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Abstract—This paper presents CAFFEINE, a method to auto- manufacturing effects, different technologies, new dffée.g.
matically generate compact, interpretable symbolic perfomance  proximity [7]), and more. From simulation data, a model
models of analog circuits with no prior specification of an y = f(z) is constructed, wherg is typically a performance

equation template. CAFFEINE uses SPICE simulation data, to tri includes desi . tal iabl
model arbitrary nonlinear circuits and circuit characteri stics. Metric, z Includes design, process, or environmental variables,

CAFFEINE expressions are canonical form functions: produ¢- and f is an approximation of the SPICE mapping. Models
of-sum layers alternating with sum-of-product layers, as éfined used include linear models [8], [9], [25], posynomials 0]

by a grammar. Multi-objective genetic programming trades df  [12], polynomials [13], [14], [25], splines [15], [25], neai
error with model complexity. On test problems, CAFFEINE networks [16], [17], [25], boosted neural networks [18]5]2

models demonstrate lower prediction error than posynomias, - .
splines, neural networks, kriging, and support vector maclnes. support vector machines [19]-{21], [25], latent variabée r

This paper also demonstrates techniques to scale CAFFEINBt gression (LVR) [22], [23], kriging [24], [25], and stochast
larger problems. gradient boosting [26]. However, such models either follow
Index Terms—Macromodeling, Yield Modeling, Performance &N overly restrictive functional template which limits the
Optimization, Transistor Sizing, Posynomial applicability, or they are opaque and thus provide no irtsigh

to the designer. Less opaque flows exist, such as visualizing

CART trees [26], nonlinear sensitivity analysis [26], ooting

. ) ) . the mapping from an LVR'’s first affine transform; x « to
B OTH symbolic analysisand symbolic modelingaim to  hq outputy = f,(wy * x) [22], [23]. While useful, these

derive human-interpretable expressions of analog circyjhnroaches do not give the functional relations that syrabol
behavior [1]. Symbolic analysis extracts the expressioas V,odels provide.

topological analysis of the circuit, whereas symbolic niodge The aim ofsymbolic modelingas defined in this paper is

extracts the expressions by using SPICE simulation dafg.se simulation data to generatgerpretable mathematical
These expressions have the same applications: knowledggessiongor circuit applications, typically relating the cir-
acquisition and educational / training purposes, anafyode! it performances to the design variables. Symbolic madeli
generation for automated circuit sizing, design space®xpha5 similar goals to symbolic analysis, but a different core
ration, repetitive formula evaluation including statisti anal- approach to solving the problem. In [10]-[12], posynomial-
ysis, analog fault diagnosis and testability analysis,@mlog paseq symbolic models are constructed. The main problem is
behavioral model generation [2]. In particular, a tool thah ¢ the models are constrained to a predefined templatehwhi
help a designerimprove his understanding of a circuit i61§ig eqfricts the functional form. Also, the models have dozens
valuable, because it leads to better decision-making BURIr ot torms, limiting their interpretability for designersirially,
sizing, layout, verification, and topology design, regess! o annroach assumes posynomials can fit the data; in analog
of the degree of automation [27]. Therefore, approaches i its there is no guarantee of this. There have also been
generate symbolic expressions are of great interest. —  5qyances in building quadratic polynomial models [13]][14
Historically, symbolic analysis came first, starting with, polynomials also have a restrictive structure.
ISAAC [3] and followed by several other techniques; see The hroplem we address in this paper is how to generate
[2] for a review. Until recently, the main weakness wagympglic models with morepen-endedunctional forms (i.e.
their limitation to linearized and weakly nonlinear cirii \yithout a pre-defined template), for arbitrary nonlineacuits
This was overcome via piecewise-linear/polynomial maueli oy circuit characteristics, and at the same time ensute tha
approaches [4]-[6], but at the cost of interpretability.  the models ardnterpretable Figure 1 shows a target flow
Leveraging SPICE simulations in modeling is promising,; reflects these goals. Note that symbolic modeling istmos

because simulators readily handle nonlinear circuitsirenv ¢ itad to properly-biased design regions (smaller chaiges
mental effects (e.g. temperature, power supply voltagesh  yesign variables), because models covering incorredtyetl

I. INTRODUCTION
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| DOE or Circuit Optimization | Il. PROBLEM FORMULATION

The modeling problem that we address has the flow of

Figure 1. Its inputs and outputs are as follows.
Circuit Sim. Data: N il Given:

(Design Point, Perf.) e 4
Pairs e X and y: A set of {z;,y;},j = 1.N data samples

where z; is a Ny-dimensional design point and y; is

a corresponding circuit performance value measured from
SPICE simulation of that design. Design of experiments
(DOE) [34] or circuit optimization can be used to generate

Interpretable, Open-Ended Model(s) the data samples.
e No model template

| Template-Free Symbolic Modeling |

Determine:

e A set of symbolic models)M that provide the Pareto-
optimal tradeoff between minimizing model complexjty

) ~and minimizing future model prediction errgs.
those functions are overly complex. So, we extend GP via

a grammar [29] specifically designed to have simpler buErhe formulation is a constrained optimization problem:
accurate,interpretable symbolic models. We name the ap-

proach CAFFEINE: @nonical_Rinctional Form Expressions M = minimize {fl
in Evolutiont. f2

The contributions of this paper are as follows: where U is the space of template-free symbolic models.

i The algorithm will traversel to return a Pareto-optimal set
e To the best of our knowledge, the first-ever tool for, _ {mims’m,m}ﬁw}_ Each modeln maps anNg-

template-free symbolic modelingecause it uses SPICEgimensional inputz to a scalar circuit performance approx-

simulation data, it allows modeling of any nonlinear citcUijmation g, i.e.j = m(x). Complexity issomemeasure that

characteristic, or analysis (including transient, no@ed gitterentiates the degrees of freedom between differerdetso

more). (details are in egn. (5)).., L is the expected loss for a given
e The approach returns models that are compact and underover future predictions in the distributignif (x), where L

standable, yet with good accuracy. In fact, it returrse&i is the squared-error loss function [33]:

of possible models thatade off accuracy and complexity

by using multi-objective search [30]. L(y, m(z)) = (y —m(x))?)/2 (2)

* A specially-designed grammar to give functionsanon- gection V-A describes how an approximation fdx) is
ical form, which enhances interpretability. The grammag,m,ted. By definition, no model in the Pareto-optimal set
plugs into any grammatical-GP engine, e.9. [29], [31]- »; gominates any other model. A model, “dominates”

e Techniques tascalesymbolic modeling to problems with another modetn,, if {f;(m.) < f;(ms)}V4, and{f;(m,) <
more than 100 input variables. The techniques are: sup{(m,)}3;; j = {1,2} in our case. That is, to be Pareto-
tree caching [32], gradient-directed regularization [83] optimal, a model must be at least as good as any model on
simultaneously prune basis functions and learn remainipgth objectives, and better than any model in one objective.
coefficients, a pre-evolution step of filtering single-adlie
expressions, and always considering all the linear basis I1l. BACKGROUND: GENETIC PROGRAMMING
functions.

