
Contents

1
Automated Extraction of Expert Domain Knowledge from Synthesis Results 1
Trent McConaghy, Pieter Palmers, Georges Gielen, and Michiel Steyaert





Chapter 1

AUTOMATED EXTRACTION OF EXPERT DOMAIN
KNOWLEDGE FROM SYNTHESIS RESULTS

Trent McConaghy1, Pieter Palmers1, Georges Gielen1, and Michiel Steyaert 1

1Katholieke Universiteit Leuven, Leuven, Belgium

Abstract
Recent work in genetic programming shows how expert domain knowledge

can be input to a genetic programming (GP) synthesis system, to speed it up by
orders of magnitude and give trustworthy results. On the flip side, this paper
shows how expert domain knowledge can be output from the results of a synthe-
sis run, in forms that are immediately recognizable and transferable for problem
domain experts. Specifically, using the application of analog circuit design, this
paper presents a methodology to automatically generate a decision tree for nav-
igating from performance specifications to topology choice; a means to extract
the relative importances of topology and parameters on performance; and to gen-
erate whitebox models that capture tradeoffs among performances. The extrac-
tion uses a combination of data-mining and genetic programming technologies.
This paper also presents techniques to ensure that the GP-based synthesis sys-
tem can indeed create a richly-populated, high-performance dataset, including:
a parallel-computing, multi-objective age-layered population structure (ALPS)
for fast and reliable convergence; average ranking on Pareto fronts (ARF) to
handle many objectives; and generating good initial topology sizings via multi-
gate constraint satisfaction. Results are shown on operational amplifier synthesis
across thousands of topologies that generated a database containing thousands of
Pareto-optimal designs across five objectives and dozens of constraints.

Keywords: synthesis, domain knowledge, multi-objective, data mining, analog, integrated
circuits, age layered population structure



2 GENETIC PROGRAMMING THEORY AND PRACTICE V

1. Introduction
Engineers in many fields, from circuit design to automotive design, use their

experience and intuition to choose design structures (topologies) and to design
new structures to meet design goals. Unfortunately, the structure used may
not be optimal, leading to suboptimal final design performances, cost, and
robustness. The suboptimal design may be because the design is using new or
unfamiliar materials, the designer is too time-constrained to be thorough (via
time-to-market pressures), or simply because the designer just doesn’t have the
experience level to know what might be best. This last point is understandable
for many disciplines; e.g. it is well recognized that gaining depth in analog
circuit design is a process that takes years to get started and decades to master
(Williams, 1991). All said, it still means that a suboptimal design structure may
be used.

Hence, it is desirable to provide support for the designer in selection and
design of such structures, and ideally to catalyze the designer’s learning process.
Prior research has focused on automated structure selection and design, but has
had little emphasis on giving insight back to the user. This is a problem for
two reasons: (1) By deferring control to automated tools, a designer’s learning
might slow, not to mention being less-equipped to cope when problems arise
that the tools cannot handle (2) highly experienced designers can be extremely
reluctant to use any automated synthesis tools, because past tools have fallen
far short of expectations while the designers have had much success doing their
work manually. One can reasonably ask how automation of structural design
could possibly be used, if is so potentially troublesome and unwanted?

Knowledge extraction offers a way out: use automation as a means to ac-
celerate designer insight. Recent work has shown knowledge extraction for the
design-parameters-to-performance mapping (McConaghy et al., 2005), yield
modeling (McConaghy and Gielen, 2006), and for design of behavioral / dynam-
ical models (McConaghy and Gielen, 2005a). This paper shows how knowl-
edge extraction can give insights on the relation between structure, parameters,
and peformance, which can enhance the engineering field’s body of knowledge
and catalyze future manual and automation-aided topology design. Figure 1-1
shows the flow, which includes a “multi-objective multi-topology sizing” to
synthesize fully-trustworthy structures followed by automated knowledge ex-
traction steps. The output of knowledge extraction tools can be provided to the
designers in formats that they can immediately use, as later sections show. This
flow can be useful even for the automation-averse designers: the designers who
embrace automation can perform the synthesis and extraction, and provide or
publish the outputs for their automation-averse colleagues.



