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Chapter 1

LATENT VARIABLESYMBOLICREGRESSIONFOR
HIGH-DIMENSIONAL INPUTS

Trent McConaghy
Lsolido Design Automation Inc., Canada

Abstract

This paper explores symbolic regression when there arerbdecf input
variables, and the variables have similar influence whictamsethat variable
pruning @ priori, or on-the-fly) will be ineffective. For this problem, traidinal
genetic programming and many other regression approaahpsatly. We de-
velop a technique based on latent variables, nonlineaitséysanalysis, and
genetic programming designed to manage the challenge. €dmigue han-
dles 340-input variable problems in minutes, with promissdale well to even
higher dimensions. The technique is successfully verifie2¥oreal-world circuit
modeling problems.

Keywords.  symbolic regression, latent variables, latent variabtgression, LVR, analog,
integrated circuits
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1. Introduction

Symbolic regression (SR) is the automated extraction dfcswehitebox
models that map input variables to output variables. Gepedigramming (GP)
(Koza, 1992) is a popular approach to do SR, with successgflications to
industrial problems such asindustrial processing (Koet@h., 2005), medicine
(Moore et al., 2008; Almal and al., 2006), finance (Korns, Z@ecker et al.,
2007), and robotics (Schmidt and Lipson, 2006).

In most GP-based SR applications, there are one to ten igpiatoles, and
hundreds to thousands of training samples. GP-based ayg®are quite good
at handling these. There are two approaches to handling imaué variables.
Thefirstisto prune the variables beforehand, e.g. fromaieetworks (Kordon
et al., 2002). The second is to let GP prune the variablehexily during the
SR run (Smits et al., 2005; Korns, 2007).

Pruning is reasonable when the significant variables at@jfraction of the
overall set of variables. But what about whmostvariables have a degree of
influence that cannot be ignored? Consider Figure 1-1 ldfichvis the output
of a nonlinear sensitivity analysis from input/outphit/y training data. Here,
the input variables are ordered from highest to lowest ihpéle cumulative
sum of impacts vs. variable number is plotted. While the fii@tvariables
explain about 50% of the total variation in almost all of the variables are
needed in order to capture 95% of thetotal variation.
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Figure 1-1. Cumulative relative impacts of input variables on a targetpat variable. The
nonlinear impacts on the left plot were extracted using thygact-extraction technique in (Mc-
Conaghy et al., 2008) where the regression models are RaRdoests (Breiman, 2001). The
impacts on the right plot are the weights on the model foundraglient directed regularization
(Friedman and Popescu, 2004).

Because most variables are needed for a reasonable madehgwariables
will be ineffective. Even if we try a different technique thaces extra bias on
the most important variables (Figure 1-1 right), we stit sieat 1/3 of variables
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—the same order of magnitude as total number of variables resgded in order
to capture 95% of the total variation.

This is the problem we face when modeling analog circuitgrenfinces as
a function of manufacturing process variations. This miattbecause better
models allow higher-quality circuits to be designed in lesge. The impact
plots of Figure 1-1 were for the “AV” output of circuit in Figa 1-2 left. It
has approximately 10 process variables per transistoniizne and McAndrew,
1999), which leads to 90 input variables overall.

In this paper, we test on 24 benchmark problems having ugttoinput
variables with impact profiles similar to Figure 1-1. Section 3 will shehat
a modern GP-based SR technique and several other state-afttregression
techniques will fail, badly, on even the easiest 16 problefndifferent way to
think about the symbolic regression problem is needed. rSsgdtion 4 we in-
troduce the perspective brought lagent variable regressio(LVR)(Friedman
and Tukey, 1974). Each “latent variablg’in an LVR model is a linear combi-
nation of the input variables = wfa:; and the model’s output is a nonlinear
function of the latent variableg(x) = >, gi(wFz). Latent variables can be
thought of as auto-discovered “hidden intermediate vétlwhich transform
the inputs into a reduced-dimensionality space. An LVR néagple recently
introduced in circuits (Li and Cao, 2008) is promising, bss@mes a quadratic
model when settingv;'s and does not return a symbolic model.