Fig. 1. Template-free symbolic modeling flow.

complexity(m
Ew,yi(y,ng((w)))} st.mevw (1)

Genetic Programming (GP) [28] is an evolutionary algo-
This paper is organized as follows. Section Il presents thighm, with the distinguishing characteristic that GP iridi
problem formulation. Section Il presents background ouals (points in the design space) drees Since a symbolic
genetic programming. Section IV introduces the heart efiodelis a function and can be represented as a tree, thérsearc
CAFFEINE: canonical form functions. Section V describes thfor the above models can be accomplished by GP search.
reference search algorithm, which uses multiobjectiveetien ~ The functional form of results from canonical GP is com-
programming and a grammar to constrain to canonical forpletely unrestricted. While this sounds promising comgdce
functions. Section VI describes the first round of experitaenthe restrictions of fixed-template regression, it actugles a
Section VIl describes how to scale up CAFFEINE to largdittle too far: an unrestricted form is almost always difflicu
problems, with corresponding experiments in section VIIfo analyze. GP-evolved functions can be notoriowsiyplex
Section IX describes other applications of CAFFEINE. Qecti and un-interpretable For example, [28] showed functions so
X discusses the sensitivity of canonical form functionshe t bloated [35] that they take up a full page of dense text. A
search algorithm employed. Section X concludes. recent paper complains: “[GP-evolved] expressions can get

as we have seen, quite complex, and it is often extremely

difficult to understand them without a fair bit of interaatio

1An earlier version of CAFFEINE appeared in [27]. with a tool such adMathematica [36].
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We can see for ourselves. Using a dataset from section VI,
canonical GP evolution returned the following expreskion
- 1.40 » ( vsgl + max( vsg5, max( max( max( vsgs5,
max( vsg3 + vgs2, mn( vsg3, abs( 1/vds2 ) ) ) -
1 0g10(vsd5) ), mn( ib2, abs( sqrt( abs(idl) ) ) ) )
- log1l0(vsd5), max( id2, mn( vsg3, abs( sqgrt( abs(
logl0(id2) ) ) ) ) ) + loglO(vsd5) ) - min( vsg3,
abs( sqgrt( abs(idl) ) ) ) - 1ogl0(vsd5) ) )
Improvements in interpretability are clearly needed. The fx) =103 +7.1/x%
next section presents CAFFEINE to handle this issue. +187% 7 og( 1.9+ 8.0/ +1.47%% /%, )

Fig. 3. Example of a function in text form, and its correspogdCAFFEINE
IV. CAFFEINE CANONICAL FORM FUNCTIONS tree form.

The design of CAFFEINE follows two guidelines: ensure
maximum expressiveness per node, and make all candidate

functions directly interpretable. Figure 2 shows the gaher wu ‘”'

structure of a CAFFEINE function. It alternates between of vars

levels of sum-of-producexpressions angroduct-of-sumex-

pressions. Each sum-of-product expression is a weightedii =108 +7.1/% /7

add of an overall offset term plus weighted basis functidns. +187%, " (1.948.0/% +1.47%,/%)* (32 +5.9 " x2/x,)

basis function is a combination of product terms, where each . L
. . . . Fig. 4. Example where CAFFEINE product terms include unitpdtions.

product term is a polynomial/rational, zero or more nordine

operators, and zero or more unity operators. Each produrat te

acts as a “gate” to the next sum-of-products layer.

sum of
products
product product
of sums of sums /--"

components such agg(sin(exp(x))). There can also be a
limit on the maximum number of basis functions. Due to the
use of a canonical form, all evolved functions are immedijate
interpretable, with no symbolic manipulation needed.

% V. CAFFEINE SEARCH ALGORITHM

7 This section describes the search algorithm used on CAF-
FEINE functions. CAFFEINE search uses GP as a starting
point, but extends it in order to properly address templege-

Fig. 2. CAFFEINE evolves functions of this canonical formhMg it can  Symbolic modeling. It attacks the issues of complexity and

go deeper indefinitely, it is typically only as deep as showwrider to retain interpretability in two main ways: a multi-objective appah

human interpretabilty. that provides a tradeoff between error and complexity, a

ecially designed grammar and operators to constrain the

arch to specific functional forms without cutting out good
solutions. As described in the previous section, in CAFHREIN
the overall expression is a linear function &f; basis func-
tionsB;;i=1,2,..., Ng:

Figure 3 shows an example function and its correspondiég
tree. In the 7.1/x3” part of the function, the 7.1 is the tree’s
top left “wy” and the “1/x3" is its neighboring “poly/rat’l of
vars”. The “1.8" corresponds to top,”, and the “t;” is
the its neighboring “poly/rat’l of vars”. The function'ség”
corresponds to “nonlinear func”, which in the tree holds the Np
“weighted linear add” term“1.9+8.0/z1+1.4xx3 /23" That g=m(x) =ao+ Z a; * Bi(x) 3)
term itself breaks down: function’s the—1.9" is the tree’s i=1
lower “wo fset™; *8.0/21” corresponds to the tree’s lower left A CAFFEINE individual m has one GP tree to define
“wo” * “poly/rat’l of vars”; and “1.4x a3 /x3” corresponds t0 each basis functionm = {Bi,Bo,..., By,}. The linear
the tree’s lower right @,” * “poly/rat’l of vars”. Note how coefficientsa € V= +! are determined on-the-fly using linear

CAFFEINE places coefficients Only where they are need%gression on the |east_squares cost function (2)
and nowhere else.

Figure 4 gives an example which has unity functions fo S
prod%ct tern?s. Note how tﬁere i®0 nonlinear f)l/mction that '& Multi-Objective Approach
gates one layer of linear adds to the next — this is how CAFFEINE uses a state-of-the-antlti-objectiveevolution-
CAFFEINE supports a product-of-sums formulation. ary algorithm, namely NSGA-II [30]. NSGA-II returns a set
Typical usage of CAFFEINE would restrict the number off individuals that, collectively, trade off model error cn
product term layers to just one or two, therefore ensurifgPmplexity. Error and complexity are objectivgs and f>

that there is not an excessive compounding of nonlinelfr€dn. (1). Error (expected loss; , L) is approximated by
the “training error’e,,., which is is the normalized root mean

1The expression font and style are presented like [28]. squared error of individual: on the training data:
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First, we describe the notation of Table I. The nonterminal
N — 5 symbols are in bold-case; terminal symbols are not. Eaeh lin
1 - Ytri — Ytryi (or two) shows the possible expressions that a nonterminal
— ) < : ) (4) . : :
Ny P max(y) — min(y) symbol on the left can map~) into. The possible expressions,
i.e. “derivation rules” are separated by the OR operatdr “
where Ny, is the number of training sampleg,,; is sample  we now explain how the grammar implements canonical
i of training outputsys,., Jiri = F(Ttr,i;m), and @i, S form functions. REP is short for “repeating”, such as “re-
samplei of training inputs X,.. Note that the y-values arepeating operatorsREPOP and “repeating variable combo”
scaled byy, not yi. e has a similar formula, exceptREPVC, which are explained further. The start symbol is
the Ny, training points{y:-, X+, } are replaced by théV;.;: REPVC, which expands into one basis function (remember
testing points{ytest, Xtest }- that an individual has several root-level basis functiohsjte
Complexity is measured from the number of basis functionge strong distinction among operators. The root is a produc
the number of nodes in each tree, and the exponents gdfvariables REPVC) and / or nonlinear functionsREPOP).

