
Chapter 10

GENETIC PROGRAMMING WITH REUSE OF
KNOWN DESIGNS FOR INDUSTRIALLY
SCALABLE, NOVEL CIRCUIT DESIGN

Trent McConaghy1, Pieter Palmers1, Georges Gielen1, and Michiel Steyaert1
1Katholieke Universiteit Leuven, Leuven, Belgium

Abstract This paper shows how aggressive reuse of known designs brings orders-of-
magnitude reduction in computational effort, and simultaneously resolves trust
issues for synthesized designs, for genetic programming applied to automated
structural design. Furthermore, it uses trustworthiness tradeoffs to handle addi-
tion of novelty in a trackable fashion. It uses a multi-objective algorithm with
an age-layered population structure to avoid premature convergence. While the
application here is analog circuit design , the methodologyis general enough for
many other problem domains.

Keywords: synthesis, industrial, analog, integrated circuits, CAD

1. Introduction

Background: GP for Automated Structural Design

A core reason that genetic programming (GP) (Koza, 1992) is interesting is
its natural ability to handle search spaces with tree-like and graph-like struc-
tures (topologies), which makes it a natural fit for automated invention of struc-
tures. One focus has been design of analog circuit topologies, such as those
in (Koza et al., 1999; Koza et al., 2003a; Koza et al., 2004; Huand Good-
man, 2004; Lohn and Colombano, 1998; Shibata et al., 2002; Sripramong and
Toumazou, 2002; Dastidar and Chakrabarti, 2005). In this domain, GP has
evolved several patent-quality circuits (Koza et al., 2003a) essentially “from
scratch”, which is a remarkable success by almost any measure. It is an es-
pecially notable accomplishment from an artificial intelligence perspective be-
cause “patent-worthiness” is a good measure of success for testing techniques
in automated “creative” design.



162 GENETIC PROGRAMMING THEORY AND PRACTICE V

GP has been used for structural design in other fields as well:in (Lohn et al.,
2004), Hornby and Lohn evolved an antenna design for NASA which was
successfully deployed in space. In several works including(Spector, 2004),
Spector has evolved quantum circuits. Several groups have used GP as a means
to suggest a “design” in the form of a mathematical equation.These designs get
manually filtered and tweaked, then deployed in the field, such as: chemical
sensors (Castillo et al., 2004), geological exploration (Yu et al., 2006), and
financial markets (Becker et al., 2006; Korns, 2006). Unlikethe other domains
mentioned, GP for circuit design has never been deployed in industry.

GP has not been deployed for circuit design in industry because (a) new
designs cost millions of dollars to fabricate and test, and (b) GP-synthesized
designs so far have not had the combination of sufficient complexity and trust-
worthiness to make the cost worth it. If the design fails, then there is not only
a new fabrication needed for the revised design (“re-spin”), there is lost time
to market. A new analog topology has higher chance of failuredue to lack of
experience with that topology; it is risky coming from an experienced designer
and even more risky coming from an untrusted black box. New topologies only
come about if there is no other way – if idea has possible orders of magni-
tude payoff that it’s worth the money to try, or if there is some way to make
trying it zero risk. It gets worse: addressing even just robustness (a subset of
the trustworthiness issue) on a sufficiently complex problem would take 150
years on a thousand-CPU 1-GHz cluster; faster CPUs with Moore’s Law (ITRS,
2007) can’t help because the problem becomes more difficult as Moore’s Law
progresses (McConaghy and Gielen, 2005). Aerospace designhas similar re-
sistance to new structural ideas, except there if the new design fails it means
that the plane or rocket crashes. Is there a path out?

Background: The Power of Domain Knowledge

Domain knowledge, if applied in the right places, can bring about orders of
magnitude reduction in size of the search space, improvement in runtime, or
improvement in quality of results. If we are interested in industrial applications
then speed and quality of results are of utmost importance, and embedding do-
main knowledge can be well worth it. Domain knowledge can be applied at
multiple levels of generality. We now give some illustrative examples from both
evolutionary computation (EC) and other fields. In EC, each of these brought
one or more orders of magnitude speedup or improvement in result quality:
generative representations and modularity in general, e.g. (Hornby, 2003); per-
mutation design via floating point representations (Rothlauf, 2006); avoiding
“danglers” in circuit topology design e.g. (Koza et al., 2003a), machine-code
symbolic regression (Nordin, 1994), machine-code digitallogic design (Poli and
Langdon, 1999), avoiding the need for learning the linear weights in symbolic



Genetic Programming with Reuse of Known Designs 163

regression (Keijzer, 2004); thorough exploration of smaller building blocks,
e.g. one variable at a time in symbolic regression (Korns, 2006); and more. It
has been shown that GP can learn about the structure of the domain in one run
to help subsequent runs (Keijzer, 2005). Some interesting examples outside of
EC include: in splines, 10x-1000x or more speedup in regression by iteratively
updating the least-squares learning matrix rather than doing a full update (Fried-
man, 1991); 1,000,000x speedup when building behavioral models of circuits,
by using knowledge of its connectivity (Phillips, 1998), 1000x by exploiting
sparsity in matrices (Lai and Roychowdhury, 2006); 100x space reduction via
cheap-to-compute “device operating constraints” in circuits (Ding and Vemuri,
2005), 1,000,000x space reduction by reformulating the independent design
variables of a design problem to more natural variables (Bernardinis et al.,
2005); and more. For non-trivial practical applications, domain knowledge is
key.

Reuse of Structural Domain Knowledge

In (Koza et al., 2003b), Koza et. al note: “Anyone who has everlooked at a
blueprint for a building, an electrical circuit, a corporate organizational chart, a
musical score, a city map, or a computer program will be struck by the ubiqui-
tous reuse of certain basic substructures within the overall structure...Reuse can
accelerate automated learning by avoiding ‘reinventing the wheel’ on each oc-
casion requiring a particular sequence of already-learnedsteps. We believe that
reuse is the cornerstone of meaningful machine intelligence.” All scientific and
engineering fields accumulate knowledge of useful structures over time; added
new structures are literally advances in the field. For mathematics, this includes
new theorems and proofs; for computer science, algorithms;for software en-
gineering, design patterns, and libraries of code; for biology, new theories and
models; for analog circuit design, taken to mean new circuittopologies.

Interestingly, “reuse” in GP systems has been reuse of structures that were
found by GP during the run, or in a previous run, and not reuse of structural
domain knowledge. For automotive design, GP would literally have to reinvent
the wheel–and the piston, crankshaft, transmission, etc. Issues which emerge
are: reinvention takes a huge amount of computational effort, if it is even
tractable at all; there is no guarantee that the functionality will be hit; and
because GP does not distinguish the known structures from novel structures,
final designs can look very odd and therefore are less trusted.

This paper shows how reuse of structural domain knowledge simultaneously
solves the GP issues of computational efficiency and of trust, for those problems
which have a sufficient amount of accumulated structural domain knowledge.
Figure 10-1 illustrates the general approach to such problems. We demonstrate



164 GENETIC PROGRAMMING THEORY AND PRACTICE V

the approach to analog circuit design, which has accumulated a large amount
of structural knowledge over the decades (Razavi, 2000; Sansen, 2006).