The contributions of this paper are the use of an LVR framé&vmrsolving
this challenging SR problem, a means to determine the L\@tirtombination
vectorsw; without assuming quadratic mapping, and, most particylal
means to find thesymbolicnonlinear functionsy;. We determinew;'s by
building models ofe — f, extracting variable impacts from those models, and
using those impacts as the basis for setting Oncew; is determined, a (trivial
for GP) one-dimensional SR run is performed havipg= w}"a: as the input
variable andf as the output. The process is repeated on the residudlsrail
a stopping criteria is hit.

We dub our approach LVSR:dtent Variable §mbolic Regression.

This paper is organized as follows. Section 2 describes Ithieigm setup.
Section 3 gives experimental results of a modern GP teckraqd state-of-the-
art regression techniques on the 16 benchmark problemsio8ddntroduces
LVR in the context of a recent approach (Li and Cao, 2008)hlagting the
promise of LVR and the current shortcomings. Section 5 thices LVSR,
which is designed to overcome the issues of past SR, regresand LVR
approaches. Section 6 has experimental validation of LV&R%real-world
circuit modeling problems. Section 7 concludes.
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Figure 1-2. Schematics of 10-device (left) and 30-device operatiomgldier (right).

2.  Modeling Problems

The modeling problems come from two analog circuits as shiowrigure
1-2. These circuits are well-known to the domain expertgl@n circuit de-
signers). Each circuit’s device sizes were set to have trealsle” values by an
analog circuit designer, leading to “reasonable” perfaroeavalues. Each cir-
cuit has 8 performance measures of interest: AV (gain), B&vi¢vidth), GBW
(gain-bandwidth), GM (gain margin), OS (overshoot), PMggh margin), SR
(slew rate), ST (settling time) (Sansen, 2006).

The variations in the circuit performance due to manufacetuimprecision
can be modeled as a joint probability density function (jpii¥le use the well-
known model (Drennan and McAndrew, 1999) where the randamahias are
“process variables” which model quantities like “substrdbping concentra-
tion”. Variations in these quantities affect the electrizahavior of the circuit,
and therefore its performances. In this model, there areitab® normal in-
dependent identically-distributed (NIID) random variblper transistor. In
total, the 10-transistor amp had 90 random variables, am8@kransistor amp
had 215 random variables. (Section 6 will introduce an eaeger problem, a
50-transistor amp with 431 input variables.)

To simulate the effect of manufacturing variations, a “Mo@arlo” (MC)
analysis was performed on each circuit. In MC analysis, vesvdV = 600
points from the jpdf. Ateachrandom point, we simulate thewt at several sets
of environmental conditions (combinations of high/low fegrature, high/low
power supplyVq, high/low load). Each random point will get a “worst-case”
value of each performance across the environmental pouhish is either the
minimum or maximum value (e.g. worst-case for gain “AV” ismmum value
because we want to maximize gain).

For our modeling problem, each random point is the modefsiirvector
x. Each worst-case performance metric is a model's scalgubue.g. iy .

1The specific technology was TSMC 048 CMOS. The simulator was a proprietary SPICE-like simulato
of a leading analog semiconductor company, with accuradyrantime comparable to HSPIGE! .
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Therefore we have 8 modeling problems with= 90 input variables (for the
10T circuit), 8 modeling problems with = 215 input variables (for the 30T
circuit), andN = 600 input/output pairs per problem.

We need a scheme to assess the ability of the final models tlicpen
previously-unseen data. A popular approach-ield cross-validation, which
is accurate but requirdsx more computational approach than a single pass of
learning. Another approach is to set aside a random subsePb%6 of the data
for testing. This has the virtue of speed but inconsistestilts, because the
chosen test samples may not be representative of the whalksedlaWe employ
a technique which has both speed and consistency: sort thedeording to
the y-values, then take every 4th point for testing

3. ExperimentsUsing Traditional Regressors

This section gives results from applying a modern GP-basedeShnique
and several other state-of-the-art regression technituige problems.
We test the following regressors, which range from simpiedir techniques to
progressively more nonlinear approaches:

e Least-squares (L S) linear regression.

e Regularized linear regression via gradient directed regularizatio®GDR),
in which a regularization term limits the variance amonglthear model's
weights. GDR is a generalization of both the lasso and ridgegession
(Friedman and Popescu, 2004).

e Quadratic modeing usingPROBE, which models the variable interactions
as a rank-reduced weight matrix which improves scaling fiogm?) to
O(k = n) (k=rank, typically 2-10;» = number of input variables) (Li et al.,
2007).