Automated Extraction of Expert Domain Knowledge from Synthesis Results 3

Figure 1-1. Target flow. A multi-objective multi-topology sizer generates a database, which is
then data-mined to discover relations among design structure (topology), design parameters, and
performances.

Novel contributions of this paper are:
• For augmenting insight of an expert designer, a data-mining perspective on

a topology-performance database, leading to (a) a decision tree for navigat-
ing from performance specifications to structure, (b) extraction of relative
importance among topology and other variables for each performance, via
stochastic gradient boosting, and (c) automatic generation of whitebox mod-
els to capture performance tradeoffs.

• To generate a high-quality database, an improved multi-topology multi-
objective sizing algorithm is designed, which includes: (a) Optimization
under many objectives via average ranking on Pareto front, and (b) high-
quality starting designs via multi-gate constraint satisfaction.

This paper is organized as follows. Section 2 describes the improved multi-
topology multi-objective sizing algorithm. Section 3 describes the experimental
setup to generate the sized-topologies database. Section 4 employs data-mining
techniques to extract topology-performance insights. Section 5 concludes.

2. Enhanced Multi-Topology Multi-Objective Sizing
This section describes the algorithm to generate richly-populated database

of high-performance designs that approximate a performance tradeoff. We start
with MOJITO (McConaghy et al., 2007a; McConaghy et al., 2007b), but extend
it to overcome difficulties encountered.



4 GENETIC PROGRAMMING THEORY AND PRACTICE V

Prior Work: Structural Synthesis and MOJITO
There is much interest in using GP for structural synthesis, and many re-

searchers have used analog circuit design as the “fruitfly” for experiments, e.g.
(Koza et al., 2003). Past approaches had two key limitations: (1) high com-
putational effort to get human-competitive results, and (2) because the search
is so open-ended, designs are not trustworthy enough to fabricate and prop-
erly test, which can cost millions of dollars for analog integrated circuits (Mc-
Conaghy and Gielen, 2005b). MOJITO overcomes both issues simultaneously
by traversing a space of fully-trusted building blocks that is still large enough to
be interesting, yet maintaining the possibility for novelty in a controlled fashion
(McConaghy et al., 2007b).

Because this paper builds on MOJITO, we now outline its key elements:
• It defines the space of possible topologies as a hierarchically composed set

of domain-specific building blocks. For analog circuit design, this means
starting at transistors and building up through current mirrors and differential
pairs, all the way to two-stage amplifiers. Approximately 30 building blocks
combine to allow approximately 3000 different amplifier topologies.

• It uses hierarchy-aware search operators in order to naturally mix analog
sub-blocks; i.e. grammar-constrained GP operators (Koza, 1992; Whigham,
1995)

• The search algorithm is GP. It used an age-layered population structure,
ALPS (Hornby, 2006) to avoid premature convergence, and NSGA-II (Deb
et al., 2002) for handling multiple objectives and constraints.

• It is multi-objective. Combined with the multi-topology search, it means
that the results can return a variety of topologies, each for a different region
of performance space. This final feature opens up the opportunity for deeper
analysis of the relation between objectives (performances), topologies, and
design parameters.

Challenges and Solutions
MOJITO had issues that prevented it from getting a richly-populated high-

performance database with a variety of topologies. We discuss each, along with
the solution.