Figure 10-1. A general framework to leverage domain-specific structuralknowledge with GP.
Our instantiation of the framework for analog circuit design is described with the text on the
right.

A Path to Practical Automated Structural Design

We now discuss various approaches to design of structures (“topologies”).
The status quo approach to GP for structural design is shown in Figure?? left.
Figure 10-2 middle gives a flow that focuses on optimizing a fixed structure
(what circuit designers currently do).

We specify our goals for a structural (topology) design tool. If a topology that
is known to be 100% trustworthy will meet design goals, then the tool should
return that topology. It should strive to keep the inputs andoutputs as close
as possible to existing techniques. It should draw on as muchprior structural
design knowledge as possible, so long as that knowledge is convenient to the
user, it doesn’t have to be convenient to the tool developer.Only if no existing
known topology can meet its goals should the tool resort to adding novelty–to
do so otherwise would introduce unnecessary risk. If it doesadd novelty, it
should be easy to track where and how that novelty is added, and what the
payoff is.

We now classify “automated topology design” into the followingsub-categories,
and discuss which of them a designer would want:

1. Lightweight multi-topology sizing: Search across predefined, 100%
trusted topology space, but the topologies have to be input by designers.
The trustworthiness is useful because it means that there isless reliance



Genetic Programming with Reuse of Known Designs 165

Figure 10-2. Current approaches to get sized topologies. Left: Status quo GP flow having no
structural reuse – painful because topologies are untrustworthy, and huge computational burden.
Middle: Current industrial flow using optimization (sizing) – painful because topology selection
is manual. Right: Earlier approaches to multi-topology sizing – painful because the libraries are
small and inflexible, and therefore required designer setupand intervention.

Figure 10-3. Proposed approaches to get sized topologies. Left: MOJITO:Multi-topology
sizing – specs-in, sized-circuit out; gives 100% trustworthy results, but not novel designs. Right:
MOJITO-N: Multi-topology sizing with novelty – gives trustworthy resultsand designs with
measurable novelty.

on detailed measures to guarantee robustness and manufacturability, but
it is too tedious to expect a designer to enter more than a few topologies.
Even if the topology space is parameterized, it is hard to getbeyond a
few dozen possible topologies. Figure 10-2 right, illustrates this.



166 GENETIC PROGRAMMING THEORY AND PRACTICE V

2. Multi-topology sizing: Search across predefined, 100% trusted topol-
ogy space, where the number of topologies is sufficiently rich that the
designer can consider it “complete enough” to not have to intervene in a
typical design problem (i.e. hidden from view from the perspective of the
designer). This is of great interest to them, because it means that it uses
the same inputs and outputs as their existing tools, yet theydon’t have to
take the time to select a topology. It is simply “specs in, sized topology
out”. Interestingly, if one does a (long) multi-topology sizing run with
a huge number of goals set as objectives, the result itself iseffectively
a library of sized results; future queries for sized topologies of certain
specifications are a computationally cheap lookup; i.e. it is “specs in,
sized topology out,immediately.” Figure 10-3, left, illustrates.

3. Multi-topology sizing with innovation: Search across 100% trusted
topology space, and add novelty if there is a performance payoff. That
is, “innovate” as needed. This would be of great interest fordesigners
who are searching for new design ideas, if that is what is truly desired or
needed. It is especially useful if there is a mechanism to track novelty,
and therefore assess how much trust designers have in the design. Figure
10-3, right, illustrates.

4. Topology invention from scratch: No structural information is input
(status quo GP). That is everything is “invented” (or reinvented) from
scratch. Designers would question why this would ever be needed, if (3)
exists. After all, why ever reinvent known structures? And they have no
idea where the novelty may lie; it may be near-impossible to untangle
the circuit to understand it. If they wanted extreme novelty, they would
just let (3) run longer. Incidentally, because such a methodology would
require a tedious iterative looping of plugging “holes in goals” for each
new problem, that makes it more “hands-on” than an approach that has
structural reuse. Figure 10-2, left, illustrates.

In this paper, we demonstrate how GP can be used to build the industrially
interesting categories (2) and (3). The key to (2) is to aggressively reuse existing
structural knowledge. The key to (3) is trustworthiness tradeoffs to ensure that
only novel designs that actually give a payoff are rewarded.One might be
concerned that the problems (2) and (3) are trivially easy compared to (4). Our
responses are that (4) is pointlessly hard, and that one should strive to “trivialize
a problem” as much as possible to help ensure its use. And we will see that
problems (2) and (3) are challenging in their own right, by nomeans trivial to
solve effectively.



Genetic Programming with Reuse of Known Designs 167

2. MOJITO for Multi-Topology Sizing

MOJITO is a system for multi-objective and topology sizing. Its flow from a
user perspective is shown in Figure 3 left (the diagram on theright is for novelty,
described later). It actually follows a generally applicable framework for GP in
structural design, as Figure 1 describes. This section describes the instantiation
of the framework, specifically: how the library of structural design knowledge
is defined, the GP search algorithm, and experimental results. Note: some parts
of this section were originally reported in (McConaghy et al., 2007).

Background on Multi-Topology Sizing

This section reviews other approaches to multi-topology sizing in the liter-
ature. Multi-topology sizing is not a new idea, but it has never been applied
to giant topology spaces, nor with SPICE in the loop (both of which greatly
increase the difficulty of the problem). The work typically comes out of the ana-
log CAD field (as opposed to an EA field). BLADES (E1-Turky and Nordin,
1986), OASYS (Harjani et al., 1992), and others (Berkcan et al., 1988; Koh
et al., 1990; Toumazou et al., 1990; Swings et al., 1991; Ninget al., 1991; An-
tao and Brodersen, 1995; Kampe, 2000; Doboli and Vemuri, 2003; Martens
and Gielen, 2006) depend on rule-based reasoning or abstract models having
transforms to structural descriptions, and therefore havean undesirable amount
of up-front setup effort. DARWIN (Kruiskamp and Leenaerts,1995) and others
(Maulik et al., 1995; Tang and Doboli, 2006) only require structural informa-
tion, but rely on a sneaky definition of a flat combinatorial search space to
define possible topologies; they do not show a clear path to generalize and are
restricted to a few hundred topologies at most.

MOJITO Inputs and Outputs

The core philosophy is to use the inputs and outputs that are acceptable
for industrial single-topology multi-objective sizing tools, such as (Synopsys,
2007); but to add the smallest possible amount of extra information in order
to enable multi-topology sizing. Instead of a single topology, the tool takes in
a set of hierarchically organized building blocks. Just like a single topology,
these building blocks can be specified in an industrial circuit schematic editor.
Getting such inputs is not unreasonable: such blocks do not appear as anything
special to the designer, as they are merely based on well-known building blocks
that one can find in any analog design textbook (Razavi, 2000;Sansen, 2006).
And in fact, since we have already designed an example library (see following
sections), the designers can use that. This makes it is straightforward to switch
technologies, or add new building blocks.