e GP usingCAFFEINE, a modern SR approach which restricts the search
space to interpretable-by-construction models and hasdsimated ability
to scale to 100+ input variables ibesprune variables) (McConaghy and
Gielen, 2009; McConaghy and Gielen, 2006).

e Boosted trees using Stochastic Gradient Boostin§GB), which builds a
shallow CART tree at each boosting iteration. Iterationsman on hard-
to-model regions (Friedman, 2002).

e Bootstrapped tree using Random Forest®F), in which each CART tree
in an ensemble is greedily built from a different bootstreghsample of the
training data (Breiman, 2001; Breiman et al., 1984).

1This was inspired by vertical slicing (Korns, 2007) whictedsorted y-values for a different purpose.
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Settings for each regressor were as follows. In the notaifdifrriedman and
Popescu, 2004), GDR had threshold parametet 0.2 and stepsizéu =
0.002. PROBE hadnax.rank = 2. CAFFEINE had settings like (McConaghy
and Gielen, 2009), except population size of 250, populdtdialization size
250, and 1000 generations. SGB parameters were: learniagvra 0.10,
minimum tree depth = 2, maximum tree depth = 7, target trgimimor = 5%.
RF had 200 CARTs; CART-building would consid@f(n) input variables at
each split; and splitting would continue until no possilpéts remained.
Table 1-1 gives the results of the regressors on the 16 mmapplioblems
(2 circuits x 8 problems per circuit) on the test data. Roeamsquared error

rmse(y,q) = \/1/]\7 * Zj.v((y“j —yj)/oy)? reports the difference betwegn
andy on testing data. Note thainse is scaled byy’s standard deviation,,.
Because SGB and RF are stochastic, for each problem we dal8pendent

runs and report the median value. (We report median and nan tnecause the
worstrmse values are significantly higher, in a Poisson-like disthiitno.)

Table 1-1. Test RMSE values with traditional regressors. 10T = 104istor circuit. 30T =
30-transistor circuit. AV, BW, etc. are different circuitigput metrics.

Problem LSlin | Reg-lin Quad GP Boost | Bootstr.
(GDR) | (PROBE) | (CAFF- | tree tree
EINE) | (SGB) | (RF)

10T AV 0.4377| 0.4430 | 0.1384 | >10.0 | 0.5947| 0.7419
10T BW 0.6175| 0.6131| 0.2417 | 3.0170 | 0.7300| 0.8716
10T GBW || 0.4257| 0.4290 | 0.2826 | 0.6016 | 0.5696| 0.7052
10T GM 0.4404| 0.4381 | 0.3416 | 0.2189 | 0.5524| 0.6782
10T OS 0.2397| 0.2506 | 0.2913 >10.0 | 0.4830| 0.7002
10T PM 0.6028| 0.5907 | 0.6710 >10.0 | 0.7842| 0.9190
10T SR 0.0132| 0.0151 | 0.0205 | 0.0555 | 0.4260| 0.6818
10T ST 0.0566| 0.0607 | 0.0765 >10.0 | 0.4379| 0.6839

30T AV 0.1141| 0.1158 | 0.1281 >10.0 | 0.6282| 0.8118
30T BW 0.0766| 0.0760 | 0.0949 >10.0 | 0.5780| 0.7540
30T GBW || 0.0675| 0.0675| 0.0766 >10.0 | 0.5687| 0.7516
30T GM 0.1099| 0.1102 | 0.1204 | >10.0 | 0.6043| 0.8055
30T OS 0.2165| 0.2009 | 0.2209 >10.0 | 0.6101| 0.7801
30T PM 0.0782| 0.0844 | 0.1026 >10.0 | 0.6085| 0.7665
30T SR 0.1963| 0.1744 | 0.1903 >10.0 | 0.5651| 0.7258
30T ST 0.1658| 0.1640 | 0.1681 >10.0 | 0.6165| 0.7903

Let us examine the results, one regressor at a time. As eerefenrmse
values 0f<0.10 are quite good, and values ©0.20 are very poor. The LS-
linear regressor did very poorly on about half the problemsluding the first
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six. However, it gotrmse <0.10 in some problems, indicating that some of
them have nearly-linear mappings. The regularized-limegressor performed
comparably to LS. The quadratic modeling approach imprayesh the linear
approaches for some problems, but still had very poor pevdoice for 6/16
problems. This improved behavior that while the modelingas quite linear
and not quite quadratic, it may not be significantly more madr.