Challenge: High Number of Objectives. Many design problems, including
analog circuit design, can have five or eight or more objectives, depending on
the functionality (Razavi, 2000). Unfortunately, most optimization approaches
do poorly when there are more than two or three objectives (Corne and Knowles,
2007). To improve NSGA-II, we need to understand why it does poorly. When
doing selection, NSGA-II sorts the population into nondomination layers: the



Automated Extraction of Expert Domain Knowledge from Synthesis Results 5

1st layer is the nondominated set, the 2nd layer is what would be nondominated
if the 1st layer was removed, etc. The selected parents are the ones taken from
the 1st layer, 2nd layer, etc. until all parents have been chosen. Because there
might not be a clean cut between layers, only some individuals from the last
active nondomination layer can be taken. NSGA-II chooses individuals with
the highest distance from other individuals in performance space (“crowding”).
The problem is that with many objectives, there will be so many nondominated
individuals that only a fraction of them can be chosen, and that fraction biases
towards the corners of the performance space which are the farthest apart; and
not the center points which are close to all. To solve this, we use Adaptive Rank-
ing on Pareto Front (ARF) (Corne and Knowles, 2007). We modify NSGA-II
to use it by: if doing selection at the nondominated layer, use the average rank
measure AR for selection, instead of crowding distance. AR is defined by:

AR(x) =
num objectives∑

k=0

rank(k, x,X) (1.1)

where x is an individual, and rank(k, x, X) is the rank of individual x compared
to the whole nondominated set X, for objective k. At a given objective, the best
individual has a rank value of 1, second-best has rank 2, etc.

Challenge: Uneven Sampling of Topologies. During subsequent runs, we
saw that the algorithm was generating a simple class of structures (single-stage
amplifiers) just as often as a more complex class (two-stage amplifiers), despite
the fact that there are many more possible topology variants of the more complex
class. This is because the random sampling views the space “flat”, randomly
picking a value for each of the topology choice parameters, with equal bias. To
fix this, we instead give equal bias to each possible topology (Iba, 1996), via
the algorithm in Table 1-1.

Table 1-1. Procedure RandomCircuit()
1. Starting at the bottom building blocks, and proceeding to the top, cal-

culate the possible permutations of topology choice variable values.
2. To randomly generate a topology, starting at top and proceeding to

bottom: draw a set of choice variables, using permutation (count)
information to give equal bias to each topology.

3. Draw value for each design variable from a uniform distribution.

Challenge: Maintain Diversity of Topologies. With further runs, we found
that most randomly generated higher-complexity topologies (e.g. folded topolo-
gies, 2 stage amplifiers) would die out within a few generations of being gener-
ated. While ALPS generated more topologies in later random injection phases,



6 GENETIC PROGRAMMING THEORY AND PRACTICE V

those would die out too. Upon investigation, we found that the randomly-
generated complex topologies’ performances were much worse than simple
ones, and that they did not improve as quickly. This is because the more com-
plex topologies have more design variables to get right to reach a minimal
performance bar. We also found that the first feasible topology found would
overtake other topologies, further hurting diversity. This is because of NSGA-
II’s constraint-handling: it lumps all constraints into one overall violation mea-
sure, and always prefers feasible individuals over infeasible individuals. It
effectively does single-objective search until the feasible individual is found
(killing some topology diversity then), and then emphasizes the first feasible
individual excessively (because no other topology get there quite as fast). An
idea pointed the way: do not make topologies compete strongly against each
other until they are at least nearly feasible. It is ok to have them competing once
past feasible, because each topology will occupy its own niche in performance
space and will therefore be maintained. From this guideline, we designed a se-
ries of constraint-satisfaction “gates”, where the first earlier gates are cheaper
to can prune out many poor design points quickly; and upon exiting the final
gate, the topology can be assured to be competitive with other topologies.