€r(m) =

“variable combos” YCs), according to: Within each nonlinear function iIBEPADD, the weighted sum
of next-level basis functions.
Ng nve(j) A VCis a “variable combo”, intended to maintain a compact

complexity(m) = Z(wb+””0des(j)+ Z vecost(veg ;))  representation of polynomials/rationals. Its expansionolad

k=1 have been implemented directly within the grammar; though
(5) in our baseline system we store a vector holding an integer
wherew, is a constant to give a minimum cost to each basiglue per design variable as the variable’s exponent. An
function, nnodes(j) is the number of tree nodes of basisxample vector is [1,0,-2,1], which meas; * z4)/(z3)?,
function j, andnvc(j) is the number o¥/Cs of basis function and according to eqn. (6) has cOBt+ |0] + | — 2|+ [1] = 4.

Jj=1

J» with cost: This approach guarantees compactness and allows for kpecia
N, operators on t.he vecto.r.. S
veCoSt(vE) = W * Z loe(d)| ©®) In determlnmg coefﬁue_n_t values, we d|_st|ngu|sh between
linear and nonlinear coefficients. As described, a CAFFEINE

o _?:1 . ) _individual is a set of basis functions which are linearly edd
The approach accomplishetmplification during generation g4cpy pasis function is a tree of grammatical derivationsehr
[37] by maintaining evolutionary pressure towards lowemeo cqefficients are found by evaluating each tree across alitinp
plexity. The user avoids am priori decision on error or gampnjes to get a matrix of basis function outputs, then tdyapp
complexity because the algorithm generatesegof models |ga5t-squares regression with that matrix and the targpuou
that provide tradeoffs of alternatives, rather than pradgic \ector to find the optimal linear weights.

Just one model. . ) i ) With each nonlinear coefficientVin the tree (i.e. ones

_ Note that specific parameter settings are given in the exPi{a¢ are not found via linear regression), a real value will

iments (section VI). accompany it, taking a value in the range2 = B, +2  B].
During interpretation of the tree the value is transformett i

B. Grammar Implementation of Canonical Form Functions [—~1le+ B, —1le— B]U[0.0]U [le — B, le + B]. B is user-set;

In GP, a means of constraining search is via a grammar,s(fse section V'_'A- X
in [29]. Tree-based evolutionary operators such as crassoy FON @ b) is a’. When the symboRARGS expands to
and mutation must respect the derivation rules of the gramm{cluUdeMAYBEW either the base or the exponent (but not both)

Even though grammars can usefully constrain search, ndffd! Pe constants.

have yet been carefully designed for functional forms. In de | "€ designer can tum off any of the rules in the grammar
signing such a grammar, it is important to allow all functbn of Table I, if they are considered unwanted or unneeded. For

combinations (even if just in one canonical form). example, he could easily restrict the search to polynonaals

The CAFFEINE grammar, shown in Table I is explicitlyraﬂonals' or remove potentially difficult-to-interpratrfctions
designed to create separate layers of linear and nonlin§4F" @ssin and cos He .colulggalso chac?ge or extend the
functions and to place coefficients and variables carefidly CPerators or inputs, e.g. includ&;, L;, andW/L;.
adherence with Figure 2

C. High-Level CAFFEINE Algorithm

TABLE |
CAFFEINE GRAMMAR. Table Il gives the algorithnExtractSymbolicCaffeineMod-
els(). It takes in the training inputsX and training outputs
REPVC — VC | REPVC * REPOP | REPOP i imal t modela/. Li
REPOP — REPOP + REPOP | OP_1ARG ( W+ REPADD) | Y. _It will output a Pareto-optimal set of model3/. Line 1
OP_2ARG( 2ARGS) | ... 30P, 40P, etc initializes M, the current set of parent®, and current set
2ARGS +— W+ REPADD MAYBEW| MAYBEW W+ REPADD of children @, all to empty sets. Lines 2-3 loops across the
MAYBEW:— W | W+ REPADD . ; LR
REPADD +— W+ REPVC | REPADD + REPADD population sizeN,,, to _randomly _draw each mtﬁwdugﬂ
OP_2ARG+— DIVIDE | PON| MAX | etc from the space of possible canonical form functiohsLine

OP_1ARG — INV | LOGIO | etc 4 begins the EAs generational loop of lines 5 and 6. The
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loop stops when the target number of generatidns, ... variables. It shows the actual symbolic models generated,
is hit. Line 5 does the main EA work, which here is a singleneasured error vs. complexity tradeoffs, how predicticorer
generation of the NSGA-II multi-objective EA (see [30] forand complexity compare to posynomials, and how prediction
details). Line 6 updates the external archive of Paretay@dt error compares to other state-of-the-art (blackbox) regjom
individuals, M, by nondominated-filtering on the existifg approaches. The extension to larger problems is described i
with the recently updated parenf3 and children@. Line section VII.

7 of Table Il concludes th&xtractSymbolicCaffeineModels()

routine, by returning the Pareto-optimal symbolic models, A Experimental Setup

TABLE I Unary operators allowed arey/(z), logio(z), 1/z, x2,
PROCEDUREEXTRACTSYMBOLIC CAFFEINEMODELS() sin(x), cos(z), tan(z), maz(0,z), min(0,x), 2%, and10%,

hpits X g wherex is an expression. Binary operators allowed are-x-,
Outputs: M X1%T2, max(xy, T2), min(x1, x2), power(xy, x2), andz /zs.

L M=0;P=0;Q=0 Conditional operators include& (testExpr, condExpr,

g' for Z;i“éjv”o?' exprl f LessThanCond, elseExpr) and < (testExpr, 0,

4. for N;en = 1..Ngen.maz: exprl fLessThanCond, elseExpr). Any input variable

5. {P,Q} = OneNsgaiiGeneratioi, Q) could have an exponent in the range., -1, 1, 2, .. }. While

8 o = nondominatedFiteRf U P L Q) real-valued exponents could have been used, that would have

harmed interpretability.

The circuit being modeled in this example is a high-speed
) CMOS OTA as shown in Figure 5. The goal is to discover
D. Evolutionary Search Operators expressions for the low-frequency gaim(r), unity-gain

We now describe how trees are randomly generated, aineéquency ¢'U), phase margin RM), input-referred offset
explain the search operators on the trees. The search operatoltage VOFF), and the positive and negative slew rate
are grouped by the aspect of search representation that th&y,, SR,). To allow a direct comparison to the posynomial
concern: grammar, real-valued coefficient, variable caosnbapproach [10], an almost-identical problem setup was used,
(VGCs), and basis functions. well as identical simulation data. The only difference iatth

Random generation of trees and subtrees from a given sybecause scaling makes the model less interpretable, n#éithe
bol involves merely randomly picking one of the derivatiais inputs nor the outputs were scaled. The one exception is that
one of the symbols, and recursing the (sub)tree until teaminF'U is log-scaled so that the mean-squared error calculations
symbols are encountered (subject to tree depth limits). and linear learning are not wrongly biased towards high-