168 GENETIC PROGRAMMING THEORY AND PRACTICE V

MOJITO uses off-the-shelf simulators (e.g. SPICE) rather than specially
designed performance estimators. Its output is a tradeoff of sized circuits, for
selection by a designer or within a hierarchical methodology like MOBU (Eeck-
elaert et al., 2007). MOJITO can be seen as a pragmatic fusionof knowledge-
based and optimization-based analog CAD (Rutenbar et al., 2002).

Search Space Framework

This section describes a topology space that is specified by structural in-
formation only, searchable, trustworthy, and flexible. Itsflexibility is due to
an intrinsically hierarchical nature which includes parameter mappings; the
parameter mappings can choose sub-block implementations.It could be sum-
marized as a parameterized grammar with a generative-representation twist.

Creating a representation for circuits is a design challenge in its own right.
We choose to adopt a strongly hierarchical approach, because a flat representa-
tion is not conducive to the construction of a library or to larger designs. Analog
circuit hierarchies analog be represented by analog hardware description lan-
guages (HDLs) (Ashenden et al., 2002; Kundert and Zinke, 2004), analog circuit
database representations, even grammars (Ressler, 1984; Tanaka, 1993). With
these options already existing in the analog domain, why notjust use one of
them? The problem is that if a designer makes a small conceptual change to
a circuit that corresponds to a small change in performance,there may be a
drastic change in the netlist. While this complicates the design of an appro-
priate search representation, it is needed for changes likefolding an input or
flipping all NMOS transistors to PMOS. Myriad examples can befound in any
analog design textbook. The structural-only op amp approaches (Kruiskamp
and Leenaerts, 1995; Maulik et al., 1995) do cover some of these examples, but
are designed into a flat space, need special heuristics just to work in their small
spaces, and do not readily generalize. The existing grammatical approaches
did not provide enough flexibility.

The generative representation GENRE (Hornby, 2003) provided inspiration.
A generative representation transforms a genotype to phenotype by executing
the genotype commands as if they were a program. Unfortunately, GENRE
does not readily allow one to embed known trusted building blocks, and is too
flexible in allowing the addition and removal of ports on substructures during
search. The MOJITO representation removes some flexibilityin order to allow
easier embedding of domain knowledge; it has an associated drawing style that
both analog designers and computer scientists will understand. It is composed
of three simply-defined “Part” types, which we now describe.

Let us define a “Part” as merely a circuit block at any level of the hierarchy. It
has a fixed set of arguments in its interface: “port arguments” (nodes available



Genetic Programming with Reuse of Known Designs 169

to the outside world) and “number arguments” (parameters which affect its be-
havior, e.g. a device size). Arguments to a Part’s embedded Parts are a function
of arguments above. To fully netlist a given Part, the only extra information
needed is values for the arguments to that Part. Direct-representation Part types
are:

Atomic Part Type. Parts of this type are the leaf nodes in the hierarchy
(tree) of Parts. They do not contain any embedded parts. Figure 10-4
gives examples.

Compound Part Type. These have one or more sub-Parts embedded.
Sub-parts can have internal connections among themselves and to the
Part’s external ports. All sub-parts get netlisted. Figure10-5 gives ex-
amples.

We add the following generative Part type. It netlists by executing the Part as
a function of a third type of argument in its interface: “topological arguments”:

Flexible Part Type. These have the topological argument “choiceindex”,
which during netlisting is used to select one of several candidate embed-
ded parts and respective wirings. The argument values goinginto the
chosen sub-part can be very particular to that sub-part if the mapping
function has cases for different choiceindex values. Example: a current
mirror which may be simple or cascode (choiceindex = 0 or 1). Figure
6 gives an example.

Despite the simplicity of Part types, the interactions allow a capture of es-
sential structural domain knowledge of analog building blocks. The generative
Parts, especially Flexible Parts, are what turn a Part into its own IC library
of possibilitiesrather than merely a representation of a single circuit design.
Traversing the topology space merely means changing one or more of the “topo-
logical argument” input values.

Figure 10-4. Example Atomic Parts: nmos4 transistor, pmos4 transistor,resistor, capacitor.



170 GENETIC PROGRAMMING THEORY AND PRACTICE V

Figure 10-5. Example Compound parts. mos3 is a wrapper for mos4, so that the mos4’s ‘B’
node is not seen at higher levels. mosDiode ties together twointernal ports to only present two
external ports. biasedMos uses a 1-port dcvs (dc-controlled voltage source) part to set its gate
bias internally.

Figure 10-6. Example Flex part: mos4 turns the choice of NMOS vs. PMOS intoa parameter
“choiceindex”. Note how parameters get assigned from mos4 to either of itssub-blocks. In this
case both sub-blocks use the mos4’s W and L parameters as their own W and L values.

Remember that for all these subblocks, instantiation into sets of nmos vs.
pmos devices is deferred until the very leaf block, based on the parameters that
flow through the circuit. This sort of flexibility allows for alarge number of
topologies at the top level, without having an excess numberof building blocks.
It also means that many parameters are shared in the conversion from one block
to subblocks, which keeps the overall variable count lower than it might have
been; this is crucial to the locality of the space and thus theultimate success
of the search algorithm. Figure 7 gives an example of a circuit “sentence”
instantiated in the parameterized grammar of MOJITO; this sentence will also
be a GP individual tree.



Genetic Programming with Reuse of Known Designs 171

Figure 10-7. Example of MOJITO Building Blocks on a PMOS-input Miller OTA.

3. MOJITO Search Algorithm

We now proceed to describe an algorithm that traverses the MOJITO search
space to produce a set of topologies that collectively tradeoff performances.

The search space is gigantic and diverse, because there can be thousands
of possible topologies plus associated sizings. This meansa mix of hierarchy
and parameters which can be continuous-, discrete-, or integer-valued. SPICE-
accurate performance estimation adds computational demand too, compared to
the simplified performance estimators that most previous multi-topology sizing
approaches used.

An evolutionary search algorithm that balances exploration with exploita-
tion by grouping individuals by genetic age (ALPS (Hornby, 2006)), and
at a nested level achieves multiobjective search by grouping individuals
by degree of nondomination (NSGA-II (Deb et al., 2002)).

Special operators that are designed to exploit the nature ofthe search
space. The crossover operator respects the parameters thatshould be held
together within building blocks, yet still allows sibling building blocks
to share parameters (i.e. a mix between vector and tree search spaces).
The mutation operator has tactics to avoid stealth mutations (Rothlauf,
2006) on “turned-off” building blocks.