The gates we chose are specific to the problem of analog circuit design, but
the general concept can be generalized. The rest of this paragraph describes
specifics for analog circuits. For the fastest gate, we leverage an operating-
point driven formulation (Leyn et al., 1998). This formulation uses I’s, V’s,
and L’s as independent variables rather than W’s and L’s. Its advantages are
that designable variables have less nonlinear coupling than a WL formulation;
and that one can have “function device operating constraints (DOCs)” in which
the DOCs can be measured by simple function calculations on design variable
values without need for circuit simulation. To implement it, we need to compute
W from the biases, for each device of each candidate design. First- or second-
order equations are too inaccurate, and SPICE in the loop is too slow. So we
sampled 350,000 points in L, Ids, Vbs, Vds, Vgs space, SPICE simulated each
point once on an NMOS and once on a PMOS model, then store all the points
in a lookup table. The second gate is simulation-based DOCs (Graeb et al.,
2001). The third gate is performance constraints on non-transient testbenches.
Table 1-2 gives pseudocode.

In our experiments, we found that the step 2 gate would take about 10-2000
designs to pass, the step 3 gate would take 10-500 designs, and step 4 would
take 30-1000 designs. Overall runtime for the procedure was typically less than
10 minutes on a single 2.5-GHz machine. Note that this compares favorably
with other recent single-topology circuit sizers, such as (Stehr et al., 2007). We
achieved our immediate aim: to reliably generate complex topologies which
could compete against simple topologies for multi-objective search, ensuring
topology diversity.



Automated Extraction of Expert Domain Knowledge from Synthesis Results 7

Table 1-2. Procedure InitialCircuit()
1. C = RandomCircuit()
2. While C does not meet function DOCs:

Cnew = Gaussian Mutate design variables of C
If funcDocCost(Cnew) <= funcDocCost(C):

C = Cnew

3. While C does not meet simulation DOCs:
Cnew = Mutate design variables of C
If simDocCost(Cnew) <= simDocCost(C):

C = Cnew

4. While C does not meet performance constraints and iterations < max:
Cnew = Mutate design variables of C
If perfCost(Cnew) <= perfCost(C):

C = Cnew

3. Generation of Database
This section describes the experimental setup to generate the sized-topologies

database. Table 1-3 lists the search space and goals. EA settings were: 100
individuals per age layer; 10 age layers, maximum age per layer: 19, 39, ..., 159,
179, infinity. The run took approximately 12 hours on a Linux cluster having 30
cores of 2.5 GHz each. 180 generations were covered. The resulting database
had 1576 nondominated points comprising 15 unique topologies. Analog circuit
specifics were: process technology of 0.18µm CMOS with 1.8 V supply voltage;
output DC voltage of 0.9V; load capacitance 1pF; with Hspice circuit simulator.

Table 1-3. Problem Description
Search
Space

50 topology and design parameters 50 variables, compris-
ing 3528 possible opamp topologies (folded, cascode, source
degen, 1 & 2 stage, ...)

Objectives 5 objectives: Maximize GBW, minimize power, maximize
DC gain, maximize dynamic range, maximize slew rate

Constraints Function DOCs, simulation DOCs, DC gain > 20 dB, GBW
> 1e6, phase margin >65◦, pole margin, dynamic range > 0.1,
slew rate > 1e6

4. Knowledge Extraction
The previous sections culminated in the generation of a topology-performance-

tradeoff database. This section uses that database, employing a suite of data-
mining and visualization techniques to extract topology-performance insights.



8 GENETIC PROGRAMMING THEORY AND PRACTICE V

Figure 1-2. Grid illustrating the Pareto Front of circuit performances. The diagonal entries show
histograms of performance; the rest show two-dimensional projections from the five objectives.
The squares are 1-stage amplifiers, and pluses are two-stage amplifiers.

Getting Started
We start with some obvious plots to become oriented with the data. In

particular, Figure 1-2 shows a grid of 2d scatterplots and histograms for the
five performance objectives. From the histograms, we can get a quick picture
of the distribution and bounds of performances. From the scatterplots, we
begin to understand the limits of combinations of performances and take note
of trends. Note how the one-stage topologies only occupy a different region of
performance space and follow a markedly performance trend than two-stage.
The two-stage topologies have several sub-clusters of performances, hinting at
further decomposition of topology types.