Grammatical restrictions on the trees lead to a natunalagnitude samples afU. The technology is 0,/m CMOS.
grammar-obeying crossover operator and mutation opgror The supply voltage is 5W;, nom IS 0.76V and -0.75V for the
described by Whigham [29]. Whigham-style crossover workdMOS and PMOS devices, respectively. The load capacitance
as follows: it randomly picks a node on the first parent, thea 10 pF.
randomly picks a node on the second parent with the constrain

that it must be the same grammatical symbol (8EPOP) as , idd
the first node, and finally swaps the subtrees corresponding ’_|E] ﬁE] hsa Hém H
to each node. Whigham-style mutation involves randomly — —
picking a node, then replacing its subtree with a randomly- ’_{ ﬁE o H . H
generated subtree (as in the generation of initial trees).
Real-valued coefficients are mutated according to a Cauchy . wnsor] M1:Mm Fonnn
distribution [38], which cleanly combines aggressive loca -
tuning with the occasional large change. LlEr u . L{
The specialized structure &Cs get appropriate operators, E'_wl
which include: one-point crossover, and randomly adding or l_” . ‘
subtracting to an exponent value. e l.'JI It
Each individual has a list of basis functions, which also we

leads to speqal operatgrs: crefe\tlng a new individual by 8. 5 CMOS high-speed OTA.
domly choosing>0 basis function from each of 2 parents;

deleting a random basis function; adding a randomly geedrat 4 training data is essential to the methodology. The

tree as a basis function; copying a subtree from one indafidysice of design variables and sampling methodology deter-
to make a new basis function for another. mines the extent to which the designer can make inferences
about the physical basis, and what regions of design space th
VI. EXPERIMENTAL RESULTS model is valid in. We used an operating-point driven formu-
This section describes the application of CAFFEINE ttation [39], where currents and transistor gate drive \geta
building symbolic models for analog circuits that map decomprise design variables (13 variables in our case). [Bevic
sign variables to performances, for problems with 13 inpsizings could have been used as design variables instead; it
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all depends on designer preference. Full orthogonal-foyf®r  errors only one nonlinear functiotin(), appears (forAy r).
Design-Of-Experiments (DOE) [34] sampling of design psintThe in() indicates that the order of magnitude of some input
was used, with scaledz=0.1 (wheredz is % change in variables is meaningful.

variable value from center valde)to have 243 samples.

Simulation time for one sample was about 1 s, or 4 min for TABLE 1l
CAFFEINE-GENERATED SYMBOLIC CIRCUIT MODELS OF THEOTA OF

all Sample_S; this is fu_”y dependent _On the circuit, anaéyse FIGURE5 WITH <10%TRAINING ERROR AND <10%TESTING ERROR
and experimental design method being used. These samples,

otherwise unfiltered, were used as training data inputdinggs | Perf. Expression
data inputs were also sampled with full orthogonal-hypkecul_S"2" :
DOE and 243 samples, but withz=0.03. Thus, in this ALF ;}%37’ :l;‘(ofi'_gé’e‘ngrl_008+10/(v891  vegs)
experiment we are creating a somewhat localized model; gne +1.42e+9%(vgsn * Vdss)/(Vsgl * Vgs2 * Vgss5 * a2))
could just as readily model a broader design space, but this FU 10(5-68—0.03%vg51 /vgsz —55.43%7a1 +5.63¢=6/ia1)
allows us to compare the results to [10]. vg]\,;[F 902-502_;90-6 *id1/Vgs1 + 22.2 % idg /Vds2

The run settings wereNp = maximum number of basis —c7- T 36e T TT05e+ a0 figy — 1007 /iy T 2156797
functions = 15 (any larger is definitely non-interpretablg),, +4.63e+8xi 47
= population size = 200 (like NSGA-II's default)y,en max SRn —5.72e+7—2.50e+11x(ig1 * idz)/vgs2
= 5000 generations (more than enough time to converge), +5.53e+64vasn /Ugs2 + 109.7/iar

maximum tree depth = 8 (so that each basis function has
exactly one layer of nonlinear operators), and “W” coeffitie =~ One can examine the equations in more detail to gain an
range[—1le + 10, —1le — 10] U [0.0] U [le — 10, 1e 4 10] (i.e. understanding of how design variables in the topology affec
B=10; therefore coefficients can cover 20 orders of magnijtuderformance. For examplel, p is inversely proportional to
both positive and negative). All operators had equal praipab i« the current at the OTA's differential pair. O%,2,, is solely
(a reliable setting), except parameter mutation was 5x md¥ependent ony; and iz and the ratioig: /ig2. Or, within
likely (to encourage tuning of a compact function). Comjtiex the design region sampled, the nonlinear coupling among the
measure settings were, = 10, w,. = 0.25. That is, the cost design variables is quite weak, typically only as ratios for
of adding a basis function is relatively high compared to thériables of the same transistor. Or, that each expressiyn o
cost of adding another variable combo. contains a (sometimes small) subset of design variables. Or
One run was done for each performance goal, for 6 rufidat transistor paird/1 and /2 are the only devices affecting
total. The original non-optimized implementation was intMa five of the six performances (within 10% error).
lab, therefore using pass-by-value functions; a singletoak ~~ We now examine the CAFFEINE-generated tradeoffs be-
approximately 12 hours. The optimized implementation wias tween training errok;,. (eqn. (4)) and complexity (egn. (5)).
Python using pass-by-reference functions, caching, ang méigure 6 illustrates. All models in the tradeoff of trainiegor
as described in section VII; a single run on these problerds. complexity are shown: as complexity increases, thaitrgi
took approximately 10 minutes. error decreases. In each performance instance, CAFFEINE
We calculate normalized mean-squared error on the trainiggnerates a tradeoff of about 50 different models. As exgoect
data and on the separate testing dataande,.,; as described a zero-complexity model (i.e. a constant) has the highest
in eqn. (4). These are standard measurements of modelyqudti@ining error of 10-25%. The highest-complexity modelséa
in regression literature. The testing eregr.; is ultimately the the lowest training error, of 1-3%.
more important measure, because it measures the modd¥'s abiwe can also examine the curves relating complexity to
ity to generalize to unseen data. These measures are igentige number of basis functions. Recall that complexity is a
to two of the three posynomial “quality of fit” measures irfunction of both number of basis functions, and the compyexi
[10]: its measure “worst-case quality;,.. is the training error of each tree within each basis function. In the curves, we
eq, and its measure “typical case quality;, is €;..; (as long see that the number of basis functions usually increasds wit
as long as the constant ‘c’ in the denominator is set to zetbe complexity. However, sometimes complexity increases b

which [10] did.) having larger trees within existing basis functions, ratiman
adding more basis functions. This can be seen in the curges: a
B. Results: Whitebox Models and Tradeoffs complexity increases, the number of bases temporarilyldeve

: . : ff, or even decreases.
Let us first examine some symbolic models generated By

CAFFEINE. We ask: “which symbolic models have 10% The testing errore;c., is also shown in Figure 6. We
training and testing error, with the lowest complexity?'bla see that unlike the training error, it is not monotonically

I1l shows those functions. (Note th&tU has been converted decreasing as complexity MSEs. .Th's means that some less
to its true form by putting the generated function to th omplex models are more predictive than more complex ones.
ijowever, we can prune the models down to the ones that give

a tradeoff between testing error and complexity, as shown in
@gure 7. These are the most interesting and useful.

It is notable that the testing error is lower than the tragnin
error in almost all cases. This sounds promising, but such
1The simpler problem ofiz=0.01 from [10] is ignored in this paper. behavior is rare in the regression literature, and made us

functions, not including the constant. FGIO F' F', a constant
was sufficient to keep the error within 10%. We see that
rational functional form was favored heavily; at these édrg
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Fig. 6. Plots of models’ training error, testing error, anghtber of bases vs. the complexity for each performance gwaht opamp of Figure 5. Every
(diamond, triangle, square) triplet corresponds to a symbolic model at a given compjexit

2: 8 Ti_l’_l_k error. A constant of 90.2, while giving 15% training erroach
X ooty —rene® only 4% test error. For better prediction, CAFFEINE injette

TN two more basis functions; one basis being the current into
* the differential pairig;, the other basisige/vas2, being the
1= \ ratio of the current to the drain-source voltage f2; i.e.

