
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 0, NO. 0, JANUARY 2000. 1

Template-Free Symbolic Performance Modeling
of Analog Circuits Via Canonical Form Functions

and Genetic Programming
Trent McConaghy,Member, IEEE,and Georges G.E. Gielen,Fellow, IEEE

Abstract—This paper presents CAFFEINE, a method to auto-
matically generate compact, interpretable symbolic performance
models of analog circuits with no prior specification of an
equation template. CAFFEINE uses SPICE simulation data, to
model arbitrary nonlinear circuits and circuit characteri stics.
CAFFEINE expressions are canonical form functions: product-
of-sum layers alternating with sum-of-product layers, as defined
by a grammar. Multi-objective genetic programming trades off
error with model complexity. On test problems, CAFFEINE
models demonstrate lower prediction error than posynomials,
splines, neural networks, kriging, and support vector machines.
This paper also demonstrates techniques to scale CAFFEINE to
larger problems.

Index Terms—Macromodeling, Yield Modeling, Performance
Optimization, Transistor Sizing, Posynomial

I. I NTRODUCTION

BOTH symbolic analysisand symbolic modelingaim to
derive human-interpretable expressions of analog circuit

behavior [1]. Symbolic analysis extracts the expressions via
topological analysis of the circuit, whereas symbolic modeling
extracts the expressions by using SPICE simulation data.
These expressions have the same applications: knowledge
acquisition and educational / training purposes, analyticmodel
generation for automated circuit sizing, design space explo-
ration, repetitive formula evaluation including statistical anal-
ysis, analog fault diagnosis and testability analysis, andanalog
behavioral model generation [2]. In particular, a tool thatcan
help a designer improve his understanding of a circuit is highly
valuable, because it leads to better decision-making in circuit
sizing, layout, verification, and topology design, regardless
of the degree of automation [27]. Therefore, approaches to
generate symbolic expressions are of great interest.

Historically, symbolic analysis came first, starting with
ISAAC [3] and followed by several other techniques; see
[2] for a review. Until recently, the main weakness was
their limitation to linearized and weakly nonlinear circuits.
This was overcome via piecewise-linear/polynomial modeling
approaches [4]–[6], but at the cost of interpretability.

Leveraging SPICE simulations in modeling is promising
because simulators readily handle nonlinear circuits, environ-
mental effects (e.g. temperature, power supply voltage, loads),

Manuscript received March 28, 2008; revised December 23, 2008.
T. McConaghy was with ESAT-MICAS, Katholieke Universiteit, Leuven,

Belgium. He is now with Solido Design Automation Inc., Canada.
G.G.E. Gielen is with ESAT-MICAS, Katholieke Universiteit, Belgium.
Funding for the reported research results is acknowledged from

IWT/Medea+ Uppermost, Solido Design Automation Inc. and FWO Flanders..

manufacturing effects, different technologies, new effects (e.g.
proximity [7]), and more. From simulation data, a model
y = f(x) is constructed, wherey is typically a performance
metric,x includes design, process, or environmental variables,
and f is an approximation of the SPICE mapping. Models
used include linear models [8], [9], [25], posynomials [10]–
[12], polynomials [13], [14], [25], splines [15], [25], neural
networks [16], [17], [25], boosted neural networks [18], [25],
support vector machines [19]–[21], [25], latent variable re-
gression (LVR) [22], [23], kriging [24], [25], and stochastic
gradient boosting [26]. However, such models either follow
an overly restrictive functional template which limits their
applicability, or they are opaque and thus provide no insight
to the designer. Less opaque flows exist, such as visualizing
CART trees [26], nonlinear sensitivity analysis [26], or plotting
the mapping from an LVR’s first affine transformw1 ∗ x to
the outputy = f1(w1 ∗ x) [22], [23]. While useful, these
approaches do not give the functional relations that symbolic
models provide.

The aim ofsymbolic modelingas defined in this paper is
to use simulation data to generateinterpretable mathematical
expressionsfor circuit applications, typically relating the cir-
cuit performances to the design variables. Symbolic modeling
has similar goals to symbolic analysis, but a different core
approach to solving the problem. In [10]–[12], posynomial-
based symbolic models are constructed. The main problem is
that the models are constrained to a predefined template, which
restricts the functional form. Also, the models have dozens
of terms, limiting their interpretability for designers. Finally,
the approach assumes posynomials can fit the data; in analog
circuits there is no guarantee of this. There have also been
advances in building quadratic polynomial models [13], [14],
but polynomials also have a restrictive structure.