Classification Trees
Here, we automatically construct classification (decision) trees of perfor-

mance values to topology choice. Classification trees have a double use: they
can directly suggest a choice based on inputs, yet also expose the series of
steps underlying the decision. Such CART trees themselves are nothing new



Automated Extraction of Expert Domain Knowledge from Synthesis Results 9

(Breiman et al., 1984), and are indeed in widespread use, from medicine to
operations research. Decision trees for analog circuits are not new either - they
have been manually constructed as in (Koh et al., 1990), in which one can start
with a given set of specifications and pass through the tree to arrive at topology
suggestion(s). The motive for analog design is clear: they capture the tacit
analog design knowledge about topology decision-making. What is new is that
we construct the decision tree automatically from data. This is only possible
now, because a prerequisite to get the data was a competent multi-topology
multi-objective sizer that could output a diverse set of topologies. As input to
the tree construction, each different topology was assigned a class; the decision
variables are the objectives used for generating the dataset; the dataset itself
consisted of the non-dominated individuals.

Figure 1-3. A decision tree for going from specifications to topology. This was automatically
generated.

Figure 1-3 shows the tree that was automatically generated, annotated with
topology choices. It provides insight into what topologies are appropriate for
performance ranges, and actually even gives a suggested topology from a set
of input specs.



10 GENETIC PROGRAMMING THEORY AND PRACTICE V

We examine the topology in more detail. While this paragraph is has some
analog specifics, it nonetheless can give a reader from any field a general feel
for the type of information that is extracted. We see that the objective of low-
frequency gain (ADC) is the first variable selected on, and following through the
tree, we see that all objectives play a role for selecting some topologies: gain-
bandwidth (GBW ), power, slew rate (SR), and dynamic range (DR). When
specifications require low-gain, the tree suggests single-stage topologies; and
two-stage topologies when higher gain is required. In cases where very large
gain is required with a limited power budget, a two-stage amplifier with large
degrees of cascoding (K) is suggested. If power is less of an issue, one can
also use a non-cascoded two-stage amplifier (G). Since only non-dominated
individuals are used to generate the tree, the choice for the more power-efficient
variant implies lower performance for one or more other metrics (in this case
e.g. dynamic range).

It is important to remember that the tree is a classifier at its core, which
can help avoid reading too much into it. To aid understanding, we describe its
construction (Breiman et al., 1984). The algorithm starts with just a root node
holding all data points. From among all possible {split variable, split value}
tuples in the data, it chooses the one from that splits off the most data points
using the “gini criterion” . That split creates a left and right child, each getting
a subset of the data according to the chosen variable and value. The algorithm
recurses, splitting each leaf node until there is just one sample at each leaf
node or another stopping criteria is hit. Pruning is done interactively after
construction of the full tree, taking just a couple minutes to find a tree that had
a nice tradeoff between complexity and detail.

Relative Impacts
Here, we automatically extract the relative impacts of topology & design

variables on each objective value. This can give insight into questions on
which specific topology choices have influence on specific performances, and
by how much, such as (for circuit design) “how much does cascoding affect
gain versus number of stages?”

Table 1-4. Procedure ExtractImpacts()
let X = matrix where each column holds one sample of {topology,

design values}
let y = target performance value for each sample
regr = Build regressor mapping X to y
impacts = ImpactsFromRegressor(X , y, regr)