Structure of Search Space from Search Algorithm’s
Perspective

Each building block has its own parameters, which fully describe how to
implement it and its sub-blocks. As we build up the hierarchyof building blocks,
we eventually reach the level of the block we want to search for, such as the
amplifierblock. Thus, the searchspace for the circuit type (e.g. fullydifferential
amplifier) is merely the possible values that each of the block’s parameters can



172 GENETIC PROGRAMMING THEORY AND PRACTICE V

take. Since these parameters can be continuous, discrete, or integer-valued, one
could view the problem as a mixed-integer nonlinear programming problem,
which one could solve with an off-the-shelf algorithm whether it be a classical
MINLP solver or an evolutionary algorithm (EA) operating onvectors. But a
vector-oriented view does not recognize the hierarchy, andso operations on it
may have issues. One issue is that a change to variable(s) maynot change the
resulting netlist at all, because those variables are in sub-blocks that are turned
off. From the perspective of a search algorithm, this means that there are vast
regions of neutrality (Huynen et al., 1996); or alternatively the representation
is non-uniformly redundant and runs the risk of stealth mutations (Rothlauf,
2006). For EAs, another issue is that an n-point or uniform crossover operator
could readily disrupt the values of the building blocks in the hierarchy, e.g. the
sizes of some sub-blocks’ transistors change while others stay the same, thereby
hurting the resulting topology’s likelihood of having decent behavior. From an
EA perspective this means that the “building block mixing” is poor (Goldberg,
2002).

What if we reconcile the hierarchy? We cannot apply a hierarchical design
methodology such as (Chang, 1997; Eeckelaert et al., 2005),because there are
no goals on the sub-blocks, just the highest-level blocks (we could, however, still
apply hierarchal methodology to the results). Neither can we treat it completely
as a tree induction problem (to be solved, for example, by grammar-based
genetic programming (Whigham, 1995)) because some siblingsub-blocks share
the same parent blocks’ parameters.

So the search algorithm’s perspective of the space has both tree-based and
vector-based aspects. We design novel operators that reconcile both aspects, for
use within an EA. First, we have a mutation operator which chooses one or more
parameters to mutate. Continuous-valued parameters follow Cauchy mutation
(Yao et al., 1999) which allows for both tuning and exploration. Integer-valued
“part choice” parameters follow a discrete uniform distribution. Other integer
and discrete parameters follow discretized Cauchy mutations. To avoid stealth
mutations on “turned-off” building blocks, mutations are only kept if the netlist
changes; mutation attempts are repeated until this happens. Though “neutral
wanderings” of the space has been shown to help exploration in some applica-
tions (Vassilev and Miller, 2000; McConaghy et al., 2005), results are mixed
and in general make performance more unpredictable (Rothlauf, 2006). We
prefer predictability, and rely on ALPS to enhance exploration.

The second operator is crossover. It works as follows: giventwo parent
individuals, randomlychoose a sub-block inparent A, identifyall the parameters
associated with that sub-block, and swap those parameters between parent A
and parent B. This will preserve the parameters in the sub-blocks. There will
still be some crosstalk because sibling blocks may use thoseparameters as well,
but the crosstalk is relatively small compared to the 100% crosstalk that we’d



Genetic Programming with Reuse of Known Designs 173

have if we used standard vector-based crossover. This effectively makes the
search a hybrid between tree-based and string-based search(i.e. a cross between
a GA and GP).

To generate random individuals, we merely randomly choose avalue for
each parameter using a uniform distribution.

The Search Algorithm

Even with a search space and operators that are as well-behaved as possible,
there is a need for a highly competent search algorithm because the space is so
large (there is such a large set of possible topologies and associated sizings), and
the performance estimation time for an individual can be on the order of minutes
(using SPICE to maintain industrial relevance). We also need multi-objective
results. The blow is softened a bit because some degree of parallel computing
is allowed (industrial setups for automated sizing typically have 5-30 CPUs).

A popular, competent EA for multiobjective is NSGA-II (Deb et al., 2002),
which sorts individuals by nondomination layer. NSGA-II provides a reason-
able starting point for us in the design of our multiobjective EA. We use the
constraint-handling approach of NSGA-II as well: a feasible individual always
dominates an infeasible one, and for two infeasible individuals the one that
dominates is the one with the least total constraint violation (a sum across all
constraints’ violations).

One key issue with NSGA-II, and most EAs, is that they can converge pre-
maturely. To fix this, one needs to ensure an adequate supply of building blocks
(Goldberg, 2002). Tactics include massive population sizes (Koza et al., 2003a),
restarting, time-varying population sizes, or diversity measures such as crowd-
ing. All tactics are all either inadequate or highly sensitive to parameter settings.
Random injection of individuals for fresh new building blocks might help, ex-
cept they get killed off too quickly during selection. To fix that, HFC (Hu et al.,
2005) segregates individuals into similar fitness layers, and restricts compe-
tition to within layers, which gives random individuals a reasonable chance.
Unfortunately, the choice of fitness thresholds is complicated in practice, and
near-stagnation may occur at some fitness levels because thebest individuals
per level have no competition. The age-layered population structure, ALPS
(Hornby, 2006) builds on HFC, but rather than segregate individuals by fitness
it segregates by genetic age levels. The age distinction overcomes the issues
of HFC. For example, age level 0 might allow individuals withage 0-19, level
1 allows age 0-39, level 2 allows age 0-59, and so on until the top level (e.g.
level 9) which allows individuals of any age. Genetic age is the number of
generations of an individual’s oldest genetic material: the age of a randomly
generated individual is 0; the age of a child is the maximum ofits parents’
ages; age is incremented by 1 each generation. If an individual gets too old



174 GENETIC PROGRAMMING THEORY AND PRACTICE V

for a fitness level, it gets kicked out of that level and given one last chance to
compete at the next higher level. Selection at one age level uses the individuals
at that level and at one level below as candidates.

Only a single-objective, single-CPU ALPS exists in the literature. In this
paper, we make it multi-objective for the first time. There are many conceivable
ways to make ALPS multi-objective. We chose a pragmatic approach which
is shown in Figure 10-8. There is canonical NSGA-II evolution at each age
level, with one difference: for selection at a levell, the individuals at levell and
level l − 1 are candidates (rather than just at levell). In this fashion, younger
high-fitness individuals can propagate to higher levels.

Figure 10-8. Multi-objective ALPS has NSGA-II at each age level.

4. MOJITO Multi-Topology Sizing: Experimental Results

This section describes application of MOJITO to two multi-objective multi-
op-amp topology sizing problems.

Problem Setup

The problems were set up as follows. The search space had 50 variables
(topology selection variables and sizing variables). EA settings were: 100
individuals per age layer; 10 age layers, maximum age per layer: 9, 19...79, 89,
infinity. Each run took approximately 150 hours on a single-core 2.0 GHz Linux
machine, covering 100,000 individuals. Search objectives: maximize GBW,
minimize power, maximize DC Gain (Experiment Set 2). Constraints: phase
margin> 65◦, all DOCs, DC Gain> 30dB (Experiment Set 1). Simulator was
HSPICE. Technology was 0.18µCMOS; supply voltage 1.8V; load capacitance
1pF.