The GP technique did very poorly in all but two problems. Rerher that
this technique did well on other 100+ variable problems. et difference
is that on those problems, pruning variables was helpfulexamining GP’s
behavior on the 16 problems at hand, we found that GP prunegaciables
fairly aggressively, which explains its poor performance.

Both tree-based approaches did very poorly in predictingpraviously-
unseen inputs. There is a straightforward explanation. qusratic models
do fairly well on 10/16 problems, indicating that an assumpt continuous
mapping holds fairly well. Yet the tree-based approachés, thveir piecewise-
discontinuous nature, do not make this continuity asswnptnaking the mod-
eling problem unnecessarily difficult.

Not shown in the table, we also tested two variants of radiglfunctions
(RBFs) (Poggio and Girosi, 1990) (with renormalization gki@et al., 2001)).
The first variant used Euclidian distance measure and Gaussrnels. It
gavermse values comparable to the tree-based approaches (very. fach
performance is unsurprising, because with 100 or 200 inpuables, all points
are effectively far apart from all other points, renderihg Euclidian distance
ineffective (Hastie et al., 2001; Smits et al., 2005). Theose RBF variant
used the Fractional distance measure which has been hgetido handle
dimensionality better (Vladislavleva, 2008), but it hacbpemse results too.

In summary, none of the eight “traditional” approachesegstould ade-
quately capture the target circuit mappings. Even the bestdid poorly on
6/16 problems. We need to examine the problem from a diffgrerspective.

4. Latent Variable Regression

This section introduces latent variable regression (LMRRE general regres-
sion problem is to find a modég}l = f(X) which minimizesrmse(y,§) on
testing dataX. In symbolicregression, we also wa[ﬁtto be interpretable, i.e.
can be inspected by a human to gain insight into the mapping.

In LVR, the mappingf is decomposed into a sum &fone-dimensional
functionsg;:

f(m) = gl(wfw) + QQ(wT:B) + ...+ gk(wgw) (1.1)

where eacly; takes in a scalar valug = w;-r:z: that has been transformed from
x-space by projection vectap;. k is the model'sank; i =1...k.



8 GENETIC PROGRAMMING THEORY AND PRACTICE VI

The power of LVR techniques is that a high-dimensional inpettor
may be transformed into a one-dimensional (scalar) vglaad that nonlinear
processing is deferred until after the transformation. The LVR chafles are
to find the projection vectorfw;}Vi and the nonlinear mappindg; }Vi.

LVR is not new. For linear functions, it was introduced deza@dgo as
projection pursuit (Friedman and Tukey, 1974), and reldteths are called
partial least squares (PLS).

The PROBE quadratic-modeling approach (Li et al., 200gtem section
3 can actually be interpreted as an LVR approach, wherg;thare quadratic.
Of course, the quadratig’s are also PROBE’s weakness.

The work (Baffietal., 1999) uses neural networks, which cardfe arbitrary
nonlinear mappings. However, it is slow because it iterdtetiveen finding
w;’s, and findingy;’'s. The approach (Malthouse etal., 1997) uses three coupled
neural networks, which is complex and therefore severain@ito overfitting.
The SILVR approach of (Singhee and Rutenbar, 2007) neeti®nasneural
network, but it only has a local optimizer for weight tuningdaremains prone
to overfitting. In (Jordan and Jacobs, 1994), egcls a neural network, and
eachg; is a normalized output from an overall “gating” network. Aoptem
with all neural-network approaches is that fhenapping is opaque due to the
hard-to-interpret sigmoidal squashing function(s).

The recent P2M approach (Li and Cao, 2008) is of particulrést to us,
because of how it decomposes the problem. In P2M, the firgtgiron vector
wy is chosen by (1) building a PROBE model, and (2) extracting from
either the linear or the quadratic component of the modeenth = wlz is
computed for each input/output pair=1... N. Finally, anA/=10-segment
piecewise-linear (PWL) model of, — y is fit using LS, to complete the
rank-1 LVR model. To build a rank-model, the targey updates the residual
Ytarget = Yprev — 2_; 9i(wEx), and the process re-loops to the first step. P2M
is particularly interesting because it demonstrated thanialgorithm could
choosegood projection vectorsw;, then one could decouple learning tivg's
from theg;’s, simplifying and speeding the algorithm.