Automated Extraction of Expert Domain Knowledge from Synthesis Results 11

Table 1-5. Procedure ImpactsFromRegressor(X , y, regr)
error per variable = {}
For each variable v

error = 0
Repeat num scrambles times

Xscr = X but randomly permute row of v
yscr = simulate regressor on Xscr

error = error + rmse(y, yscr)
error per variable{v} = error

impacts = normalize error per variable
return impacts

Table 1-4 gives pseudocode for the high-level algorithm, and Table 1-5 for a
subroutine. The regressor needs to handle numerical and categorical input vari-
ables, handle 50 input variables with 1500 samples, handle nonlinear mappings,
and and have high prediction accuracy. We use stochastic gradient boosting
(Friedman, 2002), which does importance sampling of CART trees, adaptively
shifting the sampling distribution towards regions of high residual error (Fried-
man and Popescu, 2003). The procedure in Table 1-5 takes its inspiration from
chapter 10 of (Hastie et al., 2001). It defines impact for a variable as the relative
error that a scrambled input row (variable) will give in predicting, compared to
other rows. Its advantages are: non-parametric, robust, and independent of the
form of the underlying regressor.

With these algorithms, we extracted the relative importance of variables for
each objective. Figure 1-4 illustrates for GBW . We see that the most important
variable is “chosen part index”, which is a topological variable that selects one
vs. two stages. As expected, design variables that experts commonly associate
with this target objective (GBW ) of opamps also show up, which help to
validate the approach. The rest of this paragraph contains specifics for analog
circuits. The GBW design variables are bias current of the first stage and size
of compensation capacitance. Interestingly, the figure also indicates a large
influence of the length of the transistors in the first stage (input, folding and
load). This can be readily explained: these lengths directly influence impedance
on the internal nodes, and hence the location of the non-dominant pole. The
phase margin requirement >65(◦) translates into the requirement that this non-
dominant pole frequency is sufficiently higher than the GBW (approx 2x)
(Sansen, 2006).



12 GENETIC PROGRAMMING THEORY AND PRACTICE V

Figure 1-4. Relative impact of topology, sizing, and biasing variables on GBW, for 10 most
important variables

Whitebox Models
The aim here is to extract whitebox models that capture performance trade-

offs. Whitebox models can handle high dimensionality, be analyzed by inspec-
tion, and manipulated further by hand. To generate the models, we set one
performance as the output, and the rest as inputs; then we applied CAFFEINE
(McConaghy et al., 2005) which is GP-based symbolic regression, constrained
by a canonical functional form grammar to maintain interpretability of output
equations.

Table 1-6 shows results for the objective of GBW . With our circuit expertise,
we expected gain to be strongly related to be GBW , and it turns out that just
a linear relation between the two will get < 9% training error. But for a better
fit, more complex nonlinear relations are needed leading up to an inverse rela-
tionship of GBW with gain or

√
gain. The objective of slew rate (SR) is also

needed for a reasonable model. Interestingly, the objectives of dynamic range
and power are not needed to get within 3.5% training error. Cross-examination
with the scatterplots (Figure 1-2) confirms that the strongest tradeoffs are indeed
among gain, GBW , and SR.



Automated Extraction of Expert Domain Knowledge from Synthesis Results 13

Table 1-6. Whitebox models Capturing Performance Tradeoff
Train
error

Log(GBW ) Expression

8.7 % 10.28− 0.049 ∗ gain
7.8 % 12.57− 0.69 ∗

√
gain

7.3 % 5.65 + 86.5/gain + 2.92e− 11 ∗ SR

6.8 % 5.72 + 80.2/gain + 4.75e− 06 ∗
√

SR

5.7 % 7.30 + 47.76/gain− 3430/
√

SR

4.1 % 4.48 + 24.9/
√

gain− 8.60e6/(gain2 ∗
√

SR)
3.5 % 16.9/(1 + 0.15 ∗ gain + 1.44e− 22 ∗ SR2 + 2.56e6/(gain2 ∗√

SR))