A N M?2's small-signal output conductance /{,..2). The next

o B ~ model turns the input current term into a ratig /vgs1; i.€.

s H\*“\‘* M1's transconductance, inverted /,,1). Interestingly, and

263 R 7;‘4100 —— reassuringly, almost all ratios use the same transistohén t

. numerator and denominator.

Such analyses demonstrate the core aim of CAFFEINE sym-

Fig. 7.  Every (diamond, triangle) is a symbolic model ford, - like  polic modeling: gaining insight into the design-perforroan
Figure 6, except filtered to only keep models on the tradebtestingerror relationship

vs. complexity.

guestion what was happening. It turns out that there is aivaﬁ:' Results: Comparison to Posynomial Symbolic Models

reason: recall that the training data is from extreme poifits We also compared CAFFEINE to the posynomial approach
the sampling hypercube (scaléd=0.10), and the testing datausing the posynomial results in [10]. We first compare model
is internal to the hypercubel{=0.03). This testing data testscomplexity. To pick the models to compare, we first choose
theinterpolationability. Thus, models that realgre predictive the CAFFEINE model which meets the reported posynomial
should be able to interpolate well, even at the cost of a perfdéraining and test error of [10], then we compare the number of
fit to the extreme points. In any case, validly having theingst posynomial coefficients to the number of coefficients appear
error lower than the training error demonstrates the stiengng in the CAFFEINE expressions (this is reasonable when the
of the CAFFEINE approach. CAFFEINE expressions are largely rationals; more complex
By only putting the relevant variables into a model, theymbolic models would be less appropriate). As Figure 8
approach demonstrates the potential to provide expresfion shows, the CAFFEINE models are 1.3 to 6.4 times more
circuits with significantly more variables (see next settio compact than the posynomial models. And, WOF F', the
One may improve the understanding of the basic depend@mly performance that the posynomials had slightly better p
cies in a circuit in another fashion: by examining expressio diction error than CAFFEINE (see Figure 9), the CAFFEINE
of varying complexity for a single performance charactéris model is 6.2x more compact.
Low-complexity models will show the macro-effects; alter- We can also compare the prediction abilities of CAFFEINE
ations to get improved error show how the model is refined to posynomials. To pick a model from a CAFFEINE-generated
handle second-order effects. Table IV shows models gesttratradeoff for comparison, we fixed the training error to what
for the phase margin (PM) for decreasing training and tgstithe posynomial achieved, then compared the testing errors.
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TABLE IV

CAFFEINE-GENERATED MODELS FORPM OF THEOTA OF FIGURES5, IN ORDER OF DECREASING ERROR AND INCREASING COMPLEXITY

Test Train P M Expression
error (%) error (%)
3.08 15.4 90.2
371 10.6 90.5 4 186.6 * iq1 + 22.1 * 142/ Vgs2
3.68 10.0 90.5 + 190.6 * 141 /Ugs1 + 22.2 * ig2/Vas2
3.39 8.8 90.1 4 156.85 * 141 /vgs1 — 2.06e-3%142 /141 + 0.04 % vgs2/vgs0
3.31 8.0 91.1 — 2.05e-3%i g5 /iq1 + 145.8 * ig1 + 0.04 % Ug52 Vg2 — 1.14/Vgs1
3.20 7.7 90.7 — 2.13e-3%1 g0 [iq1 + 144.2 * ig1 + 0.04 % Ugs2 /Vgs2 — 1.00/(Vgs1 * Ugs3)
2.65 6.7 90.8 — 2.08e-3xi42/iq1 + 136.2 % 147 + 0.04 * vgs2 /vgs2 — 1.14/vg51 + 0.04 % vg53 /v4s5
2.41 3.9 91.1 — 5.91e-4%(vgs1 * i42)/tq1 + 119.79 * igy + 0.03 % vgs2 /vgsa — 0.78/vgs1 + 0.03 % vgs1/V4s5
—2.72e-7/(Vgs2 * Vass * 1) + 7.11 % (Vg2 * Vgsa * ig2) —0.37/vsgh — 0.58 /vgs3 — 3.75e-6/142 — 5.52e-6/i41
CAFFEINE ability even in interpolation. CAFFEINE models predict far
. _EZSFVF“;:IE' 2X 6.dx fewer better, and with more compact models. Given this, one can
P % reasonably question the trustworthiness of constrainivadog
8 % circuit performance models to posynomials.
8= \
‘ .
[T .
8 % D. Results: Comparison to State-of-the-Art Blackbox Regre
*® § sion Approaches
§ While other modeling techniques may produce models
’ ’ that are opaque (and therefore not interpretable), it i sti
ALF- fu - PM - voff SRp  SRn instructive to see how well CAFFEINE compares to them in
Performance Metric .. e
terms of prediction ability. So, on the 6 problems already
Fig. 8. Comparison of the complexity of CAFFEINE models tsymomial described in section VI-A, we tested the fOHOW'ng regres-

sion techniques: a constant, linear models with leastregua
fit, full quadratic models with least-squares fit, projentio
based quadratic (PROBE) [13], posynomial [10], stateheft

models [10]. Method: (1) choose CAFFEINE model that meetsypomial
training and test error, then (2) compare number of coeffisie

35% art feedforward neural networks (FFNN) [40], boosting the
& a0% - T oroml 3% FFNNs, multivariate adaptive regression splines (MARS). (i
5 g | OATTERE § piecewise polynomial with stepwise construction) [41hde
IE 25% —e- Corr. trn.error at those test \\ i L.
§ o errors § squares support vector machines (LS-SVM) [42], and kriging
i . [43].
§ " o § Model builders were coded and configured as follows. The
% 0% T “ § 7 code to build constant, linear, and full quadratic models wa
§ o A e 20 ) % about 25 lines of Matlab. The model building time was a few
oo §1§ﬂ§ ; \\ \\ seconds, at most. The code to build PROBE was about 100

ALF fu PM voff SRp SRn
Performance Metric

lines of python, using Numeric / LAPACK for least-squares
regression and maximum rank of 2. Model building time was
a few seconds, at most. The posynomial results were taken
directly from [10]; it reports that the model building time
was 1-4 minutes (on a slower machine). The target training
error for the other model builders was the posynomial’s
training error from [10]. The FFNN is trained via an adaptive
The results are in Figure 9. In one ca$&)F F', CAFFEINE Levenberg-Marquardt optimization scheme (OLMAM); we
did not meet the posynomial training error (0.4%), althougised the Matlab code of [40]. Settings were NumRestarts = 10,
it probably could have with more basis functions; we insteddaxEpochs = 5000. The time to build a single network was
picked an expression which very nearly matched the posyaibout 10 s. A suitable error was typically found in the first or
omial approach’s testing error of 0.8%. What we saw in theecond restart of about 3 hidden neurons. Therefore the tota
previous data, and what we see again here, is that CAFFEINi®del building time was about (10 s) * (10 restarts) * (first 2
has a lower testing error than training error, which progideneurons) + (10 s) * (2 restarts) * (1 final neuron) = 10*10*2 +
great confidence to the models. In contrast, in all cases Mit*2 = 220 s = 3.7 min. The boosted FFNN was Matlab code
VOFF, the posynomials had a higher testing error than traimrapping the OLMAM code. Settings were NumModels = 20.
ing error, even on this interpolative data set. The CAFFEINEodel building time was about (220 s to discover NumHid)
models’ testing errors wer@x to 5xlower than ones from + (10 s)*(20 models) = 220 s + 200 s = 420 s = 7.0 min.
the posynomial models. The exceptionW®) F'F', where the A 10x speedup via a C implementation would make this 42
posynomial achieves 0.8% testing error compared to 0.95%6The MARS model builder was about 500 lines of Matlab
for CAFFEINE. In short, posynomials have poor predictiosode; model building time was about 5 minutes. The SVM is

Fig. 9. Comparison of CAFFEINE testing error to posynométing error.
The CAFFEINE model training error corresponding to the gitest errors
is also shown.
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trained using the least-squares strategy (LS-SVM); we tieed performance because they have different biases.