Genetic Programming with Reuse of Known Designs 175

Experiment Set 1

These runs were to verify the algorithm’s ability to traverse the search space
and select different topologies. The problem was set up suchthat the optimiza-
tion end result was known a priori. Three GP runs were done, with problem
setups such that specific output topologies were expected. To summarize re-
sults for non-circuit people: it achieved the structures which were expected.
The rest of this paragraph gives circuit-specific details. The only difference
between the 3 runs is the common mode voltage(Vcmm,in) at the input. We
know that forVcmm,in = 1.5V, topologies must have an NMOS input pair. For
Vcmm,in = 0.3V , topologies must have PMOS inputs. AtVcmm,in = 0.9V ,
there is no restriction between NMOS and PMOS inputs. Figure10-4 illustrates
the outcome of the experiments. It contains the combined results of three op-
timization runs. Result (a) hasVcmm,in = 1.5V , and has only topologies with
NMOS inputs. It chose to use 1-stage and 2-stage amplifiers, depending on
the power-GBW tradeoff. Result (b) hasVcmm,in = 0.3V , and MOJITO only
returns PMOS input pairs. Note that result (a) is a result before convergence in
order to retain the 2-stage amplifier in the result set. Oldergenerations eliminate
the 2-stage amplifier in favor of the folded cascode amplifier, as in result (b).
For result (c) aVcmm,in = 0.9V has been specified. Though both NMOS and
PMOS input pairs might have arisen, the optimization preferred NMOS inputs.
The curve clearly shows the switch in topology around GBW=1.9GHz, moving
from a folded cascode input to a simple current-mirror amp. Interestingly, the
search retained a stacked current-mirror load for about 250MHz GBW.

Experiment Set 2

In second experiment, one GP run was done, to verify that MOJITO could get
interesting groups of topologies in a tradeoff of three objectives. The motiva-
tion is as follows: whereas a single-objective multi-topology optimization can
only return one topology, the more objectives that one has ina multi-topology
search, the more opportunity there is for many topologies tobe returned, because
different topologies naturally lie in different regions ofperformance space. Re-
sults are shown in Figure 5. We can see that MOJITO found rich and diverse
structures as expected. The rest of this paragraph has circuit-specific details. It
determined: a folded-cascode op amps gave high gain-bandwidth but with high
area, 2-stage amps give high gain but at the cost of high area,the low-voltage
current mirror load is a 1-stage with high gain, and there aremany other 1 stage
topologies which give a broad performance tradeoff. These are all results that
a circuit designer would expect.

Incidentally, problems of comparative complexity took status quo GP (i.e.
no reuse) 100 million or more individuals (Koza et al., 2003a; Koza et al.,
2003b), and the results were not trustworthy; it was estimated that to get to



176 GENETIC PROGRAMMING THEORY AND PRACTICE V

Figure 10-9. Pareto fronts for 3 GP runs a/b/c which had different input settings. The y-axis is
an objective to minimize, and the x-axis is an objective to maximize; each point is an individual,
which has an associated structure (topology) and parameters (sizings). Some of the specific
topologies found are shown; these are the expected topologies.

Figure 10-10. Pareto front for a GP run on 3 objectives (maximize gbw, maximize gain, mini-
mize area). Individuals are grouped according to some of their structural characteristics (e.g. 1
stage vs. 2 stage) to illustrate their diversity.

get a reasonable degree of robustness would take 150 years ona 1,000 node
1-Ghz cluster (McConaghy and Gielen, 2005). That is, it would have taken
((150 years * 365 days / year * 24 hours / day) * 1000 CPUS * 1Ghz )/ ((150
hours) * 1 CPU * 2 Ghz) = 4.4 million times more computational effort than
MOJITO to get comparable results. There’s a lot to be said fortopology reuse.

5. How Far can Reuse-Only Go? (With No Novelty)

This section describes how huge a fully trustworthy (reuse-only, no novelty)
space can become.

The first major question of this subsection is: Can the numberof possible
topologies be sufficiently rich so that the designer can consider it “complete
enough” to not have to intervene in a typical design problem?We calculate
the size as follows. The count for an atomic block is one; for aflexible block,



Genetic Programming with Reuse of Known Designs 177

it’s the sum of the counts of each choice block; for a compoundblock, it’s the
product of the counts of each of its sub-blocks–but there aresubtleties. Subtlety:
for a given choice of flexible block, other choice parametersat that level may
not matter. Subtlety: one higher-level choice might govern> 1 lower-level
choices, so don’t overcount. Table 1 shows that MOJITO increases the op amp
count by 50x compared to the other reuse-only techniques.

Table 10-1. Size of Op Amp Topology Spaces.
Technique # topologies Trustworthy?
GP without reuse, e.g. (Koza et al., 2003a) billions NO
DARWIN (Kruiskamp and Leenaerts, 1995) 24 YES
MINLP (Maulik et al., 1995) 64 YES
GP with reuse: MOJITO (this work) 3528 YES

The second major question of this subsection is: How big can the space of
possible trustworthy topologies for an industrially relevant application get?
Compared to what we have just established, we can make the space even larger
in many ways, using new techniques, recursion, and system-level design:

Add more design techniques.The field of analog design is a research
field in its own right, with its own conferences, journals, etc. Core ad-
vances in that field are precisely: new topologies and techniques. One
can think of that design effort as (manual) co-evolution of building block
topologies. Design opportunities and challenges arise dueto new appli-
cations, different target specifications, and the steady advance of Moore’s
Law (ITRS, 2007). Each design technique advance would increase the
size of the space by at least 2x, so if we merely took the top 10 advances
in op amp design, we would increase the space by at least210 = 103,
bringing the count to3.5 ∗ 106. And that is a lowball estimate: more
realistically one would consider dozens or hundreds of advances, and
some advances could be used in multiple places in the design;if we had
10 advances which doubled, 10 which tripled, and 10 which quadrupled,
then the space increases by2 ∗ 10 ∗ 310 ∗ 410 = 6 ∗ 1013, to total2 ∗ 1017

trustworthy op amp designs.

Recursion. Circuits’ designs can recurse. For op amps, this is via “gain
boosting.” One level of recursion brings the count to(2 ∗ 1017)

2
=

4 ∗ 1034 , and two levels of recursion (i.e. gain boosted amps using gain
boosted amps) brings the count to(4 ∗ 1034)

2
= 1.6x1069 trustworthy

op amp designs. Yes, designers in industry do actually use two levels of
gain boosting, in combination with the latest design techniques.



178 GENETIC PROGRAMMING THEORY AND PRACTICE V

System-level design.So far we have just talked about an op amp space
which is a circuit at lowest level of the design hierarchy (cell level), but
higher levels exist too. The next-highest level includes circuits such as
data converters (A/Ds, D/As), active filters, and more. These circuits
use lower-level blocks like op amps. The level above that is typically
the whole analog system, e.g. a radio transceiver like a Bluetooth or
Wi-Fi implementation. The level above that would typicallycombine
the analog and digital parts into a mixed-signal system. Each level can
have many sub-blocks, and each of those sub-blocks can be anyof its
combinations. E.g. an A/D might have 8 different op amps. If each op
amp had1.6 ∗ 1069 possible topologies and even if there was no other
topological variationat the A/D level, it means(1.6 ∗ 1069)

8
= 4.2∗10553

possible A/D topologies. Let’s say the system at one level higher up had
an A/D, a D/A, and a couple other parts all with about the same number of
topologies; then its size would be(4.2 ∗ 10553)

4
= 3.1x102214 possible

topologies. (For reference, if just 3528 designs at the celllevel, that leads

to ((3528)8)
4

= 10113 designs).

