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Chapter 1

LATENT VARIABLE SYMBOLIC REGRESSION FOR
HIGH-DIMENSIONAL INPUTS

Trent McConaghy1
1Solido Design Automation Inc., Canada

Abstract
This paper explores symbolic regression when there are hundreds of input

variables, and the variables have similar influence which means that variable
pruning (a priori, or on-the-fly) will be ineffective. For this problem, traditional
genetic programming and many other regression approaches do poorly. We de-
velop a technique based on latent variables, nonlinear sensitivity analysis, and
genetic programming designed to manage the challenge. The technique han-
dles 340-input variable problems in minutes, with promise to scale well to even
higher dimensions. The technique is successfully verified on 24 real-world circuit
modeling problems.

Keywords: symbolic regression, latent variables, latent variable regression, LVR, analog,
integrated circuits
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1. Introduction

Symbolic regression (SR) is the automated extraction of static whitebox
models that map input variables to output variables. Genetic programming (GP)
(Koza, 1992) is a popular approach to do SR, with successful applications to
industrial problems suchas industrial processing (Kordonet al., 2005), medicine
(Moore et al., 2008; Almal and al., 2006), finance (Korns, 2007; Becker et al.,
2007), and robotics (Schmidt and Lipson, 2006).

In most GP-based SR applications, there are one to ten input variables, and
hundreds to thousands of training samples. GP-based approaches are quite good
at handling these. There are two approaches to handling moreinput variables.
The first is toprune the variables beforehand, e.g. from neural networks (Kordon
et al., 2002). The second is to let GP prune the variables on-the-fly during the
SR run (Smits et al., 2005; Korns, 2007).

Pruning is reasonable when the significant variables are just a fraction of the
overall set of variables. But what about whenmostvariables have a degree of
influence that cannot be ignored? Consider Figure 1-1 left, which is the output
of a nonlinear sensitivity analysis from input/outputX/y training data. Here,
the input variables are ordered from highest to lowest impact. The cumulative
sum of impacts vs. variable number is plotted. While the first10 variables
explain about 50% of the total variation iny, almost all of the variables are
needed in order to capture 95% of the total variation.

Figure 1-1. Cumulative relative impacts of input variables on a target output variable. The
nonlinear impacts on the left plot were extracted using the impact-extraction technique in (Mc-
Conaghy et al., 2008) where the regression models are RandomForests (Breiman, 2001). The
impacts on the right plot are the weights on the model found bygradient directed regularization
(Friedman and Popescu, 2004).

Because most variables are needed for a reasonable model, pruning variables
will be ineffective. Even if we try a different technique that places extra bias on
the most important variables (Figure 1-1 right), we still see that 1/3 of variables
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– the same order of magnitude as total number of variables – are needed in order
to capture 95% of the total variation.

This is the problem we face when modeling analog circuit performances as
a function of manufacturing process variations. This matters, because better
models allow higher-quality circuits to be designed in lesstime. The impact
plots of Figure 1-1 were for the “AV” output of circuit in Figure 1-2 left. It
has approximately 10 process variables per transistor (Drennan and McAndrew,
1999), which leads to 90 input variables overall.

In this paper, we test on 24 benchmark problems having up to341 input
variables with impact profiles similar to Figure 1-1. Section 3 will show that
a modern GP-based SR technique and several other state-of-the-art regression
techniques will fail, badly, on even the easiest 16 problems. A different way to
think about the symbolic regression problem is needed. So, in section 4 we in-
troduce the perspective brought bylatent variable regression(LVR)(Friedman
and Tukey, 1974). Each “latent variable”ti in an LVR model is a linear combi-
nation of the input variablesti = wT

i
x; and the model’s output is a nonlinear

function of the latent variableŝf(x) =
∑

i gi(w
T

i
x). Latent variables can be

thought of as auto-discovered “hidden intermediate variables” which transform
the inputs into a reduced-dimensionality space. An LVR technique recently
introduced in circuits (Li and Cao, 2008) is promising, but assumes a quadratic
model when settingwi’s and does not return a symbolic model.

