
knowledge into data
structure

h
h

Parameterized grammar =
circuit building blocks library
= giant set of possible
structures

Manually enter
trustworthy building
blocks of analog
designers

|

Run grammatically-
constrained GP (with
tweaks). Have MR&H.

Run GP using data
structure to guide /

constrain search

Figure 10-1. A general framework to leverage domain-specific structkinawledge with GP.
Our instantiation of the framework for analog circuit dasig described with the text on the
right.

A Path to Practical Automated Structural Design

We now discuss various approaches to design of structutegalbgies”).
The status quo approach to GP for structural design is showigure?? left.
Figure 10-2 middle gives a flow that focuses on optimizing adistructure
(what circuit designers currently do).

We specify our goals for a structural (topology) design tdbé topology that
is known to be 100% trustworthy will meet design goals, tHentbol should
return that topology. It should strive to keep the inputs antputs as close
as possible to existing technigues. It should draw on as rptioh structural
design knowledge as possible, so long as that knowledgenissn@nt to the
user, it doesn’t have to be convenient to the tool developaty if no existing
known topology can meet its goals should the tool resort threpgnovelty—to
do so otherwise would introduce unnecessary risk. If it dagd novelty, it
should be easy to track where and how that novelty is addeti wdrat the
payoff is.

We now classify “automated topology design” into the follogisub-categories,
and discuss which of them a designer would want:

1. Lightweight multi-topology sizing: Search across predefined, 100%
trusted topology space, but the topologies have to be inpdebigners.
The trustworthiness is useful because it means that thégedseliance

Genetic Programming with Reuse of Known Designs

Objectives, Constraints

Objectives, Constraints

| Manually choose topology |

Small Set of
Predefined
Topologies

165

Objectives,
Constraints

)
Novelty- +
inducing Lightweight
operators Multi-
Topology
| GP no reuse |~——| sim | — Sizing --| simulator
Optimizer ‘—-| simulator

e —
Sized, trustworthy
topologies

Sized, trustworthy
topology

Novel, untrusted (1),
sized topologies

Figure 10-2. Current approaches to get sized topologies. Left: StatosG@f flow having no
structural reuse — painful because topologies are untorgty and huge computational burden.
Middle: Currentindustrial flow using optimization (sizing painful because topology selection
is manual. Right: Earlier approaches to multi-topologyrgjz- painful because the libraries are
small and inflexible, and therefore required designer satupintervention.

Objectives, Constraints
Predefined Building Blocks Library
i

Objectives, Constraints

MOJITO |-—-| simulator
Predefined Building Blocks l
Library (= Giant Set of Topologies)
Novelty- inducing || Sized, trustworthy

MOJITO ‘—-| simulator operators topologies

~Sized, Tty | [{si

Sized, trustworthy MOJITO-N simulator

topologies T

Sized, trustworthy or with
| trackable novelty, topologies

Figure 10-3. Proposed approaches to get sized topologies. Left: MOJM@ti-topology
sizing — specs-in, sized-circuit out; gives 100% trustiwpresults, but not novel designs. Right:
MOJITO-N: Multi-topology sizing with novelty — gives trusbrthy resultsand designs with

measurable novelty.

on detailed measures to guarantee robustness and mamalfaldiy but
it is too tedious to expect a designer to enter more than adpaldgies.
Even if the topology space is parameterized, it is hard tcbggbnd a
few dozen possible topologies. Figure 10-2 right, illutssathis.

166

GENETIC PROGRAMMING THEORY AND PRACTICE V

2. Multi-topology sizing: Search across predefined, 100% trusted topol-

ogy space, where the number of topologies is sufficientlly tiwat the
designer can consider it “complete enough” to not have trveine in a
typical design problem (i.e. hidden from view from the persive of the
designer). This is of great interest to them, because it m#at it uses
the same inputs and outputs as their existing tools, yetdbait have to
take the time to select a topology. It is simply “specs ineditopology
out”. Interestingly, if one does a (long) multi-topologyisig run with
a huge number of goals set as objectives, the result itsefféstively
a library of sized results; future queries for sized top@sgof certain
specifications are a computationally cheap lookup; i.es ispecs in,
sized topology outimmediately’ Figure 10-3, left, illustrates.

. Multi-topology sizing with innovation: Search across 100% trusted

topology space, and add novelty if there is a performancefhayhat
is, “innovate” as needed. This would be of great interestdiesigners
who are searching for new design ideas, if that is what iy tlekired or
needed. It is especially useful if there is a mechanism tktrevelty,
and therefore assess how much trust designers have in tiga dEgyure
10-3, right, illustrates.

. Topology invention from scratch: No structural information is input

(status quo GP). That is everything is “invented” (or reimeel) from
scratch. Designers would question why this would ever beeggf (3)
exists. After all, why ever reinvent known structures? Aheyt have no
idea where the novelty may lie; it may be near-impossiblerttangle
the circuit to understand it. If they wanted extreme novetigy would
just let (3) run longer. Incidentally, because such a methamy would
require a tedious iterative looping of plugging “holes iratg3 for each
new problem, that makes it more “hands-on” than an apprdazhhas
structural reuse. Figure 10-2, left, illustrates.

In this paper, we demonstrate how GP can be used to build thstimally
interesting categories (2) and (3). The key to (2) is to aggjvely reuse existing
structural knowledge. The key to (3) is trustworthinesdeatfs to ensure that
only novel designs that actually give a payoff are reward€he might be
concerned that the problems (2) and (3) are trivially easypared to (4). Our
responses are that (4) is pointlessly hard, and that onddssinire to “trivialize
a problem” as much as possible to help ensure its use. And Wee®i that
problems (2) and (3) are challenging in their own right, bynneans trivial to
solve effectively.

Genetic Programming with Reuse of Known Designs 167

2. MOJITO for Multi-Topology Sizing

MQOJITO is a system for miti-objective and t@ology sizing. Its flow from a
user perspective is shown in Figure 3 left (the diagram omnigie: is for novelty,
described later). It actually follows a generally applieatoamework for GP in
structural design, as Figure 1 describes. This sectiorritbesahe instantiation
of the framework, specifically: how the library of structudesign knowledge
is defined, the GP search algorithm, and experimental eeshtite: some parts
of this section were originally reported in (McConaghy et 2007).