P2M has issues. First, it could choose the wrong projectemtor because
of the quadratic assumption, or because it must choose betguadratic vs.
linear without reconciling them. Second, while the PWL nladdirst-order
continuous, it is not second-order continuous despite raxgatal evidence
indicating this is the case. Finally, like the neural netwapproaches, the
PWL model is hard to interpret, which is against symbolicregression goals.

With a thorough search of the GP literature, we found just seteof work
using LVR (McKay et al., 1999). However, that work was tuned bw-
dimensional problems (just 4 dimensions in the paper), hasdttput expres-
sions were hard to interpret (e.gy = 2.61 * exp(tanh(tanh(exp(4xt1)))) —
4.58). We seek a more focused approach with more interpretablétse
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5.  Latent Variable Symbolic Regression

This section introduces latent variable symbolic regmsgLVSR). Gen-
eralizing upon P2M'’s approach, LVSR decomposes the prolit¢onfinding
projection vectorsw;, finding nonlinear mappingg, and iterating one rank at
a time. The choices within that framework are:

e To enable thesymbolicpart of latent variable symbolic regression, th&s
are determined via GP-based symbolic regression. We usé&EMNE (Mc-
Conaghy and Gielen, 2006; McConaghy and Gielen, 2009),ryuilmost
GP-based SR system would do here since the problem is a sirtptaap-
ping.

e To choose the projection vectors, we test multiple optieash for a differ-
ent reason. For a nonlinear model having discontinuities,use Random
Forests (bootstrapped trees) (Breiman, 2001) where weasbt@ojection
variablew;, [ as the impact of thé” variable in the Random Forest. Its signis
computed by observing the changeigoing fromz,.omina = {0,0, ..., 0}
to a 1o perturbation in thd*" variable withz = {0,0,...,1,...,0}. We
call this LVSR-RF. For a model having continuous mapping teaobust
to mild nonlinearities, we use regularized linear learnimigh aggressive
weight pruning (GDR, where = 0.95). We call this LVSR-GDR. A bonus
of using aggressive weight pruning is to reduce the final remobvariables,
at the possible expense of model accuracy. For complet@amesmparison
to P2M, we also test a quadratic model-based approach teqgiaj-vector
extraction. We call this LVSR-PROBE.

Figure 1-3 left gives the algorithm flow for LVSR.

We have also designed a further variant of LVSR, which addsigias shown
in Figure 1-3 right. It starts by getting; and aPWL-extractedy;. It then tunes
those values, minimizingmse by changing thaw; (with n parameters) and
the PWL parametersx and 3 (each with\/ + 1 parametersM = 10). We
tune with a simple, fast, and derivative-free local optienigNelder and Mead,
1965). Upto 50,000 evaluations are allowed. Each evalu&icheap, needing
just one vector-matrix product ¢f= w; * X1, followed by simulation of the
1-d PWL modely; (t) at the N values int.

We found that, for this application, models of rank > 2 did moprove test
rmse (similar to the results of (Singhee and Rutenbar, 208@)esults shown
are from max rank = 2. Runtime for all LVSR variants is on thdasrof a few
minutes on a single-core 2 GHz CPU, with the SR portion takiregmajority
of time.

1Actually, since the optimizer changes just a subset of biginw; , only those changes need to propagate
through X to updatet.
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e —
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Figure 1-3. Left: Algorithm flow for Latent Variable Symbolic RegresgidLVSR). The key
steps are extracting the projection vectey, and determining 1-d mapping. Right: LVSR
with tuning.

6. ExperimentsUsing Latent Variable Regression

Let us first examine LVR in action, with the P2M algorithm. &ig 1-4
illustrates P2M on the 10T AV problem, where it performed best of any
regressor. The left plot shows the outcome after the firstdolAt any given
t-value (x-axis value), the spread of points is quite tightjaln indicates that
the directionw, can account for a major part of the variation. Also note that
the curve on the left plot cannot be readily modeled by a limeapping; this
corresponds to the poor performance exhibited by the lineadels on 10T
AV seen in section 3rinse values of 0.4377 and 0.4430). The curve can be
fit fairly well by a quadratic, though not perfectly, whichuwsy the quadratic
approach PROBE did reasonably weih{se of 0.1384). On this plot, a PWL
curve is able to capture the trend well, to complete the tiesation (finalrmse
of P2M was 0.0915).