The contributions of this paper are the use of an LVR framework for solving
this challenging SR problem, a means to determine the LVR linear-combination
vectorswi without assuming quadratic mapping, and, most particularly, a
means to find thesymbolicnonlinear functionsgi. We determinewi’s by
building models ofx 7→ f , extracting variable impacts from those models, and
using those impacts as the basis for settingwi. Oncewi is determined, a (trivial
for GP) one-dimensional SR run is performed havingti = wT

i
x as the input

variable andf as the output. The process is repeated on the residuals off until
a stopping criteria is hit.

We dub our approach LVSR: Latent Variable Symbolic Regression.
This paper is organized as follows. Section 2 describes the problem setup.

Section 3 gives experimental results of a modern GP technique and state-of-the-
art regression techniques on the 16 benchmark problems. Section 4 introduces
LVR in the context of a recent approach (Li and Cao, 2008), highlighting the
promise of LVR and the current shortcomings. Section 5 introduces LVSR,
which is designed to overcome the issues of past SR, regression, and LVR
approaches. Section 6 has experimental validation of LVSR on 24 real-world
circuit modeling problems. Section 7 concludes.
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Figure 1-2. Schematics of 10-device (left) and 30-device operational amplifier (right).

2. Modeling Problems

The modeling problems come from two analog circuits as shownin Figure
1-2. These circuits are well-known to the domain experts (analog circuit de-
signers). Each circuit’s device sizes were set to have “reasonable” values by an
analog circuit designer, leading to “reasonable” performance values. Each cir-
cuit has 8 performance measures of interest: AV (gain), BW (bandwidth), GBW
(gain-bandwidth), GM (gain margin), OS (overshoot), PM (phase margin), SR
(slew rate), ST (settling time) (Sansen, 2006).

The variations in the circuit performance due to manufacturing imprecision
can be modeled as a joint probability density function (jpdf). We use the well-
known model (Drennan and McAndrew, 1999) where the random variables are
“process variables” which model quantities like “substrate doping concentra-
tion”. Variations in these quantities affect the electrical behavior of the circuit,
and therefore its performances. In this model, there are about 10 normal in-
dependent identically-distributed (NIID) random variables per transistor. In
total, the 10-transistor amp had 90 random variables, and the 30-transistor amp
had 215 random variables. (Section 6 will introduce an even larger problem, a
50-transistor amp with 431 input variables.)

To simulate the effect of manufacturing variations, a “Monte Carlo” (MC)
analysis was performed on each circuit. In MC analysis, we draw N = 600
points from the jpdf. At each random point, we simulate the circuit at several sets
of environmental conditions (combinations of high/low temperature, high/low
power supplyVdd, high/low load). Each random point will get a “worst-case”
value of each performance across the environmental points,which is either the
minimum or maximum value (e.g. worst-case for gain “AV” is minimum value
because we want to maximize gain).1

For our modeling problem, each random point is the model’s input vector
x. Each worst-case performance metric is a model’s scalar output, e.g.yAV .

1The specific technology was TSMC 0.18µm CMOS. The simulator was a proprietary SPICE-like simulator
of a leading analog semiconductor company, with accuracy and runtime comparable to HSPICETM .
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Therefore we have 8 modeling problems withn = 90 input variables (for the
10T circuit), 8 modeling problems withn = 215 input variables (for the 30T
circuit), andN = 600 input/output pairs per problem.

We need a scheme to assess the ability of the final models to predict on
previously-unseen data. A popular approach isk-fold cross-validation, which
is accurate but requireskx more computational approach than a single pass of
learning. Another approach is to set aside a random subset of≈ 25% of the data
for testing. This has the virtue of speed but inconsistent results, because the
chosen test samples may not be representative of the whole dataset. We employ
a technique which has both speed and consistency: sort the data according to
the y-values, then take every 4th point for testing1.

3. Experiments Using Traditional Regressors

This section gives results from applying a modern GP-based SR technique
and several other state-of-the-art regression techniquesto the problems.
We test the following regressors, which range from simple linear techniques to
progressively more nonlinear approaches:

• Least-squares (LS) linear regression.

• Regularized linear regression via gradient directed regularization (GDR),
in which a regularization term limits the variance among thelinear model’s
weights. GDR is a generalization of both the lasso and ridge regression
(Friedman and Popescu, 2004).