Background on Multi-Topology Sizing

This section reviews other approaches to multi-topologingiin the liter-
ature. Multi-topology sizing is not a new idea, but it haserelbeen applied
to giant topology spaces, nor with SPICE in the loop (both bfcl greatly
increase the difficulty of the problem). The work typicallyraes out of the ana-
log CAD field (as opposed to an EA field). BLADES (E1-Turky andrblin,
1986), OASYS (Harjani et al., 1992), and others (Berkcanl.etl@88; Koh
et al., 1990; Toumazou et al., 1990; Swings et al., 1991; Nirgg., 1991; An-
tao and Brodersen, 1995; Kampe, 2000; Doboli and Vemuri328artens
and Gielen, 2006) depend on rule-based reasoning or absiwiels having
transforms to structural descriptions, and therefore laavendesirable amount
of up-front setup effort. DARWIN (Kruiskamp and Leenaeft895) and others
(Maulik et al., 1995; Tang and Doboli, 2006) only requireustural informa-
tion, but rely on a sneaky definition of a flat combinatoriahref space to
define possible topologies; they do not show a clear pathriergéze and are
restricted to a few hundred topologies at most.

MOQOJITO Inputs and Outputs

The core philosophy is to use the inputs and outputs that @reptable
for industrial single-topology multi-objective sizingdis, such as (Synopsys,
2007); but to add the smallest possible amount of extra imédion in order
to enable multi-topology sizing. Instead of a single togyldhe tool takes in
a set of hierarchically organized building blocks. Jusel&ksingle topology,
these building blocks can be specified in an industrial discthematic editor.
Getting such inputs is not unreasonable: such blocks doppeaa as anything
special to the designer, as they are merely based on welukbailding blocks
that one can find in any analog design textbook (Razavi, 2880sen, 2006).
And in fact, since we have already designed an example ¥iljsze following
sections), the designers can use that. This makes it iglstf@iward to switch
technologies, or add new building blocks.

168 GENETIC PROGRAMMING THEORY AND PRACTICE V

MOJITO uses off-the-shelf simulators (e.g. SPICE) rathantspecially
designed performance estimators. Its output is a tradddfized circuits, for
selection by a designer or within a hierarchical methodpldge MOBU (Eeck-
elaert et al., 2007). MOJITO can be seen as a pragmatic fasikmowledge-
based and optimization-based analog CAD (Rutenbar etQf12)2

Search Space Framework

This section describes a topology space that is specifiedrbgtgral in-
formation only, searchable, trustworthy, and flexible. fl&xibility is due to
an intrinsically hierarchical nature which includes paeten mappings; the
parameter mappings can choose sub-block implementatibosuld be sum-
marized as a parameterized grammar with a generativesepiation twist.

Creating a representation for circuits is a design cha#engts own right.
We choose to adopt a strongly hierarchical approach, beaaflat representa-
tion is not conducive to the construction of a library or t@ker designs. Analog
circuit hierarchies analog be represented by analog haeddescription lan-
guages (HDLs) (Ashendenetal., 2002; Kundert and Zinke4 R@alog circuit
database representations, even grammars (Ressler, 188kal 1993). With
these options already existing in the analog domain, whyjusituse one of
them? The problem is that if a designer makes a small congkeglange to
a circuit that corresponds to a small change in performatieae may be a
drastic change in the netlist. While this complicates thsigte of an appro-
priate search representation, it is needed for changeddidang an input or
flipping all NMOS transistors to PMOS. Myriad examples caridaend in any
analog design textbook. The structural-only op amp appres¢Kruiskamp
and Leenaerts, 1995; Maulik et al., 1995) do cover some gktegamples, but
are designed into a flat space, need special heuristicjuairk in their small
spaces, and do not readily generalize. The existing graicah@pproaches
did not provide enough flexibility.

The generative representation GENRE (Hornby, 2003) pealidspiration.
A generative representation transforms a genotype to pineady executing
the genotype commands as if they were a program. Unfortiyngaa&NRE
does not readily allow one to embed known trusted buildirogkd, and is too
flexible in allowing the addition and removal of ports on smbstures during
search. The MOJITO representation removes some flexilmlibyder to allow
easier embedding of domain knowledge; it has an associstgdnd) style that
both analog designers and computer scientists will unaiedstlt is composed
of three simply-defined “Part” types, which we now describe.

Let us define a “Part” as merely a circuit block at any levehefhierarchy. It
has a fixed set of arguments in its interface: “port argunigntzdes available

Genetic Programming with Reuse of Known Designs 169

to the outside world) and “number arguments” (parametelisiwéiffect its be-
havior, e.g. adevice size). Arguments to a Part's embeddgd &e a function
of arguments above. To fully netlist a given Part, the onlirainformation
needed is values for the arguments to that Part. Direcesgitation Part types
are:

= Atomic Part Type. Parts of this type are the leaf nodes in the hierarchy
(tree) of Parts. They do not contain any embedded parts. ré& o4
gives examples.

= Compound Part Type. These have one or more sub-Parts embedded.
Sub-parts can have internal connections among themsehgesoahe
Part’s external ports. All sub-parts get netlisted. Figloe5 gives ex-
amples.

We add the following generative Part type. It netlists byoeximg the Part as
a function of a third type of argument in its interface: “tépgical arguments”:

m Flexible Part Type. These have the topological argument “choilcdex”,
which during netlisting is used to select one of several watd embed-
ded parts and respective wirings. The argument values gotogthe
chosen sub-part can be very particular to that sub-parteiffapping
function has cases for different choicwlex values. Example: a current
mirror which may be simple or cascode (chaindex = 0 or 1). Figure
6 gives an example.

Despite the simplicity of Part types, the interactions\ale capture of es-
sential structural domain knowledge of analog buildingck The generative
Parts, especially Flexible Parts, are what turn a Part itstawn IClibrary
of possibilitiesrather than merely a representation of a single circuitgresi
Traversing the topology space merely means changing onemrofthe “topo-
logical argument” input values.

D S N1 N1
nmos N mos ° o—X o—<
Atomic gmmk resistor capaci-

Atomic tor
Atomic
G(B G(B i
O
S N2 N2

Figure 10-4. Example Atomic Parts: nmos4 transistor, pmos4 transigerstor, capacitor.

170 GENETIC PROGRAMMING THEORY AND PRACTICE V

W, L,

D w, L w, L, use_pmos,
~ Use_pmos) S use_pmos) Vbias)
mos3) mosDiode S] biasedMos
Compound D Compound Compound D
—_—
mos4 mos3 mos3
Gl G| w=w, B w=w, e G) w=w,

=

L=L,
use_pmos=
use_pmos)

choice_i=
use_pmos)

use_pmos=
use_pmos)

S

S ~D

Figure 10-5. Example Compound parts. mos3 is a wrapper for mos4, so thants4’s ‘B’
node is not seen at higher levels. mosDiode ties togetheiriemal ports to only present two
external ports. biasedMos uses a 1-port dcvs (dc-contretbitage source) part to set its gate
bias internally.