5. Conclusion
This paper showed how the results of a GP synthesis run can be data-mined

to extract domain knowledge that can be immediately used by domain experts.
Specifically, it demonstrated a flow and tools to aid domain experts to efficiently
choose structures (topologies) and parameters for a given design problem; and
also accelerate insight into the relationship among topologies, design variables,
and performances. The prerequisite was to generate a high-quality database
of topology-performance tradeoffs; to that end, we showed how to enhance
multi-topology multi-objective sizing to handle many objectives (via ARF) and
generate a variety of topologies (via properly biased random sampling, and
a multi-gate constraint satisfaction strategy) on top of a parallel-computing,
multi-objective ALPS system. With the database, we applied data-mining based
knowledge extraction tools: the automated creation of a specs-to-topology de-
cision tree, stochastic gradient boosting with variable-scrambling to identify
relative impacts of topology & design variables on performance, and CAF-
FEINE symbolic regression to generate whitebox models of tradeoffs.

6. Acknowledgment
Funding for the reported research results is acknowledged from IWT/Medea+

Uppermost, Solido Design Automation and FWO Flanders.

References
Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984). Classif

ication and Regression Trees. Chapman & Hall.
Corne, D. and Knowles, J. (2007). Techniques for highly multiobjective opti-

mization: Some nondominated points are better than others. In Thierens, Dirk



14 GENETIC PROGRAMMING THEORY AND PRACTICE V

and et al., editors, GECCO ’07: Proceedings of the 9th annual conference
on Genetic and evolutionary computation, pages 773–780.

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2002). A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evolutionary Com-
putation, 6(2):182–197.

Friedman, J.H. (2002). Stochastic gradient boosting. Journal of Computational
Statistics & Data Analysis, 38(4):367–378.

Friedman, J.H. and Popescu, B. (2003). Importance sampled learning ensem-
bles.

Graeb, H.E., Zizala, S., Eckmueller, J., and Antreich, K. (2001). The sizing rules
method for analog integrated circuit design. In International Conference on
Computer-Aided Design, pages 343–349.

Hastie, T., Tibshirani, R., and Friedman, J.H. (2001). The Elements of Statistical
Learning. Springer.

Hornby, Gregory S. (2006). ALPS: the age-layered population structure for
reducing the problem of premature convergence. In Keijzer, Maarten, Cat-
tolico, Mike, Arnold, Dirk, Babovic, Vladan, Blum, Christian, Bosman, Pe-
ter, Butz, Martin V., Coello Coello, Carlos, Dasgupta, Dipankar, Ficici, Se-
van G., Foster, James, Hernandez-Aguirre, Arturo, Hornby, Greg, Lipson,
Hod, McMinn, Phil, Moore, Jason, Raidl, Guenther, Rothlauf, Franz, Ryan,
Conor, and Thierens, Dirk, editors, GECCO 2006: Proceedings of the 8th an-
nual conference on Genetic and evolutionary computation, volume 1, pages
815–822, Seattle, Washington, USA. ACM Press.

Iba, Hitoshi (1996). Random tree generation for genetic programming. In Voigt,
Hans-Michael, Ebeling, Werner, Rechenberg, Ingo, and Schwefel, Hans-
Paul, editors, Parallel Problem Solving from Nature IV, Proceedings of the
International Conference on Evolutionary Computation, volume 1141 of
LNCS, pages 144–153, Berlin, Germany. Springer Verlag.

Koh, H.Y., Séquin, C.H., and Gray, P.R. (1990). Opasyn: A compiler for cmos
operational amplifiers. IEEE Transactions on Computer-Aided Design, 9:113–
125.

Koza, John R. (1992). Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William,
Yu, Jessen, and Lanza, Guido (2003). Genetic Programming IV: Routine
Human-Competitive Machine Intelligence. Kluwer Academic Publishers.

Leyn, F., Gielen, G., and Sansen, W. (1998). An efficient dc root solving algo-
rithm with guaranteed convergence for analog integrated cmos circuits. In
International Conference on Computer-Aided Design, pages 304–307.

McConaghy, T., Eeckelaert, T., and Gielen, G. (2005). Caffeine: Template-free
symbolic model generation of analog circuits via canonical form functions