The problem we address in this paper is how to generate
symbolic models with moreopen-endedfunctional forms (i.e.
without a pre-defined template), for arbitrary nonlinear circuits
and circuit characteristics, and at the same time ensure that
the models areinterpretable. Figure 1 shows a target flow
that reflects these goals. Note that symbolic modeling is most
suited to properly-biased design regions (smaller changesin
design variables), because models covering incorrectly-biased
regions too would be too complex for manual inspection.

We approach the task by posing it as a search problem in
the space of possible functional form trees. An appropriate
search algorithm is then genetic programming (GP) [28]. GP
generates symbolic expressions without using a template, but

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 0, NO. 0, JANUARY 2000. 2

Fig. 1. Template-free symbolic modeling flow.

those functions are overly complex. So, we extend GP via
a grammar [29] specifically designed to have simpler but
accurate,interpretable symbolic models. We name the ap-
proach CAFFEINE: Canonical Functional Form Expressions
in Evolution1.

The contributions of this paper are as follows:

• To the best of our knowledge, the first-ever tool for
template-free symbolic modeling. Because it uses SPICE
simulation data, it allows modeling of any nonlinear circuit
characteristic, or analysis (including transient, noise,and
more).

• The approach returns models that are compact and under-
standable, yet with good accuracy. In fact, it returns aset
of possible models thattrade off accuracy and complexity
by using multi-objective search [30].

• A specially-designed grammar to give functions acanon-
ical form, which enhances interpretability. The grammar
plugs into any grammatical-GP engine, e.g. [29], [31].

• Techniques toscalesymbolic modeling to problems with
more than 100 input variables. The techniques are: sub-
tree caching [32], gradient-directed regularization [33]to
simultaneously prune basis functions and learn remaining
coefficients, a pre-evolution step of filtering single-variable
expressions, and always considering all the linear basis
functions.

This paper is organized as follows. Section II presents the
problem formulation. Section III presents background on
genetic programming. Section IV introduces the heart of
CAFFEINE: canonical form functions. Section V describes the
reference search algorithm, which uses multiobjective genetic
programming and a grammar to constrain to canonical form
functions. Section VI describes the first round of experiments.
Section VII describes how to scale up CAFFEINE to larger
problems, with corresponding experiments in section VIII.
Section IX describes other applications of CAFFEINE. Section
X discusses the sensitivity of canonical form functions to the
search algorithm employed. Section X concludes.

1An earlier version of CAFFEINE appeared in [27].

II. PROBLEM FORMULATION

The modeling problem that we address has the flow of
Figure 1. Its inputs and outputs are as follows.
Given:

• X and y: A set of {xj , yj}, j = 1..N data samples
where xj is a Nd-dimensional design pointj and yj is
a corresponding circuit performance value measured from
SPICE simulation of that design. Design of experiments
(DOE) [34] or circuit optimization can be used to generate
the data samples.

• No model template

Determine:

• A set of symbolic modelsM that provide the Pareto-
optimal tradeoff between minimizing model complexityf1

and minimizing future model prediction errorf2.

The formulation is a constrained optimization problem:

M = minimize

{
f1 = complexity(m)
f2 = Ex,yL(y, m(x))

}
s.t. m ∈ Ψ (1)

where Ψ is the space of template-free symbolic models.
The algorithm will traverseΨ to return a Pareto-optimal set
M = {m∗

1, m
∗
2, . . . , m

∗
NM

}. Each modelm maps anNd-
dimensional inputx to a scalar circuit performance approx-
imation ŷ, i.e. ŷ = m(x). Complexity issomemeasure that
differentiates the degrees of freedom between different models
(details are in eqn. (5)).Ex,yL is the expected loss for a given
m over future predictions in the distributionpdf(x), whereL
is the squared-error loss function [33]:

L(y, m(x)) = (y − m(x))2)/2 (2)

Section V-A describes how an approximation forL() is
computed. By definition, no model in the Pareto-optimal set
M dominates any other model. A modelma “dominates”
another modelmb if {fj(ma) ≤ fj(mb)}∀j, and{fj(ma) <
fj(mb)}∃j; j = {1, 2} in our case. That is, to be Pareto-
optimal, a model must be at least as good as any model on
both objectives, and better than any model in one objective.