Combinatorial explosion is a good thing: the more possibilities available for
any part type, the more possible trustworthy designs you can have. If one
can decompose their design into sub-problems (where each sub-problem has
its own goals), if one has a competent hierarchical design methodology, if the
problem of “massively multi-topology” cell-level sizing design can be cracked,
then one can ultimately do system-level 100% trustworthy topology design in
spaces with10113 designs,10832 designs, or more.

We cando (1) because the decomposition is obvious in circuit design, and
the names of sub-blocks are well-established (op amps, biasgenerators, A/Ds,
D/As, filters, phase-locked loops, etc) (Razavi, 2000; Sansen, 2006). We can
do (2) because competent hierarchical design methodologies have been demon-
strated; and recently it has been demonstrated that they canchoose from among
different candidate topologies (Eeckelaert et al., 2007).This paper has demon-
strated (3).

6. Multi-Topology Sizing with Novelty

Because of the costs of fabricating a design, the motivationfor a new topology
has to be strong. New topologies only come about if there is noother way, if
idea has possible orders of magnitude payoff that it’s worththe money to try,
or if there is some way to make trying it zero risk. That said, sometimes these
motivations exist, and therefore it is of interest to see what sort of effective
algorithms can be created. This section describes MOJITO-N, a system for
multi-objective and topology sizing, that adds novelty as needed, with the flow
of Figure 10-3, right.



Genetic Programming with Reuse of Known Designs 179

The Search Algorithm

The specifications for such a system, above and beyond (non-novelty) MO-
JITO, are:

If a topology that is known to be 100% trustworthy will meet their goals,
then the tool should return that.

Only if no existing known topology can meet their goals should the tool
resort to adding novelty.

If it does add novelty, it should be easy to track where and howthat
novelty is added, and what the payoff is.

These specifications are resolved in MOJITO-N as follows:

Use trustworthy designs as the structural starting points.In fact, do a
long 100% trustworthy run first; then add novelty in a follow-on run.

Create novel designs by: copying an existing part within theparts library,
mutating the copy, and then getting a new individual to use that mutated
copy. In order to track novelty, remember which parts and choices are
novel, and what sort of novelty-mutating operator is used. These altered
libraries can be subsequently reused in future runs, therefore closing the
loop in the style of run-transferable-libraries (Keijzer,2005).

Have a multi-objective framework to manage trustworthiness tradeoffs:
trust =−novelty, novelty = number of times that a novel part is used, and
a novel part is one that has had random structural mutations.Therefore,
if novelty does not actually help, it will not show up in the Pareto optimal
front (but it will not necessarily be kicked out of the population; that is
up to the multiobjective algorithm).

A novel design will almost certainly be initially worse off than a non-
novel design, until it has been sized well enough to be competitive. If
not handled explicitly in the EA framework, the novel designwill almost
certainly die off before its benefit is discovered (if it has abenefit). So
that novel designs have a fighting chance, only create novel designs for
the easiest-competition age layer 0. Rather than randomly generating
the whole individual from a uniform distribution, choose a parent from
any age layer, and novelty-mutate it for placement in layer 0. (Note: a
plethora of other possible schemes exist here too, but a key enabler is the
ALPS structure).



180 GENETIC PROGRAMMING THEORY AND PRACTICE V

Experiment

The experimental setup was the same as for the non-novelty MOJITO, except
for the following differences. The 100 trustworthy resultsfrom the MOJITO
“Experiment Set 2” runwere usedas the inputs to the MOJITO-Nrun. MOJITO-
N was run for 15 more generations (15 * 10 * 100 = 15000 more individuals),
which took about 25 hours. The novelty-mutating operators were: add two-port
series, add two-port parallel, add n-port parallel. The two-port parts available
for add were: capacitors, resistors, nmos/pmos diodes, andbiased nmos/pmos
devices (a biased mos is merely transistor with a pre-set voltage bias). One
more search objective was added: minimize novelty.

With the results, we output the nondominated set, and first examined if any
novel individuals existed. Some did. With each novel individual, we queried
its data structure to find which parts were novel, and how theywere than their
original part. It turns out that so far in this run, they all had the same change:
the feedback capacitor Cc had been mutated to include a resistor in series.
Figure 9 illustrates. This is actually a well-known design technique that one
can find in many analog design textbooks: what it does is increase the effective
gain from feedback; it does not help the feedforward gain as much because the
feedforward path does not get its gain amplified.

Figure 10-11. Circuit which MOJITO-N successfully re-invented. The circled resistor in the
feedback path was not in the library; MOJITO-N added it; thisis a well-known design technique.



Genetic Programming with Reuse of Known Designs 181

7. Conclusion

This paper showed how aggressive reuse of known designs brings a vast
reduction in computational effort in GP applied to automated structural design.
It presented a complementary pair of approaches that incorporate reuse:

MOJITO automatically designs 100% trustworthy structuresof industri-
ally relevant complexity, with commercially reasonable computational
effort. MOJITO’s effectiveness was demonstrated in two separate exper-
iments, showing how it hit the target designs as expected, from a library
of more than 3000 possible topologies.

MOJITO-N adds novelty to the trustworthy designs, and returns circuits
that trade off novelty with performance, also with commercially reason-
able computational effort. The novelty is fully trackable,so all changes
can be readily understood. MOJITO-N successfully re-invented a known
design of industrially relevant complexity.

To properly capture the relevant knowledge to reuse, we designed a parame-
terized generative representation , and then used the representation to encode
a library of building blocks for the specific problem (in our case, operational
amplifier design). The key to manage trustworthiness in the presence of novelty
was to add an extra objective of “minimize novelty” within a multi-objective
optimization framework, which results in trustworthinesstradeoffs. “Novelty”
is the number of structural mutation steps taken from a 100% trustworthy de-
sign. We view our novelty-approach as “automated innovation” rather than
“automated invention” because it builds on existing knowledge – but note that
patents are awarded for innovations too.

This work also used state-of-the-art ideas in EA design. It had a hybridized
tree/vector view of the search space, implemented as operators having those two
perspectives. It was guided by recent advances in theory of EA representations
(Rothlauf, 2006). To avoid premature convergence and minimize sensitivity
to population size setting, we employed the age-layered population structure
(ALPS) (Hornby, 2006), and embedded NSGA-II (Deb et al., 2002) into each
age layer of ALPS to make it multiobjective.

These techniques can be readily extended to other GP problemdomains of
interest, and are complementary with many other recent advances in GP.

References

Antao, B.A.A. and Brodersen, A.J. (1995). Archgen: Automated synthesis of
analog systems.IEEE Transactions on Very Large Scale Integrated Circuits,
3(2):231–244.