2 (choice_i==use_pmos, W,L)

mos4
G Flex choice_i B
0o . 1

E J A L J
s S \‘
W=w,L=l) & * (W=W,L=L)
L 3 “
D «~ ** D
™ L 5 o~
G, —2D B G —2L B
G5 Dmost SEbB GC—5 nmost ToB
S S
ot A 4
S S

Figure 10-6. Example Flex part: mos4 turns the choice of NMOS vs. PMOSarparameter
“choiceindeX. Note how parameters get assigned from mos4 to either gfiltsblocks. In this
case both sub-blocks use the mos4’'s W and L parameters aswreW and L values.

Remember that for all these subblocks, instantiation iets sf nmos vs.
pmos devices is deferred until the very leaf block, basedemparameters that
flow through the circuit. This sort of flexibility allows for rge number of
topologies at the top level, without having an excess nurobiauilding blocks.
It also means that many parameters are shared in the camvéisim one block
to subblocks, which keeps the overall variable count lowantit might have
been; this is crucial to the locality of the space and thusultimate success
of the search algorithm. Figure 7 gives an example of a dirte@ntence”
instantiated in the parameterized grammar of MOJITO; thigence will also
be a GP individual tree.

Genetic Programming with Reuse of Known Designs 171

dsViAmp2_VddGndPorts
dsViAmpl
ddVilnput

dsliload oo o iMos viFeedback ved

ssViAmpl
ssliLoad

T
EI ssVilnput

T[4

Figure 10-7. Example of MOJITO Building Blocks on a PMOS-input Miller OTA

3. MOJITO Search Algorithm

We now proceed to describe an algorithm that traverses th@lMDsearch
space to produce a set of topologies that collectively tedfiperformances.

The search space is gigantic and diverse, because theresdduousands
of possible topologies plus associated sizings. This maans of hierarchy
and parameters which can be continuous-, discrete-, agemealued. SPICE-
accurate performance estimation adds computational detoancompared to
the simplified performance estimators that most previoukiftopology sizing
approaches used.

= Anevolutionary search algorithm that balances exploratiiih exploita-
tion by grouping individuals by genetic age (ALPS (Hornb08)), and
at a nested level achieves multiobjective search by grguipidividuals
by degree of nondomination (NSGA-II (Deb et al., 2002)).

m Special operators that are designed to exploit the natutheotearch
space. The crossover operator respects the parameteshdhdd be held
together within building blocks, yet still allows siblinguitding blocks
to share parameters (i.e. a mix between vector and treelsspaces).
The mutation operator has tactics to avoid stealth mutat{&othlauf,
2006) on “turned-off” building blocks.

Structure of Search Space from Search Algorithm’s
Perspective

Each building block has its own parameters, which fully déschow to
implementitand its sub-blocks. Aswe build up the hierammhyuilding blocks,
we eventually reach the level of the block we want to searchsiach as the
amplifierblock. Thus, the search space for the circuit tgpg. (fully differential
amplifier) is merely the possible values that each of theldguarameters can

172 GENETIC PROGRAMMING THEORY AND PRACTICE V

take. Since these parameters can be continuous, disaréteeger-valued, one
could view the problem as a mixed-integer nonlinear prognémg problem,
which one could solve with an off-the-shelf algorithm wheatft be a classical
MINLP solver or an evolutionary algorithm (EA) operating wactors. But a
vector-oriented view does not recognize the hierarchy,sandperations on it
may have issues. One issue is that a change to variable(shobahange the
resulting netlist at all, because those variables are ifdoitks that are turned
off. From the perspective of a search algorithm, this mehasthere are vast
regions of neutrality (Huynen et al., 1996); or alterndinehe representation
is non-uniformly redundant and runs the risk of stealth rmotes (Rothlauf,
2006). For EAs, another issue is that an n-point or uniforassover operator
could readily disrupt the values of the building blocks ia thierarchy, e.g. the
sizes of some sub-blocks’ transistors change while othaygise same, thereby
hurting the resulting topology’s likelihood of having det®&ehavior. From an
EA perspective this means that the “building block mixing'’poor (Goldberg,
2002).

What if we reconcile the hierarchy? We cannot apply a hidiiaet design
methodology such as (Chang, 1997; Eeckelaert et al., 268bause there are
no goals on the sub-blocks, justthe highest-level bloclkesopuld, however, still
apply hierarchal methodology to the results). Neither carreat it completely
as a tree induction problem (to be solved, for example, byngrar-based
genetic programming (Whigham, 1995)) because some siflibgblocks share
the same parent blocks’ parameters.

So the search algorithm’s perspective of the space has temtbased and
vector-based aspects. We design novel operators thataigeboth aspects, for
use within an EA. First, we have a mutation operator whicloskes one or more
parameters to mutate. Continuous-valued parametersf@iauchy mutation
(Yao et al., 1999) which allows for both tuning and explarati Integer-valued
“part choice” parameters follow a discrete uniform distitibn. Other integer
and discrete parameters follow discretized Cauchy mutatido avoid stealth
mutations on “turned-off” building blocks, mutations ardykept if the netlist
changes; mutation attempts are repeated until this happemsugh “neutral
wanderings” of the space has been shown to help exploratisame applica-
tions (Vassilev and Miller, 2000; McConaghy et al., 200®ksuits are mixed
and in general make performance more unpredictable (Rdth2906). We
prefer predictability, and rely on ALPS to enhance expiorat

The second operator is crossover. It works as follows: givem parent
individuals, randomly choose a sub-blockin parent A, idgall the parameters
associated with that sub-block, and swap those parametérebn parent A
and parent B. This will preserve the parameters in the sabkisl There will
still be some crosstalk because sibling blocks may use therseneters as well,
but the crosstalk is relatively small compared to the 1008&stialk that we'd

Genetic Programming with Reuse of Known Designs 173

have if we used standard vector-based crossover. Thistigéfigcmakes the
search a hybrid between tree-based and string-based ¢earchcross between
a GA and GP).

To generate random individuals, we merely randomly choosal@e for
each parameter using a uniform distribution.

The Search Algorithm

Even with a search space and operators that are as well-dethaypossible,
there is a need for a highly competent search algorithm lsectne space is so
large (there is such alarge set of possible topologies asmtaded sizings), and
the performance estimation time for an individual can beherorder of minutes
(using SPICE to maintain industrial relevance). We alsalmaalti-objective
results. The blow is softened a bit because some degreeaifgpmomputing
is allowed (industrial setups for automated sizing tygichhve 5-30 CPUS).