Matlab code from [42], with all settings at “fully automdtic ~ Kriging performed fairly admirably in this setting. This
model building time was about 5 minutes. The kriging modé not surprising because it tends to perform well when the
builder was about 200 lines of Matlab code, wéh,;,, = 0.0, input samples have relatively uniform spacing, as they do
Omaz = 10.0,pmin = 0.0, praz = 1.99. The model building here with the DOE sampling. Kriging, FFNNs, and boosted

time was about 5 minutes. FFNNs did worse than CAFFEINE and MARS, most likely
Figure 10 shows the resulting test errors for the 6 perfobecause they did not have the helpful (for this application)
mances (adapted from [25]). bias towards the input axes. The boosted FFNN did not have

noticeably superior performance to the FFNN, which means
that overfitting was likely not an issue with the FFNN. The
SVM'’s performance was poor, probably because it treated the
variables it selected too uniformly. Also, the support vectt
the center of the sampling hypercube has to reconcile all the
other samples, which it does not really have enough paramete
to do properly. Because kriging did substantially betteanth
SVMs, the choice of kernel distance function was likely
not an issue. Interestingly, only three approaches, namely
CAFFEINE, MARS, and kriging, did better at prediction than
a constant. This is not because constants are good predictor
per se but because other predictors failed for the various
reasons described. Put in another way, the other predictors
attempts to predict outputs from unseen (testing) inpuds di
poorly because the models generalized in poor directioats th
caused more extreme error values, whereas the constant neve
had extreme error values.
Fig. 10. Comparison of prediction ability of CAFFEINE to ttaf-the-art We can_conS|der how well a .mOd.eI’S structure can _capture
modeling techniques. the mapping where no overfitting is present, by taking the
number of training sample®v;,, — oo. If the model can
On this dataset, CAFFEINE has the lowest average predapproximate arbitrary nonlinear functions, then with egiou
tion error. MARS comes in very close. Kriging is the nextdesmodel building effort, training erroe,,. = 0, and €t — 0
The FFNN, boosted FFNN, and SVM are all very close, aras N;, — oo. The following approaches can approximate
perform about the same as the linear model. The quadratic aritrary nonlinear functions: MARS (with enough basisdun
posynomial approaches and posynomial approaches perfaroms), CAFFEINE (with enough basis functions and depth),
the worst. FFNN (with enough hidden nodes), boosted FFNN (with
The results on different regressors inform us about thlough hidden nodes and ensemble entries), SVM (using all
nature of the data and models. Progressing across the gpectsupport vectors and a narrow kernel bandwidth), and kriging
of polynomial complexity — from the simplest linear modelgusing all training datapoints and a narrow kernel bandwidt
to posynomials to projection-based quadratic to full qa#idr
— the predict.ion error continually worsens. It turns outttha VIl. SCALING Up CAFFEINE: ALGORITHM
the polynomials even capture theaining error poorly; for ] . ] )
example the projection-based quadratic had a training efro e ran the algorithm described in section V on larger
about 10% for each performance. Since the prediction erfdfcuits — problems with more than 100 input variables.
became lower the more constrained the polynomial modE€ results were disappointing: despite good performamce o
was, this indicates that where the models do attempt to Lggaller problems, CAFFEINE was toq slow to return _mterest-
the added flexibility to predict better, it backfires. In geale N9 results on these larger problems in reasonable timet Tha
this is indicative that a polynomial functional templatenist €XPerience motivates this section. The aim is to alter thecke

appropriate for circuit performance mappings, even fos thRl90rithm so thatit can scale to problems of 100 variablés T

relatively simple OTA circuit. specific aims are to run faster (hours or minutes), yet mainta
CAFFEINE only selects input variables that really mattePredictive and interpretable models. The improved CAFREIN

It is biased towards the axes of the input variables rathem thi€verages four complementary techniques:

being affine-invariant. That is, CAFFEINE expressions ande Subtree caching [32]

search operators work on one or a few input variables at 3 timg  Gradient-directed regularization [33] to simultaneously
as opposed to using all variables in a weighted sum. MARS pryne basis functions and set coefficients for the remaining
did similarly, because its stepwise-forward nature makatso basis functions

biased towards the axes and is selective of input variable§. Filter single-variable expressions in a pre-evolutiomste
While CAFFEINE had the best or near-best prediction error ) } i i
on 5 of the 6 performance goals, MARS had the best or nea® Always consider all linear basis functions

best on 3. As we shall see, the other approaches lose pmdictiVe now describe each technique in detail.
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A. Subtree Caching of pruning: 0.0 is like ridge regression, 1.0 is like lassnda

In the original implementation of CAFFEINE, every time/alues in between strike a compromise.
a tree was changed, it would have to fudly re-evaluated. = We employ GDR here (with settings given in section
The technique of sub-tree caching [32] sidesteps evahmtio/!!I-A). The result is that we can have CAFFEINE individuals
in some nodes of the tree. Given that the training datad@h a large number of basis functions, and in a single pass
does not change, when a new tree is created from pargrQR will drive many linear coefficients to zero (i.e. prune
tree(s) via the search operators, opigrt of the new tree is the basis functions), and set robust values for the remginin
different. Therefore, we evaluate just the nodes of thettrae linear coefficients. GDR is fast too: our 300-line python
have changed, and their parent nodes, aachethe results. implementation of GDR has about the same runtime as the
The “evaluation” for other nodes merely uses the evaluat8ighly-optimized LAPACK linear LS solver [46].
results that have been cached previously. Note that to do thi
cleanly, CAFFEINE was re-implemented in Python, whereas . o . ) )
the previous implementation was in Matlab. This improveft- Pre-Evolution Filtering of Single-Variable Expresséon

runtime further because Python passes function values byrhe third scalability-improving technique focuses therska
reference, whereas Matlab passes by value. towards the most promising single-variable nonlinear ex-
pressions. It determines those expressions with the mutin

B. On-the-fly Pruning with Gradient-Directed Regularipati EXtractUsefulExpressionsGhown in Table V, prior to the

. . . - evolutionary run (i.e. right before line 2 in the procedurfe o
In previous subsections, the linear coefficieatof eqn. ry ( 9 P

(3) were learned by minimizing the least-squares (LS) Io.;,rsable ). ExtractUsefulExpressions€pnsiders a large set of

function on the training data. But for larger problems h@MnpossiblesingIe—variableexpressions at once, and extracts the

potentially more basis functions, the LS predictions can brréost promising ones.