Ashenden, Peter J., Peterson, Gregory D., and Teegarden, Darrell A. (2002).
The System Designer’s Guide to VHDL-AMS. Morgan Kaufmann.



182 GENETIC PROGRAMMING THEORY AND PRACTICE V

Becker, Ying, Fei, Peng, and Lester, Anna M. (2006). Stock selection : An inno-
vative application of genetic programming methodology. InRiolo, Rick L.,
Soule, Terence, and Worzel, Bill, editors,Genetic Programming Theory and
Practice IV, volume 5 ofGenetic and Evolutionary Computation, chapter 12,
pages –. Springer, Ann Arbor.

Berkcan, E., d’Abreu, M., and Laughton, W. (1988). Analog compilation based
on successive decompositions. InDesign Automation Conference, pages
369–375.

Bernardinis, F. De, Nuzzo, P., and Sangiovanni-Vincentelli, A.L. (2005). Mixed
signal design space exploration through analog platforms.In Design Automa-
tion Conference, pages 875–880.

Castillo, Flor, Kordon, Arthur, Sweeney, Jeff, and Zirk, Wayne (2004). Using
genetic programming in industrial statistical model building. In O’Reilly,
Una-May, Yu, Tina, Riolo, Rick L., and Worzel, Bill, editors, Genetic Pro-
gramming Theory and Practice II, chapter 3, pages 31–48. Springer, Ann
Arbor.

Chang, Henry (1997).A Top Down, Constraint Driven Design Methodology for
Analog Integrated Circuits. Kluwer.

Dastidar, T.R. and Chakrabarti, P.P. (2005). A synthesis system for analog cir-
cuits based on evolutionary search and topological reuse.IEEE Transactions
on Evolutionary Computation, 9(2):2005.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). Afast and elitist
multi-objective genetic algorithm: Nsga-ii.IEEE Transactions on Evolution-
ary Computation, 6(2):182–197.

Ding, Mengmeng and Vemuri, Ranga (2005). A combined feasibility and per-
formance macromodel for analog circuits. InDesign Automation Conference,
pages 63–68.

Doboli, Alex and Vemuri, Ranga (2003). Exploration-based high-level syn-
thesis of linear analog systems operating at low/medium frequencies.IEEE
Transactions on Computer-Aided Design, 22(11).

E1-Turky, F.M. and Nordin, R.A. (1986). Blades: An expert system for analog
circuit design. InInternational Conference on Circuits and Systems, pages
552–555.

Eeckelaert, Tom, McConaghy, Trent, and Gielen, Georges G. E. (2005). Ef-
ficient multiobjective synthesis of analog circuits using hierarchical pare-
toÂ–optimal performance hypersurfaces. InDesign Automation and Test
Europe.

Eeckelaert, Tom, Schoofs, Raf, Gielen, Georges G. E., and Steyaert, Michiel
(2007). An efficient methodology for hierarchical synthesis of mixed-signal
systems with fully integrated building block topology selection. In Design
Automation and Test Europe.



Genetic Programming with Reuse of Known Designs 183

Friedman, Jerome H. (1991). Multivariate adaptive regression splines.Annals
of Statistics, 19(1-141).

Goldberg, David E. (2002).The Design of Innovation. Springer.
Harjani, R., Rutenbar, R., and Carley, L. (1992). Oasys: A framework for

analog circuit synthesis.IEEE Transactions on Computer-Aided Design,
8(12):1247–1266.

Hornby, Gregory S. (2006). ALPS: the age-layered population structure for
reducing the problem of premature convergence. In Keijzer,Maarten, Cat-
tolico, Mike, Arnold, Dirk, Babovic, Vladan, Blum, Christian, Bosman, Pe-
ter, Butz, Martin V., Coello Coello, Carlos, Dasgupta, Dipankar, Ficici, Se-
van G., Foster, James, Hernandez-Aguirre, Arturo, Hornby,Greg, Lipson,
Hod, McMinn, Phil, Moore, Jason, Raidl, Guenther, Rothlauf, Franz, Ryan,
Conor, and Thierens, Dirk, editors,GECCO 2006: Proceedings of the 8th an-
nual conference on Genetic and evolutionary computation, volume 1, pages
815–822, Seattle, Washington, USA. ACM Press.

Hornby, Gregory Scott (2003).Generative Representations for Evolutionary
Design Automation. PhD thesis, Brandeis University, Dept. of Computer
Science, Boston, MA, USA.

Hu, JianjunandGoodman, Erik (2004). Topological synthesis of robust dynamic
systems by sustainable genetic programming. In O’Reilly, Una-May, Yu,
Tina, Riolo, Rick L., and Worzel, Bill, editors,Genetic Programming Theory
and Practice II, chapter 9, pages ??–157. Springer, Ann Arbor. pages missing.

Hu, Jianjun, Goodman, Erik, Seo, Kisung, Fan, Zhun, and Rosenberg, Rondal
(2005). The hierarchical fair competition framework for sustainable evolu-
tionary algorithms.Evolutionary Computation, 13(2):241–277.

Huynen, M.A., Stadler, P., and Fontana, W. (1996). Smoothness within rugged-
ness: The role of neutrality in adaptation.National Academy of Sciences
USA, 93:397–401.

ITRS (2007). International technology roadmap for semiconductors.
Kampe, Jurgen (2000). A new approach for the structural synthesis of analog

subsystems. InInternational Workshop on Symbolic Methods and Applica-
tions in Circuit Design, pages 33–38.

Keijzer, Maarten (2004). Scaled symbolic regression.Genetic Programming
and Evolvable Machines, 5(3):259–269.

Keijzer, Maarten (2005). Run transferable libraries. In Riolo, Rick L. and
Worzel, Bill, editors,Genetic Programming Theory and Practice III. Kluwer.

Koh, H.Y., Séquin, C.H., and Gray, Paul. R. (1990). Opasyn:A compiler for
cmos operational amplifiers.IEEE Transactions on Computer-Aided Design,
9:113–125.

Korns, Michael F. (2006). Large-scale, time-constrained symbolic regression.
In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors, Genetic Pro-



184 GENETIC PROGRAMMING THEORY AND PRACTICE V

gramming Theory and Practice IV, volume 5 ofGenetic and Evolutionary
Computation, chapter 16, pages –. Springer, Ann Arbor.

Koza, John R. (1992).Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Koza, John R., Andre, David, Bennett III, Forrest H, and Keane, Martin (1999).
Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan
Kaufman.

Koza, John R., Jones, Lee W., Keane, Martin A., and Streeter,Matthew J.
(2004). Towards industrial strength automated design of analog electrical
circuits by means of genetic programming. In O’Reilly, Una-May, Yu, Tina,
Riolo, Rick L., and Worzel, Bill, editors,Genetic Programming Theory and
Practice II, chapter 8, pages 120–?? Springer, Ann Arbor. pages missing?

Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William,
Yu, Jessen, and Lanza, Guido (2003a).Genetic Programming IV: Routine
Human-Competitive Machine Intelligence. Kluwer Academic Publishers.