A popular, competent EA for multiobjective is NSGA-II (Debad., 2002),
which sorts individuals by nondomination layer. NSGA-Ibpides a reason-
able starting point for us in the design of our multiobjeetizA. We use the
constraint-handling approach of NSGA-Il as well: a feasibdividual always
dominates an infeasible one, and for two infeasible indisld the one that
dominates is the one with the least total constraint viofatia sum across all
constraints’ violations).

One key issue with NSGA-II, and most EAs, is that they can eay pre-
maturely. To fix this, one needs to ensure an adequate sufiplyiding blocks
(Goldberg, 2002). Tactics include massive populatiorsgjgeza et al., 2003a),
restarting, time-varying population sizes, or diversitgasures such as crowd-
ing. Alltactics are all eitherinadequate or highly sersito parameter settings.
Random injection of individuals for fresh new building bkscmight help, ex-
cept they get killed off too quickly during selection. To fhat, HFC (Hu et al.,
2005) segregates individuals into similar fithess layers @estricts compe-
tition to within layers, which gives random individuals aas®nable chance.
Unfortunately, the choice of fitness thresholds is comdidan practice, and
near-stagnation may occur at some fitness levels becauseshéndividuals
per level have no competition. The age-layered populatiorcsire, ALPS
(Hornby, 2006) builds on HFC, but rather than segregateviddals by fithess
it segregates by genetic age levels. The age distinctiorcones the issues
of HFC. For example, age level 0 might allow individuals wéitpe 0-19, level
1 allows age 0-39, level 2 allows age 0-59, and so on untilabddvel (e.g.
level 9) which allows individuals of any age. Genetic agehis humber of
generations of an individual’s oldest genetic materiak #ge of a randomly
generated individual is O; the age of a child is the maximunitoparents’
ages; age is incremented by 1 each generation. If an indiVvigets too old

174 GENETIC PROGRAMMING THEORY AND PRACTICE V

for a fitness level, it gets kicked out of that level and giver ¢ast chance to
compete at the next higher level. Selection at one age leesl the individuals
at that level and at one level below as candidates.

Only a single-objective, single-CPU ALPS exists in theréitare. In this
paper, we make it multi-objective for the first time. There arany conceivable
ways to make ALPS multi-objective. We chose a pragmatic @ggr which
is shown in Figure 10-8. There is canonical NSGA-II evolatat each age
level, with one difference: for selection at a lel/ghe individuals at levdland
levell — 1 are candidates (rather than just at leNelln this fashion, younger
high-fitness individuals can propagate to higher levels.

NSGA-II at age level L

; individuals available for selection
NSGA-Il at age level 2
individuals available for selection
NSGA-Il at age level 1
individuals available for selection
NSGA-II at age level 0

Trandom individuals

Figure 10-8. Multi-objective ALPS has NSGA-II at each age level.

4. MOJITO Multi-Topology Sizing: Experimental Results

This section describes application of MOJITO to two mulijextive multi-
op-amp topology sizing problems.

Problem Setup

The problems were set up as follows. The search space hadriablea
(topology selection variables and sizing variables). EAirsgs were: 100
individuals per age layer; 10 age layers, maximum age peril&; 19...79, 89,
infinity. Each runtook approximately 150 hours on a singbee@?.0 GHz Linux
machine, covering 100,000 individuals. Search objectiveaximize GBW,
minimize power, maximize DC Gain (Experiment Set 2). Caists: phase
margin> 65°, all DOCs, DC Gain> 30dB (Experiment Set 1). Simulator was
HSPICE. Technology was 0.L&MOS; supply voltage 1.8V; load capacitance
1pF.

Genetic Programming with Reuse of Known Designs 175

Experiment Set 1

These runs were to verify the algorithm’s ability to trawethe search space
and select different topologies. The problem was set up gaththe optimiza-
tion end result was known a priori. Three GP runs were don#) prioblem
setups such that specific output topologies were expectedsummarize re-
sults for non-circuit people: it achieved the structuredclvtwere expected.
The rest of this paragraph gives circuit-specific detailfie Dnly difference
between the 3 runs is the common mode voltage,. ;) at the input. We
know that forV,,,..» = 1.5V, topologies must have an NMOS input pair. For
Vemm,in = 0.3V, topologies must have PMOS inputs. Bt in = 0.9V,
there is no restriction between NMOS and PMOS inputs. FifjQré illustrates
the outcome of the experiments. It contains the combinedltsesf three op-
timization runs. Result (a) hdg,,,, ;» = 1.5V, and has only topologies with
NMOS inputs. It chose to use 1-stage and 2-stage amplifieperdling on
the power-GBW tradeoff. Result (b) h&s,,,, i, = 0.3V, and MOJITO only
returns PMOS input pairs. Note that result (a) is a resulbtgetonvergence in
orderto retain the 2-stage amplifier in the result set. Qj@eerations eliminate
the 2-stage amplifier in favor of the folded cascode amplifisrin result (b).
For result (¢) &%y,m,in = 0.9V has been specified. Though both NMOS and
PMOS input pairs might have arisen, the optimization preleNMOS inputs.
The curve clearly shows the switch in topology around GBVB&Hz, moving
from a folded cascode input to a simple current-mirror amnmperestingly, the
search retained a stacked current-mirror load for abouls) GBW.

Experiment Set 2

In second experiment, one GP run was done, to verify that MO &buld get
interesting groups of topologies in a tradeoff of three otiyes. The motiva-
tion is as follows: whereas a single-objective multi-taygyt optimization can
only return one topology, the more objectives that one hasrirulti-topology
search, the more opportunity there is for many topologiégteturned, because
different topologies naturally lie in different regionsérformance space. Re-
sults are shown in Figure 5. We can see that MOJITO found mchdiverse
structures as expected. The rest of this paragraph hastgprecific details. It
determined: afolded-cascode op amps gave high gain-bdtidiaat with high
area, 2-stage amps give high gain but at the cost of high tredow-voltage
current mirror load is a 1-stage with high gain, and therenaa@y other 1 stage
topologies which give a broad performance tradeoff. Thesatresults that
a circuit designer would expect.