• Quadratic modeling usingPROBE, which models the variable interactions
as a rank-reduced weight matrix which improves scaling fromO(n2) to
O(k ∗ n) (k=rank, typically 2-10;n = number of input variables) (Li et al.,
2007).

• GP using CAFFEINE, a modern SR approach which restricts the search
space to interpretable-by-construction models and has demonstrated ability
to scale to 100+ input variables (itdoesprune variables) (McConaghy and
Gielen, 2009; McConaghy and Gielen, 2006).

• Boosted trees using Stochastic Gradient Boosting (SGB), which builds a
shallow CART tree at each boosting iteration. Iterations zoom in on hard-
to-model regions (Friedman, 2002).

• Bootstrapped tree using Random Forests (RF), in which each CART tree
in an ensemble is greedily built from a different bootstrapped sample of the
training data (Breiman, 2001; Breiman et al., 1984).

1This was inspired by vertical slicing (Korns, 2007) which used sorted y-values for a different purpose.
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Settings for each regressor were as follows. In the notationof (Friedman and
Popescu, 2004), GDR had threshold parameterτ = 0.2 and stepsizeδµ =
0.002. PROBE hadmax rank = 2. CAFFEINE hadsettings like (McConaghy
and Gielen, 2009), except population size of 250, population initialization size
250, and 1000 generations. SGB parameters were: learning rate α = 0.10,
minimum tree depth = 2, maximum tree depth = 7, target training error = 5%.
RF had 200 CARTs; CART-building would consider

√

(n) input variables at
each split; and splitting would continue until no possible splits remained.

Table 1-1 gives the results of the regressors on the 16 modeling problems
(2 circuits x 8 problems per circuit) on the test data. Root-mean squared error

rmse(y, ŷ) =
√

1/N ∗
∑N

j ((ŷj − yj)/σy)2 reports the difference betweeny
andŷ on testing data. Note thatrmse is scaled byy’s standard deviationσy.
Because SGB and RF are stochastic, for each problem we do 30 independent
runs and report the median value. (We report median and not mean because the
worstrmse values are significantly higher, in a Poisson-like distribution.)

Table 1-1. Test RMSE values with traditional regressors. 10T = 10-transistor circuit. 30T =
30-transistor circuit. AV, BW, etc. are different circuit output metrics.

Problem LS-lin Reg-lin Quad GP Boost Bootstr.
(GDR) (PROBE) (CAFF- tree tree

EINE) (SGB) (RF)

10T AV 0.4377 0.4430 0.1384 ≫10.0 0.5947 0.7419
10T BW 0.6175 0.6131 0.2417 3.0170 0.7300 0.8716
10T GBW 0.4257 0.4290 0.2826 0.6016 0.5696 0.7052
10T GM 0.4404 0.4381 0.3416 0.2189 0.5524 0.6782
10T OS 0.2397 0.2506 0.2913 ≫10.0 0.4830 0.7002
10T PM 0.6028 0.5907 0.6710 ≫10.0 0.7842 0.9190
10T SR 0.0132 0.0151 0.0205 0.0555 0.4260 0.6818
10T ST 0.0566 0.0607 0.0765 ≫10.0 0.4379 0.6839

30T AV 0.1141 0.1158 0.1281 ≫10.0 0.6282 0.8118
30T BW 0.0766 0.0760 0.0949 ≫10.0 0.5780 0.7540
30T GBW 0.0675 0.0675 0.0766 ≫10.0 0.5687 0.7516
30T GM 0.1099 0.1102 0.1204 ≫10.0 0.6043 0.8055
30T OS 0.2165 0.2009 0.2209 ≫10.0 0.6101 0.7801
30T PM 0.0782 0.0844 0.1026 ≫10.0 0.6085 0.7665
30T SR 0.1963 0.1744 0.1903 ≫10.0 0.5651 0.7258
30T ST 0.1658 0.1640 0.1681 ≫10.0 0.6165 0.7903

Let us examine the results, one regressor at a time. As a reference,rmse
values of<0.10 are quite good, and values of>0.20 are very poor. The LS-
linear regressor did very poorly on about half the problems,including the first
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six. However, it gotrmse <0.10 in some problems, indicating that some of
them have nearly-linear mappings. The regularized-linearregressor performed
comparably to LS. The quadratic modeling approach improvedupon the linear
approaches for some problems, but still had very poor performance for 6/16
problems. This improved behavior that while the modeling isnot quite linear
and not quite quadratic, it may not be significantly more nonlinear.