Koza, John R., Streeter, Matthew J., and Keane, Martin A. (2003b). Automated
synthesis by means of genetic programming of complex structures incor-
porating reuse, hierarchies, development, and parameterized toplogies. In
Riolo, Rick L. and Worzel, Bill, editors,Genetic Programming Theory and
Practise, chapter 14, pages 221–237. Kluwer.

Kruiskamp, Wim and Leenaerts, Domine (1995). Darwin: Cmos opamp syn-
thesis by means of a genetic algorithm. InDesign Automation Conference.

Kundert, K. and Zinke, O. (2004).The Designer’s Guide to Verilog-AMS.
Kluwer.

Lai, X. and Roychowdhury, Jaijeet (2006). Macromodeling oscillators using
krylov-subspace methods. InAsia And South Pacific Design Automation
Conference.

Lohn, Jason, Hornby, Gregory, and Linden, Derek (2004). Evolutionary an-
tenna design for a NASA spacecraft. In O’Reilly, Una-May, Yu, Tina, Riolo,
Rick L., and Worzel, Bill, editors,Genetic Programming Theory and Practice
II , chapter 18, pages 301–315. Springer, Ann Arbor.

Lohn, Jason D. and Colombano, S.P. (1998). Automated analogcircuit synthe-
sis using a linear representation. InInternational Conference on Evolvable
Systems, pages 125–133.

Martens, Ewout and Gielen, Georges G.E. (2006). Top-down heterogeneous
synthesis of analog and mixed-signal systems. InDesign Automation and
Test Europe, pages 275–280.

Maulik, Peter C., Carley, L.R., and Rutenbar, R. (1995). Integer programming
based topology selection of cell level analog circuits.IEEE Transactions on
Computer-Aided Design, 14(4).

McConaghy, Trent, Eeckelaert, Tom, and Gielen, Georges (2005). CAFFEINE:
Template-free symbolic model generation of analog circuits via canonical



Genetic Programming with Reuse of Known Designs 185

form functions and genetic programming. InProceedings of the Design Au-
tomation and Test Europe (DATE) Conference, volume 2, pages 1082–1087,
Munich.

McConaghy, Trent and Gielen, Georges (2005). Genetic programming in indus-
trial analog CAD: Applications and challenges. In Yu, Tina,Riolo, Rick L.,
and Worzel, Bill, editors,Genetic Programming Theory and Practice III,
volume 9 ofGenetic Programming, chapter 19, pages 291–306. Springer,
Ann Arbor.

McConaghy, Trent, Palmers, Pieter, Gielen, Georges G.E., and Steyaert, Michiel
(2007). Simultaneous multi-topology multi-objective sizing across thou-
sands of analog circuit topologies. InDesign Automation Conference.

Ning, Z., Mouthaan, A.J., and Wallinga, H. (1991). Seas: A simulated evo-
lution approach for analog circuit synthesis. InCustom Integrated Circuits
Conference.

Nordin, Peter (1994). A compiling genetic programming system that directly
manipulates the machine code. In Kinnear, Jr., Kenneth E., editor, Advances
in Genetic Programming, chapter 14, pages 311–331. MIT Press.

Phillips, Joel R. (1998). Model reduction of time-varying linear systems using
approximate multipoint krylov-subspace projectors. InInternational Con-
ference on Computer-Aided Design, pages 96–102.

Poli, Riccardo and Langdon, William B. (1999). Sub-machine-code genetic pro-
gramming. In Spector, Lee, Langdon, William B., O’Reilly, Una-May, and
Angeline, Peter J., editors,Advances in Genetic Programming 3, chapter 13,
pages 301–323. MIT Press, Cambridge, MA, USA.

Razavi, Behzad (2000).Design of Analog CMOS Integrated Circuits. McGraw-
Hill.

Ressler, Andrew L. (1984).A Circuit Grammar for Operational Amplifier De-
sign. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA.

Rothlauf, Franz (2006).Representations for genetic and evolutionary algo-
rithms. Springer-Verlag, pub-SV:adr, second edition. First published 2002,
2nd edition available electronically.

Rutenbar, R.A., Gielen, Georges G.E., andAntao, B.A. (2002).Computer-Aided
Design of Analog Integrated Circuits and Systems. IEEE Press, Piscataway,
NJ, USA.

Sansen, Willy (2006).Analog Design Essentials. Springer.
Shibata, Hajime, Mori, Soji, and Fujii, Nobuo (2002). Automated design of ana-

logcircuits usingcell-basedstructure. InNasa/DoD Conference on Evolvable
Hardware.

Spector, Lee (2004).Automatic Quantum Computer Programming: A Genetic
Programming Approach, volume 7 ofGenetic Programming. Kluwer Aca-
demic Publishers, Boston/Dordrecht/New York/London.



186 GENETIC PROGRAMMING THEORY AND PRACTICE V

Sripramong, Thanwa andToumazou, Christofer (2002). The inventionof CMOS
amplifiers usinggenetic programming and current-flow analysis.IEEE Trans-
actions onComputer-AidedDesignof Integrated Circuits andSystems, 21(11):1237–
1252.

Swings, K., Donnay, S., and Sansen, W. (1991). Hector: a hierarchical topology-
construction program for analog circuits based on a declarative approach to
circuit modeling. InCustom Integrated Circuits Conference.

Synopsys (2007). Circuit explorer product.Website of Synopsys Inc.
Tanaka, T. (1993). Parsing electronic circuits in a logic grammar.IEEE Trans-

actions Knowledge and Data Engineering, 5(2):225–239.
Tang, H. and Doboli, A. (2006). High-level synthesis of delta-sigma modulator

topologies optimized for complexity, sensitivity, and power consumption.
IEEE Transactions on Computer-Aided Design, 25(3):597–607.

Toumazou, Chris, Makris, C.A., and Berrah, C.M. (1990). Isaid - a methodology
for automated analog ic design. InInternational Symposium on Circuits and
Systems, volume 1, pages 531–555.

Vassilev, Vesselin K. and Miller, Julian F. (2000). The advantages of landscape
neutrality in digital circuit evolution. InProceedings of the Third Interna-
tional Conference on Evolvable Systems, pages 252–263. Springer-Verlag.

Whigham, P. A. (1995). Grammatically-based genetic programming. In Rosca,
Justinian P., editor,Proceedings of the Workshop on Genetic Programming:
From Theory to Real-World Applications, pages 33–41, Tahoe City, Califor-
nia, USA.

Yao, Xin, Liu, Yong, and Lin, Guangming (1999). Evolutionary programming
made faster.IEEE Transactions on Evolutionary Computation, 3(2).

Yu, Tina, Wilkinson, Dave, and Castellini, Alexandre (2006). Applying ge-
netic programming to reservoir history matching problem. In Riolo, Rick L.,
Soule, Terence, and Worzel, Bill, editors,Genetic Programming Theory and
Practice IV, volume 5 ofGenetic and Evolutionary Computation, chapter 6,
pages –. Springer, Ann Arbor.