Incidentally, problems of comparative complexity tooktstaquo GP (i.e.
no reuse) 100 million or more individuals (Koza et al., 200Baza et al.,
2003b), and the results were not trustworthy; it was esthdbat to get to

176 GENETIC PROGRAMMING THEORY AND PRACTICE V

50 g i 4 (a) § A X “(€)

0 0.5 1 1.5 2 25
Gain-Bandwidth (GHz)

Figure 10-9. Pareto fronts for 3 GP runs a/b/c which had different inpttirsgs. The y-axis is
an objective to minimize, and the x-axis is an objective tximize; each point is an individual,
which has an associated structure (topology) and parasétiings). Some of the specific
topologies found are shown; these are the expected topslogi

~’ 3 60
2 .-‘i} .) T - : " 1stage
2 bt 3 . o -3 e * 2stage
Ny
° “{ ® f " Ca . ~ + ¥ 9 Folded cascode
1 Rt] 1 v -
DA . - 30/ #ep - Low voltage
-8 o rAak . Coe current mirror load

o
20 30 40 50 60 0 05 1 15 2 [} 05 1 15
gain area 10 area L

Figure 10-10. Pareto front for a GP run on 3 objectives (maximize gbw, mézéngain, mini-
mize area). Individuals are grouped according to some af sireictural characteristics (e.g. 1
stage vs. 2 stage) to illustrate their diversity.

get a reasonable degree of robustness would take 150 yeard @90 node
1-Ghz cluster (McConaghy and Gielen, 2005). That is, it \@chéve taken
((150 years * 365 days / year * 24 hours / day) * 1000 CPUS * 1Gh350
hours) * 1 CPU * 2 Ghz) = 4.4 million times more computationéibd than
MOJITO to get comparable results. There’s a lot to be saitijoology reuse.

5. How Far can Reuse-Only Go? (With No Novelty)

This section describes how huge a fully trustworthy (reosl; no novelty)
space can become.

The first major question of this subsection is: Can the nunobg@ossible
topologies be sufficiently rich so that the designer can idenst “complete
enough” to not have to intervene in a typical design problevki@ calculate
the size as follows. The count for an atomic block is one; fllexible block,

Genetic Programming with Reuse of Known Designs 177

it's the sum of the counts of each choice block; for a compduindk, it's the
product of the counts of each of its sub-blocks—but thereabéeties. Subtlety:
for a given choice of flexible block, other choice parametdrthat level may
not matter. Subtlety: one higher-level choice might goverd lower-level
choices, so don't overcount. Table 1 shows that MOJITO amxes the op amp
count by 50x compared to the other reuse-only techniques.

Table 10-1. Size of Op Amp Topology Spaces.

Technique # topologies| Trustworthy?
GP without reuse, e.g. (Koza et al., 2003a) billions NO
DARWIN (Kruiskamp and Leenaerts, 1995) 24 YES
MINLP (Maulik et al., 1995) 64 YES
GP with reuse: MOJITO (this work) 3528 YES

The second major question of this subsection is: How big barspace of
possible trustworthy topologies for an industrially relaev application get?
Compared to what we have just established, we can make the span larger
in many ways, using new techniques, recursion, and systeai-fiesign:

= Add more design techniques.The field of analog design is a research
field in its own right, with its own conferences, journalsg.eCore ad-
vances in that field are precisely: new topologies and teglas. One
can think of that design effort as (manual) co-evolutionwfding block
topologies. Design opportunities and challenges arise¢a@unew appli-
cations, different target specifications, and the steadsiack of Moore’s
Law (ITRS, 2007). Each design technique advance would &ser¢he
size of the space by at least 2x, so if we merely took the toplt@races
in op amp design, we would increase the space by at fést 103,
bringing the count t®.5 + 105. And that is a lowball estimate: more
realistically one would consider dozens or hundreds of ades, and
some advances could be used in multiple places in the deasige;had
10 advances which doubled, 10 which tripled, and 10 whicldguaed,
then the space increasesby 10 * 319 x40 = 6 % 1013, to total2 x 1017
trustworthy op amp designs.

= Recursion. Circuits’ designs can recurse. For op amps, this is via “gain
boosting.” One level of recursion brings the count (&« 1017)2 =
4 % 103* , and two levels of recursion (i.e. gain boosted amps usiig ga
boosted amps) brings the count(tb+ 1034)* = 1.6210% trustworthy
op amp designs. Yes, designers in industry do actually usdevels of
gain boosting, in combination with the latest design teghes.

178 GENETIC PROGRAMMING THEORY AND PRACTICE V

m System-level designSo far we have just talked about an op amp space
which is a circuit at lowest level of the design hierarchyll(level), but
higher levels exist too. The next-highest level includesuits such as
data converters (A/Ds, D/As), active filters, and more. Eheiscuits
use lower-level blocks like op amps. The level above thaypscally
the whole analog system, e.g. a radio transceiver like atBddle or
Wi-Fi implementation. The level above that would typicatlgmbine
the analog and digital parts into a mixed-signal system.hBeel can
have many sub-blocks, and each of those sub-blocks can bef atsy
combinations. E.g. an A/D might have 8 different op amps.alfreop
amp hadl.6 x 10%° possible topologies and even if there was no other
topological variation atthe A/D level, it meafis6 1069)° = 4.2x105%3
possible A/D topologies. Let’s say the system at one lexghdri up had
an A/D, aD/A, and a couple other parts all with about the sanmelyer of
topologies; then its size would fd.2 « 10°%3)" = 3.12102214 possible
topologies. (Forreference, if just 3528 designs at theleedll, that leads

to ((3528)%)" = 10113 designs).

Combinatorial explosion is a good thing: the more possiedi available for
any part type, the more possible trustworthy designs you carm.hdf one
can decompose their design into sub-problems (where edzpreblem has
its own goals), if one has a competent hierarchical desiginodelogy, if the
problem of “massively multi-topology” cell-level sizingedign can be cracked,
then one can ultimately do system-level 100% trustwortipplogy design in
spaces witn0'!? designs;10%32 designs, or more.

We cando (1) because the decomposition is obvious in circuit desagd
the names of sub-blocks are well-established (op ampsgbisarators, A/Ds,
D/As, filters, phase-locked loops, etc) (Razavi, 2000; 8an2006). We can
do (2) because competent hierarchical design methodalbgiee been demon-
strated; and recently it has been demonstrated that theshcarse from among
different candidate topologies (Eeckelaert et al., 200h)s paper has demon-
strated (3).

6. Multi-Topology Sizing with Novelty

Because of the costs of fabricating a design, the motivébicanew topology
has to be strong. New topologies only come about if there isther way, if
idea has possible orders of magnitude payoff that it's wtdrghmoney to try,
or if there is some way to make trying it zero risk. That sa@mnstimes these
motivations exist, and therefore it is of interest to see twdwat of effective
algorithms can be created. This section describes MOJIT@-8ystem for
multi-objective and tgology sizing, that adds novelty as needed, with the flow
of Figure 10-3, right.