The second P2M iteration learns on the residuals of the Gitstd. Since the
first round captured most of the variation, the y-range farsbcond round is
significantly smallerd, ranges from juste-1to~+1, whereag, was from=:45
to~70). The PWL model captures this as best it can, though thmskround
helps little. However, it illluminates a risk of PWL modedinthe model is not
second-order continuous and goes to a more extreme value extrapolating
to large values of (right hand side of the plot). This will hurt prediction abyl
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Figure 1-4. Left: Result after first round of P2M (rank=1) on 10 AV problerfhe y-axis is
g1; the x-axis is the projectioty = w? « which in this case was found via quadratic modeling
(PROBE). The scatter points are the 450 training samplgsgenl onto they;-t1 plane. The
line among the scatter points is a 10-segment PWL model.tRigsult second round of P2M
(rank=2) on 10T AV problemgs vs. t2.

x10%

~+ o

Figure 1-5. For P2M on 10T BW problemy; vs. ¢1.

On the next problem, 10T BW, P2M diubt capture the direction well, as
Figure 1-5 illustrates. The rank-1 projection of BW vs.= w{m has a very
weak pattern, with much spread in BW at any given x-axis valleis contrast
sharply with the tightly-spread rank-1 projection we jubserved forAV in
Figure 1-4 left. For 10T BW, the PWL model attempts to captine weak
trend, but of course results in a poor model. The rank-2 ptaje helps little.
The finalrmse was 0.9077, which is the worst of any regressor.

In contrast to P2M’s approach of capturing projection vestsing quadratic
modeling, the LVSR approaches use impacts from either Rarfglorests or
regularized linear learning (LVSR-RF and LVRS-GDR, respety). Figure 1-
lisworthre-examining: it shows relative variable impag&xtracted by RF or
GDR. We see that GDR needs sharply fewer variables to cajhteiraeajority of
variation. This is due to the nature of the respective madéting algorithms.
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RF has no bias to reduce the number of variables — given twabtas causing
the same effect, RF will “democratically” keep both. In aaist, GDR has bias
to reduce variables — given two variables with the same gffiest one will be
kept.

X108 4

x10°

Figure 1-6. Left: For LVSR-RF on 10T BW problemy; vs. ¢1. Right: For LVSR-GDR on
10T BW problemg; vs. ¢1.

Recall that P2M did poorly on the 10T BW problem. Figure 1-6w8
the rank=1 projections from LVSR-RF (left plot), and from 8®-GDR (right
plot). Both approaches captured the trend, and GDR captuvedy tightly.
This is reflected in the finalmse values: whereas P2M had amse of 0.9077,
LVSR-RF hadrmse of 0.4331E, and LVSR-GDR hadnse of 0.1728 (the
lowestrmse for 10T BW).

Table 1-2 gives testmse values for the various LVR approaches. Because
the LVSR approaches are stochastic, for each problem we dodépendent
runs and report the median value. P2M is hit and miss — somastiingets
excellent performance but sometimes it is abysmal (e:guse of 0.9077).
LVSR-PROBE, which uses quadratic models like P2M, perfosinglarly to
P2M, except avoiding the abysmal failures. Because thedifigrence is ing;
approach, the abysmal failures are almost certainly duegt@iVL mappings’
poor extrapolations. LVSR-RF approach is mediocre evegyeh This is not
surprising: RF tends to “soften” (lowpass filter) the vak&aimpacts due to its
“demacratic” variable selection (lack of bias in choosiragiables).