unstable because there is higher variance in the range of TABLE V
possible parameters. Furthermore, to keep the complexity PROCEDUREEXTRACTUSEFULEXPRESSIONE)
down, it is desirable to have a more aggressive way to prune
the basis functions. Regularization is promising becatise #NPuts: X, y, tin;
licit] f . d . . . Outputs: Bysegul
explicitly accounts for parameter variance and can |m_ﬁry|C| 1 B={}i=1
prune basis functions on-the-fly. Historically, the maimy-re 2. for each input variable = {z1, z2, ...}

ularization choices have been ridge regression [44] and th% for each operatoop = {unity(), logio, ...}
. . . . . for each exponentzp = {-2, -1.5, ..}

lasso [45]. Unfortunately, ridge regression does littlearpng, 5 define B; asop(v)e™?

and the lasso prunewo aggressively. Fortunately, a new 6. B=BUB;;i=i+1

technique, gradient-directed regularization (GDR) [38jikes /- X5 = simulate X on eachB;
- . L 8. a = GDR linear learning onXg — y.
a compromise. .GDR does gradlent-based optimization on thg 1i = compute influence of3; according to (11): for each;
loss functionf, in eqn. (1) according ta’'s update rule: 10. B = sort B in descending order of;
11. Buseful = @, Lot =0;7=1
12. while ttot < teps:
a=a+ Avxh (7) 13. Buseful = Buseful U B;
. e . 14. ttot = ttot + L
where Av is a small (“infinitesimal”) value andh is the 15, izi+1
direction of the next step. The starting value e@fis [0, 0, _16. retumBysesul

..., 0]. The gradient to the loss function is:

We now describeExtractUsefulExpressionsfh detail. It
inputs the target training inputs and outp{iX, y}, ands.,
which we discuss later. It returns a set of chosen expression

o ) ) o . Buysefw. Lines 1-6 construct the candidate expressidhs
whereL is given in egn. (2). One could directly optimize using,y enumerating through all combinations of input variables

g instead ofh in (7), but little pruning would happen, andjine 2), operators (line 3), and exponents (line 4). Line 7
collinear or near-collinear bases get similar values (kige simylates each candidate expression on each of the training
regression). Instead, GDR encourages diversity by setdygti input vectors inX. Each row of the resulting matriX 5 has
updating coefficients. Specifically, it changgsat a given step the values of each training input vector as input to a given
only if |g;| is sufficiently large: expressionB;. Line 8 computes the influence of eaéh via
linear learning onX g — y. Since the number of expressions

h={h;}Vji={v*9;}Vj;j=1,2,.... N6 (9 may exceed the number of training samples, GDR is used
because it can handle underdetermined linear systems. GDR
assigns a linear coefficient; to each expressiof;. Line 9
computes the influence;, of expressionB;:

NM“

> L(yi, F(s; a)) 8

i=1

d 1
da Ntr

g =

R 1) >
) I(Iggl)_T*Oggggvalgkl) (10)

where~; is an indicator function that returns O or 1, ahg
either outputs 0 ow; as it combines the indicator function B B o (B 11
and the gradientr is a parameter which controls the degree % = il * (;maz ( i(@5)) = (min ( i) (A1)
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where z; is the j training sample.lr<na<:zJ:V(Bi(ccj)) is the W, lengthsL, multipliers M, capacitance§’, and resistances
J

largest value thatB; computes to across the training datal*- The samples were taken using Latin hypercube sampling
and min (B;(x;)) is the smallest value. Influenag is an [48] on a uniform distribution in the hypercube having its
1<j<N center at a “good” design, and variable ranges0%. The

absolute and normalized vers_ion of Ii_near C(_)efficieptLines training and test data were split apart by sorting the sample
10-16 use the;’s to select basis functions. Line 10 sorts thergCcording to the output value, allocating evely} sample to
such thatB, has highest influencel3; has second-highest,y,o toqt gata, and the rest to ’training (i.e. 25% test data).
etc. Line 11 initializes the loop. Line 12 loops until theatiot '

influence quotajotay,-, is hit; e.g.iotas,, = 0.95 means TABLE VI

that the highest-influence expressions totaling 95% ofl tota PARAMETERSOFC'R%U'TS FOR THECAFFEINE STALING
influence are returned. To implement, line 13 adds the next- XPERIMENTS

most influencing expression, and lines 14-15 do bookkeeping [ # # # Train | # Test | Performances

Line 16 returnSBuseful- Variables | Devices | Samples | Samples | Modeled
TheseByse w1 g€t stored for use during the evolutionary | 24 10 129 32 ?E'OT;{D’

run. During the run, whenever a sum of produc_ts expression g 30 330 87 A, THD.

is about to be randomly generated (as a basis function, or SR, OS

at a lower level in the CAFFEINE expression tree), then | 129 >0 1050 262 ?E’(;F;{D’

k% of the time, only the useful expressions are considered.
There has to be enough opportunity to try other expressmns t
avoid over-constraining the search, but the majority ofdea T
effort can be focused on known-promising expressions. We . . . | TS PSS 11 PTY
set k = 80%. Note that variable interactions can easily be &8 5 [ o e i..':':'f: Yoy
generated via crossover and mutation operations on single- A R -4 . ! —
variable expressions. This strategy is reminiscent of MARS : Ll e el b
[41], which builds up complex multi-variable expressioranf ! I 5 S
a foundation of single-variable expressions.

P

D. Always Include All Linear Basis Functions

This scale-up technique is based on a few observations: (a)
circuit problems with a larger number of input variablesden
to have at least partially linear responses to some vasati
GDR was very effective at pruning bases, and (c) [47] showed ‘ ‘ ‘
improved prediction by combining linear basis functions an H—c oo
(non-CAFFEINE) nonlinear model. So, we altered the search 'j.l,ﬁ.g 5L I 3 ;ﬂ-i [% - T;W
to always consider all linear basis functions (but not toheso ! f T :
them). Specifically, when evaluating an individual, theseai
step which does linear learning to find the best coefficient§: 11. _Schematics of circuits for test problems. Top lef0-device
for the tree-based basis functions (and the offset). Weaealte amplifier. Top right: 30-device amplifier. Bottom: 50-dewiamplifier.

that step to include more basis functions — one linear basisr search strategy settings were as follows. For pre-
function for each input variable. This increases the nunaber ., | tion filtering: influence threshold,,, = 25%, bias to

basis functions for linear learning, but not for the evalatry useful expressions: = 80%. In GDR, pruning degree

search itself which only sees the GP trees. = 0.5. In CAFFEINE, all settings were like in section VI,
except population sizé&v,,, = 100, and maximum number of
VIII. ScALING Up CAFFEINE: EXPERIMENTAL RESULTS generationsN,., ... = 50. Far fewer generations are now
A. Experimental Setup needed to get to reasonable results because the pre-evoluti
In this section, the aim is to determine how well the scatabif!e1ing picks highly useful expressions, and the lineasés

ity goals have been achieved with the improved CAFFEINERE always available.