Genetic Programming with Reuse of Known Designs 179

The Search Algorithm

The specifications for such a system, above and beyond (ozity) MO-
JITO, are:

= [fatopology that is known to be 100% trustworthy will meegithgoals,
then the tool should return that.

= Only if no existing known topology can meet their goals skiahle tool
resort to adding novelty.

m If it does add novelty, it should be easy to track where and Huat
novelty is added, and what the payoff is.

These specifications are resolved in MOJITO-N as follows:

= Use trustworthy designs as the structural starting poitisfact, do a
long 100% trustworthy run first; then add novelty in a foll@m-run.

= Create novel designs by: copying an existing part withirpidues library,
mutating the copy, and then getting a new individual to usérttutated
copy. In order to track novelty, remember which parts andgd®are
novel, and what sort of novelty-mutating operator is useluesE altered
libraries can be subsequently reused in future runs, tberefosing the
loop in the style of run-transferable-libraries (Keijz2805).

= Have a multi-objective framework to manage trustworthingadeoffs:
trust =—novelty, novelty = number of times that a novel part is used, a
a novel part is one that has had random structural mutatibhnerefore,
if novelty does not actually help, it will not show up in therBt@ optimal
front (but it will not necessarily be kicked out of the poplida; that is
up to the multiobjective algorithm).

= A novel design will almost certainly be initially worse offidn a non-
novel design, until it has been sized well enough to be coithet If
not handled explicitly in the EA framework, the novel deswili almost
certainly die off before its benefit is discovered (if it habenefit). So
that novel designs have a fighting chance, only create nassds for
the easiest-competition age layer 0. Rather than randoemgrgting
the whole individual from a uniform distribution, choose argnt from
any age layer, and novelty-mutate it for placement in laye(Nbte: a
plethora of other possible schemes exist here too, but arlayler is the
ALPS structure).

180 GENETIC PROGRAMMING THEORY AND PRACTICE V

Experiment

The experimental setup was the same as for the non-novelty M) except
for the following differences. The 100 trustworthy resuitsm the MOJITO
“Experiment Set 2" run were used as the inputs to the MOJIT@MN MOJITO-
N was run for 15 more generations (15 * 10 * 100 = 15000 moreviddals),
which took about 25 hours. The novelty-mutating operata@sawadd two-port
series, add two-port parallel, add n-port parallel. The-poet parts available
for add were: capacitors, resistors, nmos/pmos diodesbi@seéd nmos/pmos
devices (a biased mos is merely transistor with a pre-seagelbias). One
more search objective was added: minimize novelty.

With the results, we output the nondominated set, and fiestnéxed if any
novel individuals existed. Some did. With each novel indiidl, we queried
its data structure to find which parts were novel, and how these than their
original part. It turns out that so far in this run, they alidthe same change:
the feedback capacitor Cc had been mutated to include aaesisseries.
Figure 9 illustrates. This is actually a well-known desigehnique that one
can find in many analog design textbooks: what it does is asg¢he effective
gain from feedback; it does not help the feedforward gain ashbecause the
feedforward path does not get its gain amplified.

Figure 10-11. Circuit which MOJITO-N successfully re-invented. The & resistor in the
feedback path was not in the library; MOJITO-N added it; thswell-known design technique.

Genetic Programming with Reuse of Known Designs 181

7. Conclusion

This paper showed how aggressive reuse of known designgsbarvast
reduction in computational effort in GP applied to autordagtuctural design.
It presented a complementary pair of approaches that incatg reuse:

= MOJITO automatically designs 100% trustworthy structwemdustri-
ally relevant complexity, with commercially reasonablenputational
effort. MOJITO's effectiveness was demonstrated in twasaig exper-
iments, showing how it hit the target designs as expected) & library
of more than 3000 possible topologies.

= MOJITO-N adds novelty to the trustworthy designs, and reswircuits
that trade off novelty with performance, also with commaitgi reason-
able computational effort. The novelty is fully trackabée, all changes
can be readily understood. MOJITO-N successfully re-itegm known
design of industrially relevant complexity.

To properly capture the relevant knowledge to reuse, wegdesli a parame-
terized generative representation , and then used thesexgisgion to encode
a library of building blocks for the specific problem (in ouase, operational
amplifier design). The key to manage trustworthiness in thegnce of novelty
was to add an extra objective of “minimize novelty” within aitirobjective
optimization framework, which results in trustworthindéssdeoffs. “Novelty”
is the number of structural mutation steps taken from a 10@%iworthy de-
sign. We view our novelty-approach as “automated innowétioather than
“automated invention” because it builds on existing knalgke — but note that
patents are awarded for innovations too.

This work also used state-of-the-art ideas in EA designadt & hybridized
tree/vector view of the search space, implemented as apsfzving those two
perspectives. It was guided by recent advances in theorAaépresentations
(Rothlauf, 2006). To avoid premature convergence and nibgreensitivity
to population size setting, we employed the age-layeredilptipn structure
(ALPS) (Hornby, 2006), and embedded NSGA-II (Deb et al.,206to each
age layer of ALPS to make it multiobjective.

These techniques can be readily extended to other GP praldemains of
interest, and are complementary with many other recentrashs&in GP.

References

Antao, B.A.A. and Brodersen, A.J. (1995). Archgen: Autoatasynthesis of
analog systems$EEE Transactions on Very Large Scale Integrated Cirguits
3(2):231-244.

Ashenden, Peter J., Peterson, Gregory D., and TeegarderlliD®a (2002).
The System Designer’s Guide to VHDL-ANU®rgan Kaufmann.

182 GENETIC PROGRAMMING THEORY AND PRACTICE V

Becker, Ying, Fei, Peng, and Lester, Anna M. (2006). Sto#csen : An inno-
vative application of genetic programming methodologyRinlo, Rick L.,
Soule, Terence, and Worzel, Bill, editofSenetic Programming Theory and
Practice IV, volume 5 ofGenetic and Evolutionary Computatiachapter 12,
pages —. Springer, Ann Arbor.

Berkcan, E., d’Abreu, M., and Laughton, W. (1988). Analogwdation based
on successive decompositions. Design Automation Conferenceages
369-375.

Bernardinis, F. De, Nuzzo, P., and Sangiovanni-VincenilL. (2005). Mixed
signal design space exploration through analog platfoimi3esign Automa-
tion Conferencepages 875-880.