III. B ACKGROUND: GENETIC PROGRAMMING

Genetic Programming (GP) [28] is an evolutionary algo-
rithm, with the distinguishing characteristic that GP individ-
uals (points in the design space) aretrees. Since a symbolic
model is a function and can be represented as a tree, the search
for the above models can be accomplished by GP search.

The functional form of results from canonical GP is com-
pletely unrestricted. While this sounds promising compared to
the restrictions of fixed-template regression, it actuallygoes a
little too far: an unrestricted form is almost always difficult
to analyze. GP-evolved functions can be notoriouslycomplex
and un-interpretable. For example, [28] showed functions so
bloated [35] that they take up a full page of dense text. A
recent paper complains: “[GP-evolved] expressions can get,
as we have seen, quite complex, and it is often extremely
difficult to understand them without a fair bit of interaction
with a tool such asMathematica” [36].

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 0, NO. 0, JANUARY 2000. 3

We can see for ourselves. Using a dataset from section VI,
canonical GP evolution returned the following expression1:
- 1.40 * (vsg1 + max(vsg5, max(max(max(vsg5,

max(vsg3 + vgs2, min(vsg3, abs(1/vds2))) -

log10(vsd5)), min(ib2, abs(sqrt(abs(id1)))))

- log10(vsd5), max(id2, min(vsg3, abs(sqrt(abs(

log10(id2)))))) + log10(vsd5)) - min(vsg3,

abs(sqrt(abs(id1)))) - log10(vsd5)))

Improvements in interpretability are clearly needed. The
next section presents CAFFEINE to handle this issue.

IV. CAFFEINE CANONICAL FORM FUNCTIONS

The design of CAFFEINE follows two guidelines: ensure
maximum expressiveness per node, and make all candidate
functions directly interpretable. Figure 2 shows the general
structure of a CAFFEINE function. It alternates between
levels of sum-of-productexpressions andproduct-of-sumex-
pressions. Each sum-of-product expression is a weighted linear
add of an overall offset term plus weighted basis functions.A
basis function is a combination of product terms, where each
product term is a polynomial/rational, zero or more nonlinear
operators, and zero or more unity operators. Each product term
acts as a “gate” to the next sum-of-products layer.

Fig. 2. CAFFEINE evolves functions of this canonical form. While it can
go deeper indefinitely, it is typically only as deep as shown in order to retain
human interpretability.

Figure 3 shows an example function and its corresponding
tree. In the “7.1/x3” part of the function, the 7.1 is the tree’s
top left “w0” and the “1/x3” is its neighboring “poly/rat’l of
vars”. The “1.8” corresponds to top “w1”, and the “x1” is
the its neighboring “poly/rat’l of vars”. The function’s “log”
corresponds to “nonlinear func”, which in the tree holds the
“weighted linear add” term “−1.9+8.0/x1+1.4∗x2

2/x3”. That
term itself breaks down: function’s the “−1.9” is the tree’s
lower “woffset”; “ 8.0/x1” corresponds to the tree’s lower left
“w0” * “poly/rat’l of vars”; and “1.4 ∗ x2

2/x3” corresponds to
the tree’s lower right “w1” * “poly/rat’l of vars”. Note how
CAFFEINE places coefficients only where they are needed,
and nowhere else.

Figure 4 gives an example which has unity functions for
product terms. Note how there isno nonlinear function that
gates one layer of linear adds to the next – this is how
CAFFEINE supports a product-of-sums formulation.

Typical usage of CAFFEINE would restrict the number of
product term layers to just one or two, therefore ensuring
that there is not an excessive compounding of nonlinear

1The expression font and style are presented like [28].

Fig. 3. Example of a function in text form, and its corresponding CAFFEINE
tree form.