The GP technique did very poorly in all but two problems. Remember that
this technique did well on other 100+ variable problems. Butthe difference
is that on those problems, pruning variables was helpful. Inexamining GP’s
behavior on the 16 problems at hand, we found that GP prunes out variables
fairly aggressively, which explains its poor performance.

Both tree-based approaches did very poorly in predicting onpreviously-
unseen inputs. There is a straightforward explanation. Thequadratic models
do fairly well on 10/16 problems, indicating that an assumption a continuous
mapping holds fairly well. Yet the tree-based approaches, with their piecewise-
discontinuous nature, do not make this continuity assumption, making the mod-
eling problem unnecessarily difficult.

Not shown in the table, we also tested two variants of radial basis functions
(RBFs) (Poggio and Girosi, 1990) (with renormalization (Hastie et al., 2001)).
The first variant used Euclidian distance measure and Gaussian kernels. It
gavermse values comparable to the tree-based approaches (very poor). Such
performance is unsurprising, because with 100 or 200 input variables, all points
are effectively far apart from all other points, rendering the Euclidian distance
ineffective (Hastie et al., 2001; Smits et al., 2005). The second RBF variant
used the Fractional distance measure which has been hypothesized to handle
dimensionality better (Vladislavleva, 2008), but it had poor rmse results too.

In summary, none of the eight “traditional” approaches tested could ade-
quately capture the target circuit mappings. Even the best one did poorly on
6/16 problems. We need to examine the problem from a different perspective.

4. Latent Variable Regression

This section introduces latent variable regression (LVR).The general regres-
sion problem is to find a model̂y = f̂(X) which minimizesrmse(y, ŷ) on
testing dataX. In symbolicregression, we also want̂f to be interpretable, i.e.
can be inspected by a human to gain insight into the mapping.

In LVR, the mappingf̂ is decomposed into a sum ofk one-dimensional
functionsgi:

f̂(x) = g1(w
T

1
x) + g2(w

T

1
x) + . . . + gk(wT

k
x) (1.1)

where eachgi takes in a scalar valueti = wT

i
x that has been transformed from

x-space by projection vectorwi. k is the model’srank; i = 1 . . . k.
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The power of LVR techniques is that a high-dimensional inputvector x

may be transformed into a one-dimensional (scalar) valuet, and that nonlinear
processingg is deferred until after the transformation. The LVR challenges are
to find the projection vectors{wi}∀i and the nonlinear mappings{gi}∀i.

LVR is not new. For linear functions, it was introduced decades ago as
projection pursuit (Friedman and Tukey, 1974), and relatedforms are called
partial least squares (PLS).

The PROBE quadratic-modeling approach (Li et al., 2007) tested in section
3 can actually be interpreted as an LVR approach, where thegi’s are quadratic.
Of course, the quadraticgi’s are also PROBE’s weakness.

The work (Baffi et al., 1999) uses neural networks, which can handle arbitrary
nonlinear mappings. However, it is slow because it iteratedbetween finding
wi’s, and findinggi’s. The approach (Malthouse et al., 1997) uses three coupled
neural networks, which is complex and therefore severely prone to overfitting.
The SiLVR approach of (Singhee and Rutenbar, 2007) needs just one neural
network, but it only has a local optimizer for weight tuning and remains prone
to overfitting. In (Jordan and Jacobs, 1994), eachti is a neural network, and
eachgi is a normalized output from an overall “gating” network. A problem
with all neural-network approaches is that thegi mapping is opaque due to the
hard-to-interpret sigmoidal squashing function(s).

The recent P2M approach (Li and Cao, 2008) is of particular interest to us,
because of how it decomposes the problem. In P2M, the first projection vector
w1 is chosen by (1) building a PROBE model, and (2) extractingw1 from
either the linear or the quadratic component of the model. Thent1 = wT

1
x is

computed for each input/output pairj = 1 . . . N . Finally, anM=10-segment
piecewise-linear (PWL) model oft1 7→ y is fit using LS, to complete the
rank-1 LVR model. To build a rank-k model, the targety updates the residual
ytarget = yprev −

∑

i gi(w
T

i
x), and the process re-loops to the first step. P2M

is particularly interesting because it demonstrated that if an algorithm could
choosegoodprojection vectorswi, then one could decouple learning thewi’s
from thegi’s, simplifying and speeding the algorithm.