Castillo, Flor, Kordon, Arthur, Sweeney, Jeff, and Zirk, ykia (2004). Using
genetic programming in industrial statistical model buitd In O’Reilly,
Una-May, Yu, Tina, Riolo, Rick L., and Worzel, Bill, editqr&enetic Pro-
gramming Theory and Practice, Ilthapter 3, pages 31-48. Springer, Ann
Arbor.

Chang, Henry (1997A Top Down, Constraint Driven Design Methodology for
Analog Integrated CircuitsKluwer.

Dastidar, T.R. and Chakrabarti, P.P. (2005). A synthestesy for analog cir-
cuits based on evolutionary search and topological réE&&E Transactions
on Evolutionary Computatiqrd(2):2005.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002¥ast and elitist
multi-objective genetic algorithm: NsgadEEE Transactions on Evolution-
ary Computation6(2):182-197.

Ding, Mengmeng and Vemuri, Ranga (2005). A combined felityilaind per-
formance macromodel for analog circuitsDasign Automation Conference
pages 63—68.

Doboli, Alex and Vemuri, Ranga (2003). Exploration-baseghHevel syn-
thesis of linear analog systems operating at low/mediunuizacies|IEEE
Transactions on Computer-Aided Desi@2(11).

E1-Turky, F.M. and Nordin, R.A. (1986). Blades: An experstgym for analog
circuit design. Ininternational Conference on Circuits and Systepages
552-555.

Eeckelaert, Tom, McConaghy, Trent, and Gielen, Georges.G2E5). Ef-
ficient multiobjective synthesis of analog circuits usinigrarchical pare-
toA—optimal performance hypersurfaces. Design Automation and Test
Europe

Eeckelaert, Tom, Schoofs, Raf, Gielen, Georges G. E., aggh8it, Michiel
(2007). An efficient methodology for hierarchical syntisesi mixed-signal
systems with fully integrated building block topology selen. In Design
Automation and Test Europe

Genetic Programming with Reuse of Known Designs 183

Friedman, Jerome H. (1991). Multivariate adaptive regosssplines.Annals
of Statistics 19(1-141).

Goldberg, David E. (2002)'he Design of InnovatiorSpringer.

Harjani, R., Rutenbar, R., and Carley, L. (1992). Oasys: @&miework for
analog circuit synthesidEEE Transactions on Computer-Aided Design
8(12):1247-1266.

Hornby, Gregory S. (2006). ALPS: the age-layered poputastructure for
reducing the problem of premature convergence. In Keijgerarten, Cat-
tolico, Mike, Arnold, Dirk, Babovic, Vladan, Blum, Christh, Bosman, Pe-
ter, Butz, Martin V., Coello Coello, Carlos, Dasgupta, Digar, Ficici, Se-
van G., Foster, James, Hernandez-Aguirre, Arturo, Hor@reg, Lipson,
Hod, McMinn, Phil, Moore, Jason, Raidl, Guenther, Rothl&idnz, Ryan,
Conor, and Thierens, Dirk, editoiGECCO 2006: Proceedings of the 8th an-
nual conference on Genetic and evolutionary computatiotume 1, pages
815-822, Seattle, Washington, USA. ACM Press.

Hornby, Gregory Scott (2003Ysenerative Representations for Evolutionary
Design AutomationPhD thesis, Brandeis University, Dept. of Computer
Science, Boston, MA, USA.

Hu, Jianjun and Goodman, Erik (2004). Topological synthekiobust dynamic
systems by sustainable genetic programming. In O’'Reillya{ay, Yu,
Tina, Riolo, Rick L., and Worzel, Bill, editor&enetic Programming Theory
and Practice l] chapter 9, pages ??-157. Springer, Ann Arbor. pages rgissin

Hu, Jianjun, Goodman, Erik, Seo, Kisung, Fan, Zhun, and ftueg, Rondal
(2005). The hierarchical fair competition framework foisginable evolu-
tionary algorithmsEvolutionary Computationl3(2):241-277.

Huynen, M.A., Stadler, P., and Fontana, W. (1996). Smoathngthin rugged-
ness: The role of neutrality in adaptatiddational Academy of Sciences
USA 93:397-401.

ITRS (2007). International technology roadmap for semitearors.

Kampe, Jurgen (2000). A new approach for the structuralh&gis of analog
subsystems. linternational Workshop on Symbolic Methods and Applica-
tions in Circuit Designpages 33-38.

Keijzer, Maarten (2004). Scaled symbolic regressi@enetic Programming
and Evolvable Machine$(3):259-269.

Keijzer, Maarten (2005). Run transferable libraries. IrolRj Rick L. and
Worzel, Bill, editors Genetic Programming Theory and Practice Klluwer.

Koh, H.Y., Séquin, C.H., and Gray, Paul. R. (1990). Opagyaeompiler for
cmos operational amplifierEEEE Transactions on Computer-Aided Design
9:113-125.

Korns, Michael F. (2006). Large-scale, time-constraingailsolic regression.
In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editofsenetic Pro-

184 GENETIC PROGRAMMING THEORY AND PRACTICE V

gramming Theory and Practice JWolume 5 ofGenetic and Evolutionary
Computationchapter 16, pages —. Springer, Ann Arbor.

Koza, John R. (1992 Genetic Programming: On the Programming of Com-
puters by Means of Natural SelectidWlIT Press, Cambridge, MA, USA.

Koza, John R., Andre, David, Bennett lll, Forrest H, and kesdutartin (1999).
Genetic Programming 3: Darwinian Invention and Problemv@dd. Morgan
Kaufman.

Koza, John R., Jones, Lee W., Keane, Martin A., and Strektatthew J.
(2004). Towards industrial strength automated design afagnelectrical
circuits by means of genetic programming. In O’Reilly, Uday, Yu, Tina,
Riolo, Rick L., and Worzel, Bill, editorgienetic Programming Theory and
Practice II, chapter 8, pages 120-?? Springer, Ann Arbor. pages missing

Koza, John R., Keane, Martin A., Streeter, Matthew J., Myeio, William,
Yu, Jessen, and Lanza, Guido (2003agnetic Programming IV: Routine
Human-Competitive Machine Intelligend€luwer Academic Publishers.

Koza, John R., Streeter, Matthew J., and Keane, Martin AA3BR Automated
synthesis by means of genetic programming of complex strestincor-
porating reuse, hierarchies, development, and pararmetetoplogies. In
Riolo, Rick L. and Worzel, Bill, editorsGenetic Programming Theory and
Practise chapter 14, pages 221-237. Kluwer.