LVSR-GDR-tune and LVSR-GDR do the best, with comparabiese val-
ues. They both lowmse in most cases, and never have abysmal performance.
LVSR-GDR-tune and LVSR-GDR does better on 10T AV and 30T GM] a
LVSR-GDR does better on 10T BW. So, tuning can help, but meags$. There
are three remaining problems that resist good models in ttaéan (10T GBW,
10T GM, 10T PM). However, since the runs’ best (minimumy)se values are
0.3797, 0.2992, and 0.3428 respectively, good models aieable.
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Table 1-2. Test RMSE values with LVR regressors

Problem P2M: LVSR- | LVSR- | LVSR- LVSR-
PROBE/PWL | PROBE RF GDR | GDR-tune
10T AV 0.0915 0.3297 | 0.4914| 0.4012| 0.1167
10T BW 0.9077 0.7018 | 0.6802 | 0.2767| 0.4671
10T GBW 0.4202 0.3997 | 0.5271| 0.4050| 0.4091
10T GM 0.2723 0.3614 | 0.5348| 0.4017| 0.3738
10T OS 0.2527 0.2549 | 0.3807| 0.2316| 0.2370
10T PM 0.7188 0.5817 | 0.6933| 0.6077| 0.5937
10T SR 0.0136 0.0376 | 0.2913 | 0.0448| 0.0464
10T ST 0.0574 0.0600 | 0.3293| 0.0716| 0.0556
30T AV 0.1499 0.1758 | 0.3744| 0.1107| 0.1023
30T BW 0.1058 0.1232 | 0.2887| 0.0868| 0.0777
30T GBW 0.1147 0.1038 | 0.3119| 0.0459| 0.0525
30T GM 0.1623 0.1752 | 0.3732| 0.6198| 0.1056
30T OS 0.3533 0.3393 | 0.3640| 0.2017| 0.1933
30T PM 0.1120 0.1236 | 0.3665| 0.0856| 0.0712
30T SR 0.2885 0.3749 | 0.3096 | 0.1648| 0.1676
30T ST 0.2021 0.1950 | 0.3317| 0.1673| 0.1583

The final rank-1 symbolic model for one run of 10T BW, via LVSDR,
is given in Table 1-3. The projection vector has too many tetminterpret,
but that is compensated by visualizing #evs. ¢; projections, the symbolic
models ofg;, and if desired, a cumulative impact plot like Figure 1-1.

Table 1-3. Final model for 10T BW, as found by LVSR-GDR
g1(t1) = 1.184e+06 + 0.871e+6 * max(O, 5.2149Y2 * t; + 0.213e+6 *;
t;1 = 1.338e+06 + 6.683e+03P P1_M2_nsmm TOX + (40 other terms)

To test scalability to larger problems yet, we tested LVSBRGtune on the
50-transistor circuit shown in Figure 1-7. Each modelingigdem has 341 input
variables. Like 10T and 30T problems, the outputs are AV, BW, The rest
of the setup was the same. Runtime was about the same (n)jrheeause the
1-d SR takes the majority of time. 30 runs were performed &mheproblem.

Table 1-4 gives medianmse values for each of the 8 modeling problems.
We see that in most cases, theise is acceptable, and it is never abysmal.
The rmse of the best run’s 50T GBW was 0.2721. This signifias tNSR
has scaled very nicely to this problem with more variablesicivthe non-LVR
approaches would have had extreme difficulty with. We exi)é8R to scale to
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problems of much higher dimensionality, e.g. circuits with,000 transistors
and~10,000 input variables. We leave that to future research.

Figure 1-7. Schematic of 50-device operational amplifier.

Table 1-4. Testrmse values for LVSR-GDR-tune, for 50T-amp problems having 3igut
variables.

AV BW GBW | GM (ON) PM SR ST
0.2852| 0.4047| 0.2379| 0.2265| 0.2549| 0.1742| 0.1772| 0.2162

7. Conclusion

This paper described a new challenge for GP-based symlegiession:
handling high-dimensional inputs when pruning does notkwmgcause too
many variables have significant impact. This challenge emafior the real-
world problem of variation-aware analog circuit design. isThaper showed
how how traditional GP-based SR performed poorly on sucblpros, along-
side the poor performance of other state-of-the-art regpagechniques. Then
this paper introduced the latent variable regression (LM&) of the regression
problem, reviewed existing LVR techniques and their startings, and intro-
duced latent variablsymbolicregression (LVSR). LVSR provides a symbolic
model and useful visualizations of the projection vect@a.real-world circuit
modeling problems, LVSR demonstrated significantly lowexdiction error
than traditional non-LVR approaches and a modern LVR apgr¢B2M).
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