P2M has issues. First, it could choose the wrong projection vector because
of the quadratic assumption, or because it must choose between quadratic vs.
linear without reconciling them. Second, while the PWL model is first-order
continuous, it is not second-order continuous despite experimental evidence
indicating this is the case. Finally, like the neural network approaches, the
PWL model is hard to interpret, which is against oursymbolicregression goals.

With a thorough search of the GP literature, we found just oneset of work
using LVR (McKay et al., 1999). However, that work was tuned for low-
dimensional problems (just 4 dimensions in the paper), and the output expres-
sions were hard to interpret (e.g.g1 = 2.61∗exp(tanh(tanh(exp(4∗ t1))))−
4.58). We seek a more focused approach with more interpretable results.
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5. Latent Variable Symbolic Regression

This section introduces latent variable symbolic regression (LVSR). Gen-
eralizing upon P2M’s approach, LVSR decomposes the probleminto finding
projection vectorswi, finding nonlinear mappingsgi, and iterating one rank at
a time. The choices within that framework are:

• To enable thesymbolicpart of latent variable symbolic regression, thegi’s
are determined via GP-based symbolic regression. We use CAFFEINE (Mc-
Conaghy and Gielen, 2006; McConaghy and Gielen, 2009), but any almost
GP-based SR system would do here since the problem is a simple1-d map-
ping.

• To choose the projection vectors, we test multiple options,each for a differ-
ent reason. For a nonlinear model having discontinuities, we use Random
Forests (bootstrapped trees) (Breiman, 2001) where we set each projection
variablewi, l as the impact of thelth variable in the Random Forest. Its sign is
computed by observing the change iny going fromxnominal = {0, 0, ..., 0}
to a 1-σ perturbation in thelth variable withx = {0, 0, ..., 1, ..., 0}. We
call this LVSR-RF. For a model having continuous mapping that is robust
to mild nonlinearities, we use regularized linear learningwith aggressive
weight pruning (GDR, whereτ = 0.95). We call this LVSR-GDR. A bonus
of using aggressive weight pruning is to reduce the final number of variables,
at the possible expense of model accuracy. For completenessin comparison
to P2M, we also test a quadratic model-based approach to projection-vector
extraction. We call this LVSR-PROBE.

Figure 1-3 left gives the algorithm flow for LVSR.
We have also designed a further variant of LVSR, which adds tuning as shown

in Figure 1-3 right. It starts by gettingwi and aPWL-extractedgi. It then tunes
those values, minimizingrmse by changing thewi (with n parameters) and
the PWL parametersα andβ (each withM + 1 parameters,M = 10). We
tune with a simple, fast, and derivative-free local optimizer (Nelder and Mead,
1965). Up to 50,000 evaluations are allowed. Each evaluation is cheap, needing
just one vector-matrix product oft = wi ∗ X1, followed by simulation of the
1-d PWL modelgi(t) at theN values int.

We found that, for this application, models of rank > 2 did notimprove test
rmse (similar to the results of (Singhee and Rutenbar, 2007)), so results shown
are from max rank = 2. Runtime for all LVSR variants is on the order of a few
minutes on a single-core 2 GHz CPU, with the SR portion takingthe majority
of time.

1Actually, since the optimizer changes just a subset of variables inwi , only those changes need to propagate
throughX to updatet.
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Figure 1-3. Left: Algorithm flow for Latent Variable Symbolic Regression (LVSR). The key
steps are extracting the projection vectorwi , and determining 1-d mappinggi. Right: LVSR
with tuning.