Kruiskamp, Wim and Leenaerts, Domine (1995). Darwin: Cmpanop syn-
thesis by means of a genetic algorithm Dasign Automation Conference

Kundert, K. and Zinke, O. (2004)The Designer’'s Guide to Verilog-AMS
Kluwer.

Lai, X. and Roychowdhury, Jaijeet (2006). Macromodelingiltetors using
krylov-subspace methods. Ksia And South Pacific Design Automation
Conference

Lohn, Jason, Hornby, Gregory, and Linden, Derek (2004).I@&wmary an-
tenna design for a NASA spacecraft. In O’'Reilly, Una-May, Yina, Riolo,
Rick L., and Worzel, Bill, editorssenetic Programming Theory and Practice
II, chapter 18, pages 301-315. Springer, Ann Arbor.

Lohn, Jason D. and Colombano, S.P. (1998). Automated acatmgt synthe-
sis using a linear representation. Iimernational Conference on Evolvable
Systemgpages 125-133.

Martens, Ewout and Gielen, Georges G.E. (2006). Top-dowerbgeneous
synthesis of analog and mixed-signal systemsDé&sign Automation and
Test Europepages 275-280.

Maulik, Peter C., Carley, L.R., and Rutenbar, R. (1995)edet programming
based topology selection of cell level analog circUEEE Transactions on
Computer-Aided Desigri4(4).

McConaghy, Trent, Eeckelaert, Tom, and Gielen, GeorgeB5RCAFFEINE:
Template-free symbolic model generation of analog ciscuii canonical

Genetic Programming with Reuse of Known Designs 185

form functions and genetic programming.Pnoceedings of the Design Au-
tomation and Test Europe (DATE) Conferensdume 2, pages 1082—-1087,
Munich.

McConaghy, Trent and Gielen, Georges (2005). Genetic progring in indus-
trial analog CAD: Applications and challenges. In Yu, TiRaglo, Rick L.,
and Worzel, Bill, editorsGenetic Programming Theory and Practice, llI
volume 9 ofGenetic Programmingchapter 19, pages 291-306. Springer,
Ann Arbor.

McConaghy, Trent, Palmers, Pieter, Gielen, Georges Ghe Steyaert, Michiel
(2007). Simultaneous multi-topology multi-objective isg across thou-
sands of analog circuit topologies. Dresign Automation Conference

Ning, Z., Mouthaan, A.J., and Wallinga, H. (1991). Seas: dated evo-
lution approach for analog circuit synthesis.@uistom Integrated Circuits
Conference

Nordin, Peter (1994). A compiling genetic programming eystthat directly
manipulates the machine code. In Kinnear, Jr., KennethoEgreAdvances
in Genetic Programmingchapter 14, pages 311-331. MIT Press.

Phillips, Joel R. (1998). Model reduction of time-varyingdar systems using
approximate multipoint krylov-subspace projectors.rternational Con-
ference on Computer-Aided Desjgrages 96-102.

Poli, Riccardo and Langdon, William B. (1999). Sub-machio€ee genetic pro-
gramming. In Spector, Lee, Langdon, William B., O'Reillynd-May, and
Angeline, Peter J., editorddvances in Genetic Programmingchapter 13,
pages 301-323. MIT Press, Cambridge, MA, USA.

Razavi, Behzad (2000Resign of Analog CMOS Integrated CircuidcGraw-
Hill.

Ressler, Andrew L. (1984A Circuit Grammar for Operational Amplifier De-
sign PhD thesis, Massachusetts Institute of Technology, Cidgéar MA,
USA.

Rothlauf, Franz (2006)Representations for genetic and evolutionary algo-
rithms Springer-Verlag, pub-SV:adr, second edition. First mi#d 2002,
2nd edition available electronically.

Rutenbar, R.A., Gielen, Georges G.E., and Antao, B.A. (2@@mputer-Aided
Design of Analog Integrated Circuits and Systet&EE Press, Piscataway,
NJ, USA.

Sansen, Willy (2006)Analog Design EssentialSpringer.

Shibata, Hajime, Mori, Soji, and Fujii, Nobuo (2002). Autated design of ana-
log circuits using cell-based structure Nasa/DoD Conference on Evolvable
Hardware

Spector, Lee (2004 Automatic Quantum Computer Programming: A Genetic
Programming Approachvolume 7 ofGenetic ProgrammingKluwer Aca-
demic Publishers, Boston/Dordrecht/New York/London.

186 GENETIC PROGRAMMING THEORY AND PRACTICE V

Sripramong, Thanwa and Toumazou, Christofer (2002). TWexition of CMOS
amplifiers using genetic programming and current-flow asiallfEEE Trans-
actions on Computer-Aided Design of Integrated Circuits Sgstem<1(11):1237—
1252.

Swings, K., Donnay, S., and Sansen, W. (1991). Hector: aifuleical topology-
construction program for analog circuits based on a deiarapproach to
circuit modeling. InCustom Integrated Circuits Conference

Synopsys (2007). Circuit explorer produg¥ebsite of Synopsys Inc.

Tanaka, T. (1993). Parsing electronic circuits in a log@mmar.|EEE Trans-
actions Knowledge and Data Engineerjrigf2):225-239.

Tang, H. and Doboli, A. (2006). High-level synthesis of dedigma modulator
topologies optimized for complexity, sensitivity, and pwconsumption.
IEEE Transactions on Computer-Aided Desigh(3):597-607.

Toumazou, Chris, Makris, C.A., and Berrah, C.M. (1990)idsa methodology
for automated analog ic design. limternational Symposium on Circuits and
Systemsvolume 1, pages 531-555.

Vassilev, Vesselin K. and Miller, Julian F. (2000). The ateges of landscape
neutrality in digital circuit evolution. IrProceedings of the Third Interna-
tional Conference on Evolvable Systempages 252—-263. Springer-Verlag.

Whigham, P. A. (1995). Grammatically-based genetic pnognéng. In Rosca,
Justinian P., editoRroceedings of the Workshop on Genetic Programming:
From Theory to Real-World Applicationpages 33—41, Tahoe City, Califor-
nia, USA.

Yao, Xin, Liu, Yong, and Lin, Guangming (1999). Evolutioggrogramming
made fastelEEE Transactions on Evolutionary Computati@{2).

Yu, Tina, Wilkinson, Dave, and Castellini, Alexandre (2008pplying ge-
netic programming to reservoir history matching problemRiolo, Rick L.,
Soule, Terence, and Worzel, Bill, editofSenetic Programming Theory and
Practice IV, volume 5 ofGenetic and Evolutionary Computatiochapter 6,
pages —. Springer, Ann Arbor.