The tests are on three progressively larger circuits — the )
operational amplifiers shown in Figures 11. The simplest & Experimental Results
the well-known Miller opamp, and the other two are larger This section aims to see how well the scalability goals were
fully-differential opamps with more complex compensatioachieved on the above examples, in terms of runtime, model
schemes. The circuit regression problems have been setpugdiction abilities, and model interpretability. To assd¢he
with the parameters of Table VI. Four output performances ascalable CAFFEINE, we compare its models to a reference
modeled for each circuit, with the intent to represent a €rosregression algorithm that has a good track record of priedict
section of analyses and measuregs: (gain), THD (total ability and of scalability: MARS [41]. To make the compariso
harmonic distortion)S R (slew rate), and.S (overshoot). The as fair as possible, we used GDR for MARS'’ linear regression
technology is 0.13m CMOS. The design variables are widthsubroutine. A further motivation for MARS is that it was the
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most competitive to CAFFEINE in the experiments of sectioto decreaseDS with m’s, somem’s need decreasing and
VL. others need increasing. And similarly fd#’'s too. There

We first consider the interpretability of MARS-generateds a single base with nonlinearity. It has interactions aghon
models versus CAFFEINE-generated models. We recognibe variablesW,cnrs, mario, moamsat, andmenrons. It
that the judgement of interpretability is necessarily sahye, is very notable that of the 109 input variables, only 4 have
so here we aim to give the reader a feel. To do so, we msignificant interactions (in terms of affectin@s).
review MARS slightly further. Each MARS basis function is Table IX summarizes the interpretability results for CAF-
a product of “hockey stick” f.5) functions: FEINE versus MARS. In short, MARS models are definitely
not interpretable, and CAFFEINE models (arguably) are, at
least enough to extract some insights.

Table IX also lists the CPU time that MARS and CAF-
FEINE each took to build each regression model. We see that
where HS|;) is thei'™ HS function having either a- or —  the runtime is indeed reasonable, even for the largest nofl
sign, andz;, t;, andg; are the chosen input variable, splitit is far faster than the original CAFFEINE on the smaller
value, and power fofl S(;), respectively. AH S function is:  problems.

Nprod

Bryars(z) = H HS iy (zey,ti, ¢i)
=1

(12)

HS.(2,t,q) = + 0 if <t TABLE IX
+\T, 1, 4) = (x—t)q zf x>t MARS AND CAFFEINEBUILD TIMES AND INTERPRETABILITY, FOR
DIFFERENT PROBLEM SIZESCIRCUIT SIMULATION TIME NOT INCLUDED.
To see how MARS basis functions look on real problems,

(13)

we will use an arbitrarily chosen examplks, from the largest | Can MARS | Can CAFFEINE
. . . . Vari- interpret build interpret build time
circuit (50T opamp). Table VII shows the equation for just a| spes | MARS time CAFFEINE | (min)
singleMARS basis function. As we can see, the hockey stick model? (min) model?
functions translate to very hard-to-interpret functions. 24 No 7 ~ Yes 20
59 No 11 ~ Yes 40
TABLE VII 129 No 25 ~ Yes 100

A SINGLE BASIS FUNCTION INMARS-GENERATED EQUATION FORO S
PERFORMANCE METRIC OF50-TRANSISTOR OPAMPEACH MARS MODEL

We have considered the interpretability and model construc
tion times of MARS versus CAFFEINE. What about ability
to predict on unseen inputs? Table X presents the results of

TYPICALLY HAS 3-10BASIS FUNCTIOMS

if Lao < 2.13% 1076
if Lpyo > 213 %106

if mppiyme < 8.416 x 106
if mppipe > 8.416 % 106

0
{(LM2 —2.13%1076)

0
*
{(mDPlM2 — 8.416 * 10~5)

if Layrs < 290}

0
*
{(LMS —290) if Las > 290

(e.g.0OS of the 50-device circuit).

TABLE VI
CAFFEINE-GENERATED EQUATION OFOSFOR THE50-TRANSISTOR
OPERATIONAL AMPLIFIER CIRCUIT. (ALL BASIS FUNCTIONS)

—780.8

. . . # # Output | MARS CAFFEINE
+9.90 + 10° x Larpps 4 5.23 ¥ 10° * Lyscary +4.18 % 10° x Lo Variables | Devices error (%) | error (%)
—9.27 %108 * Layscnrpa — 4.24 % 108 % Lyrg — 4.20 % 108 % Lays T 5 = = 5%
+11.46 *x mpsro + 7. 11 * mps17 — 8.83 * meorim2 52 10 TIV{D 24 98 24 90
+1.14*108*W]V[DP;5+7.09*107*WA{C]\,Ijg 52 10 I 018 042
+2.39 *x 107 % Wari1 — 2.45 % 107 % Whara 52 10 05 4'31 5'21
—8.86 % 105 * logio(Warcars) * m>l2  « W3/2 : :

5 52 M0 TMOMS 59 30 Ay 6.19 554

* (0.655 * me psspgy + M pong) 59 30 THD | 3.53 6.85

59 30 SR 0.32 1.23

We saw that even a single basis function from MARS is | 59 30 os 6.25 6.06
extremely challenging to interpret. Table VIII shows thel50 igg 28 ?};D ji? i-gf
opampOS expression that CAFFEINE generated. The model —59 =0 <R 090 092
is are not as interpretable as we have seen for smaller tsrcui 109 50 0S 0.08 0.08

but someinsights can be extracted. It is notable that of the
109 input variables, CAFFEINE pruned down to just use

TABLE X

the regressors’ prediction performance. We see that MARS
and CAFFEINE have similar performance: in some cases
CAFFEINE is slightly better, in other cases MARS is. We see
that some problems are quite difficult to model (eIgHd D

of the 10-device circuit), while other problems are quitsyea

PREDICTION ERROR(TESTING ERROR OF MARS vs. CAFFEINEON

LARGER CIRCUIT MODELING PROBLEMS

17 variables, i.e. about 10% of the variables. The variables

include widthsW, lengths L, and multipliersm. Most of
the basis functions have a linear relation(@$. To decrease

This section briefly describes other problem types that

IX. OTHER APPLICATIONS

0S8, there are somd.’s which need to be decreased (e.gCAFFEINE has been or could be applied to.

Larpps and 5.23 x 108 x Lysoar), while other L's need
their values increased (e.d.yscarp2 and Lpgy). Similarly,

CAFFEINE was applied to statistical modeling, to give
insight into the mapping from design variables to process
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capability (Cpk) [49] for the 50-device circuit of Figure 11the simulation data, and canonical-form constraints on the
It followed the same methodology as performance modelinfginctions for interpretability. In the first round of experénts,
except the Cpk is computed from SPICE simulation datasual inspection of the models has demonstrated that the
having both local and global process variation. Table Xhv&ho models are interpretable. The performance models were also
the extracted CAFFEINE equation, which has 6.3% testirgpown to be significantly more compact than posynomials.
error. Note that the technology variations are embeddetién tThe CAFFEINE models also had lower average prediction
numerical coefficients of the model — Cpk is not a functioarror than posynomials, projection-based polynomialppsut

of these process parameters, only their aggregate effeitteon vector machines, MARS splines, neural networks, and bdoste
design variables. We see that just 5 variables are needechémral networks. CAFFEINE has also demonstrated promise
get 6.3% test errorCe, Wapa, Wap1, Wap2, Winta, Winer.  in applications like robustness modeling, behavioral ntinde
The variables comprise one compensation capacitor and faund tradeoff modeling. This paper also described techsitue
widths, and no lengths nor multipliers. There are significascale up CAFFEINE to handle more input variables: subtree
nonlinear interactions among the variables. An increase ¢aching, gradient-directed regularization to prune dyfinear
Winea Will increase Cpk, as will a decrease ,,:1. Cpk learning, pre-filtering single-variable expressions, ahsays

is quite dependent on the square roott®f Cpk can also be considering linear bases.

increased by increasind/q,2 (big effect) or increasing? g,
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