6. Experiments Using Latent Variable Regression

Let us first examine LVR in action, with the P2M algorithm. Figure 1-4
illustrates P2M on the 10T AV problem, where it performed thebest of any
regressor. The left plot shows the outcome after the first round. At any given
t-value (x-axis value), the spread of points is quite tight, which indicates that
the directionw1 can account for a major part of the variation. Also note that
the curve on the left plot cannot be readily modeled by a linear mapping; this
corresponds to the poor performance exhibited by the linearmodels on 10T
AV seen in section 3 (rmse values of 0.4377 and 0.4430). The curve can be
fit fairly well by a quadratic, though not perfectly, which iswhy the quadratic
approach PROBE did reasonably well (rmse of 0.1384). On this plot, a PWL
curve is able to capture the trend well, to complete the first iteration (finalrmse
of P2M was 0.0915).

The second P2M iteration learns on the residuals of the first round. Since the
first round captured most of the variation, the y-range for the second round is
significantly smaller (g2 ranges from just≈-1 to≈+1, whereasg1 was from≈45
to≈70). The PWL model captures this as best it can, though this second round
helps little. However, it illluminates a risk of PWL modeling: the model is not
second-order continuous and goes to a more extreme value when extrapolating
to large values oft (right hand side of the plot). This will hurt prediction ability.
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Figure 1-4. Left: Result after first round of P2M (rank=1) on 10 AV problem. The y-axis is
g1; the x-axis is the projectiont1 = wT

1 x which in this case was found via quadratic modeling
(PROBE). The scatter points are the 450 training samples projected onto theg1-t1 plane. The
line among the scatter points is a 10-segment PWL model. Right: Result second round of P2M
(rank=2) on 10T AV problem,g2 vs. t2.

Figure 1-5. For P2M on 10T BW problem,g1 vs. t1.

On the next problem, 10T BW, P2M didnot capture the direction well, as
Figure 1-5 illustrates. The rank-1 projection of BW vs.t1 = wT

1
x has a very

weak pattern, with much spread in BW at any given x-axis valuet. This contrast
sharply with the tightly-spread rank-1 projection we just observed forAV in
Figure 1-4 left. For 10T BW, the PWL model attempts to capturethe weak
trend, but of course results in a poor model. The rank-2 projection helps little.
The finalrmse was 0.9077, which is the worst of any regressor.

In contrast to P2M’s approach of capturing projection vectors using quadratic
modeling, the LVSR approaches use impacts from either Random Forests or
regularized linear learning (LVSR-RF and LVRS-GDR, respectively). Figure 1-
1 is worth re-examining: it shows relative variable impactsas extracted by RF or
GDR. We see that GDR needs sharply fewer variables to capturethe majority of
variation. This is due to the nature of the respective model-building algorithms.
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RF has no bias to reduce the number of variables – given two variables causing
the same effect, RF will “democratically” keep both. In contrast, GDR has bias
to reduce variables – given two variables with the same effect, just one will be
kept.

Figure 1-6. Left: For LVSR-RF on 10T BW problem,g1 vs. t1. Right: For LVSR-GDR on
10T BW problem,g1 vs. t1.

Recall that P2M did poorly on the 10T BW problem. Figure 1-6 shows
the rank=1 projections from LVSR-RF (left plot), and from LVSR-GDR (right
plot). Both approaches captured the trend, and GDR capturedit very tightly.
This is reflected in the finalrmse values: whereas P2M had anrmse of 0.9077,
LVSR-RF hadrmse of 0.4331E, and LVSR-GDR hadrmse of 0.1728 (the
lowestrmse for 10T BW).

Table 1-2 gives testrmse values for the various LVR approaches. Because
the LVSR approaches are stochastic, for each problem we do 30independent
runs and report the median value. P2M is hit and miss – sometimes it gets
excellent performance but sometimes it is abysmal (e.g.rmse of 0.9077).
LVSR-PROBE, which uses quadratic models like P2M, performssimilarly to
P2M, except avoiding the abysmal failures. Because the onlydifference is ingi

approach, the abysmal failures are almost certainly due to the PWL mappings’
poor extrapolations. LVSR-RF approach is mediocre everywhere. This is not
surprising: RF tends to “soften” (lowpass filter) the variable impacts due to its
“democratic” variable selection (lack of bias in choosing variables).

LVSR-GDR-tune and LVSR-GDR do the best, with comparablermse val-
ues. They both lowrmse in most cases, and never have abysmal performance.
LVSR-GDR-tune and LVSR-GDR does better on 10T AV and 30T GM, and
LVSR-GDR does better on 10T BW. So, tuning can help, but not always. There
are three remaining problems that resist good models in the median (10T GBW,
10T GM, 10T PM). However, since the runs’ best (minimum)rmse values are
0.3797, 0.2992, and 0.3428 respectively, good models are achievable.
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Table 1-2. Test RMSE values with LVR regressors
Problem P2M: LVSR- LVSR- LVSR- LVSR-

PROBE/PWL PROBE RF GDR GDR-tune
10T AV 0.0915 0.3297 0.4914 0.4012 0.1167
10T BW 0.9077 0.7018 0.6802 0.2767 0.4671
10T GBW 0.4202 0.3997 0.5271 0.4050 0.4091
10T GM 0.2723 0.3614 0.5348 0.4017 0.3738
10T OS 0.2527 0.2549 0.3807 0.2316 0.2370
10T PM 0.7188 0.5817 0.6933 0.6077 0.5937
10T SR 0.0136 0.0376 0.2913 0.0448 0.0464
10T ST 0.0574 0.0600 0.3293 0.0716 0.0556

30T AV 0.1499 0.1758 0.3744 0.1107 0.1023
30T BW 0.1058 0.1232 0.2887 0.0868 0.0777
30T GBW 0.1147 0.1038 0.3119 0.0459 0.0525
30T GM 0.1623 0.1752 0.3732 0.6198 0.1056
30T OS 0.3533 0.3393 0.3640 0.2017 0.1933
30T PM 0.1120 0.1236 0.3665 0.0856 0.0712
30T SR 0.2885 0.3749 0.3096 0.1648 0.1676
30T ST 0.2021 0.1950 0.3317 0.1673 0.1583

The final rank-1 symbolic model for one run of 10T BW, via LVSR-GDR,
is given in Table 1-3. The projection vector has too many terms to interpret,
but that is compensated by visualizing thegi vs. ti projections, the symbolic
models ofgi, and if desired, a cumulative impact plot like Figure 1-1.

Table 1-3. Final model for 10T BW, as found by LVSR-GDR

g1(t1) = 1.184e+06 + 0.871e+6 * max(0, 5.214 *t1)1/2 * t1 + 0.213e+6 *t1
t1 = 1.338e+06 + 6.683e+03 *DP1 M2 nsmm TOX + (40 other terms)

To test scalability to larger problems yet, we tested LVSR-GDR-tune on the
50-transistor circuit shown in Figure 1-7. Each modeling problem has 341 input
variables. Like 10T and 30T problems, the outputs are AV, BW,etc. The rest
of the setup was the same. Runtime was about the same (minutes), because the
1-d SR takes the majority of time. 30 runs were performed for each problem.

Table 1-4 gives medianrmse values for each of the 8 modeling problems.
We see that in most cases, thermse is acceptable, and it is never abysmal.
The rmse of the best run’s 50T GBW was 0.2721. This signifies that LVSR
has scaled very nicely to this problem with more variables; which the non-LVR
approaches would have had extreme difficulty with. We expectLVSR to scale to
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problems of much higher dimensionality, e.g. circuits with≈1,000 transistors
and≈10,000 input variables. We leave that to future research.

Figure 1-7. Schematic of 50-device operational amplifier.

Table 1-4. Testrmse values for LVSR-GDR-tune, for 50T-amp problems having 316 input
variables.

AV BW GBW GM OS PM SR ST
0.2852 0.4047 0.2379 0.2265 0.2549 0.1742 0.1772 0.2162

7. Conclusion

This paper described a new challenge for GP-based symbolic regression:
handling high-dimensional inputs when pruning does not work because too
many variables have significant impact. This challenge matters for the real-
world problem of variation-aware analog circuit design. This paper showed
how how traditional GP-based SR performed poorly on such problems, along-
side the poor performance of other state-of-the-art regression techniques. Then
this paper introduced the latent variable regression (LVR)view of the regression
problem, reviewed existing LVR techniques and their shortcomings, and intro-
duced latent variablesymbolicregression (LVSR). LVSR provides a symbolic
model and useful visualizations of the projection vectors.On real-world circuit
modeling problems, LVSR demonstrated significantly lower prediction error
than traditional non-LVR approaches and a modern LVR approach (P2M).
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