Fig. 4. Example where CAFFEINE product terms include unity functions.

components such aslog(sin(exp(x))). There can also be a
limit on the maximum number of basis functions. Due to the
use of a canonical form, all evolved functions are immediately
interpretable, with no symbolic manipulation needed.

V. CAFFEINE SEARCH ALGORITHM

This section describes the search algorithm used on CAF-
FEINE functions. CAFFEINE search uses GP as a starting
point, but extends it in order to properly address template-free
symbolic modeling. It attacks the issues of complexity and
interpretability in two main ways: a multi-objective approach
that provides a tradeoff between error and complexity, a
specially designed grammar and operators to constrain the
search to specific functional forms without cutting out good
solutions. As described in the previous section, in CAFFEINE
the overall expression is a linear function ofNB basis func-
tions Bi; i = 1, 2, ..., NB:

ŷ = m(x) = a0 +

NB∑

i=1

ai ∗ Bi(x) (3)

A CAFFEINE individual m has one GP tree to define
each basis function:m = {B1, B2, ..., BNB

}. The linear
coefficientsa ∈ ℜNB+1 are determined on-the-fly using linear
regression on the least-squares cost function (2).

A. Multi-Objective Approach

CAFFEINE uses a state-of-the-artmulti-objectiveevolution-
ary algorithm, namely NSGA-II [30]. NSGA-II returns a set
of individuals that, collectively, trade off model error and
complexity. Error and complexity are objectivesf1 and f2

in eqn. (1). Error (expected lossEx,yL) is approximated by
the “training error”ǫtr, which is is the normalized root mean
squared error of individualm on the training data:

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 0, NO. 0, JANUARY 2000. 4

ǫtr(m) =

√√√√ 1

Ntr

∗

Ntr∑

i=1

(
ŷtr,i − ytr,i

max(y) − min(y)

)2

(4)

whereNtr is the number of training samples,ytr,i is sample
i of training outputsytr, ŷtr,i = F (xtr,i; m), and xtr,i is
samplei of training inputsXtr. Note that the y-values are
scaled byy, not ytr. ǫtest has a similar formula, except
the Ntr training points{ytr, Xtr} are replaced by theNtest

testing points{ytest, Xtest}.
Complexity is measured from the number of basis functions,

the number of nodes in each tree, and the exponents of
“variable combos” (VCs), according to:

complexity(m) =

NB∑

j=1

(wb+nnodes(j)+

nvc(j)∑

k=1

vccost(vck,j))

(5)
wherewb is a constant to give a minimum cost to each basis
function, nnodes(j) is the number of tree nodes of basis
functionj, andnvc(j) is the number ofVCs of basis function
j, with cost:

vccost(vc) = wvc ∗

Nd∑

i=1

|vc(i)| (6)

The approach accomplishessimplification during generation
[37] by maintaining evolutionary pressure towards lower com-
plexity. The user avoids ana priori decision on error or
complexity because the algorithm generates aset of models
that provide tradeoffs of alternatives, rather than producing
just onemodel.

Note that specific parameter settings are given in the exper-
iments (section VI).

B. Grammar Implementation of Canonical Form Functions

In GP, a means of constraining search is via a grammar, as
in [29]. Tree-based evolutionary operators such as crossover
and mutation must respect the derivation rules of the grammar.

Even though grammars can usefully constrain search, none
have yet been carefully designed for functional forms. In de-
signing such a grammar, it is important to allow all functional
combinations (even if just in one canonical form).

The CAFFEINE grammar, shown in Table I is explicitly
designed to create separate layers of linear and nonlinear
functions and to place coefficients and variables carefully, in
adherence with Figure 2

TABLE I
CAFFEINE GRAMMAR .

REPVC 7→ VC | REPVC * REPOP | REPOP
REPOP 7→ REPOP * REPOP | OP_1ARG (W + REPADD) |

OP_2ARG (2ARGS) | ... 3OP, 4OP, etc
2ARGS 7→ W + REPADD, MAYBEW | MAYBEW, W + REPADD
MAYBEW 7→ W | W + REPADD
REPADD 7→ W * REPVC | REPADD + REPADD
OP_2ARG 7→ DIVIDE | POW | MAX | etc
OP_1ARG 7→ INV | LOG10 | etc

First, we describe the notation of Table I. The nonterminal
symbols are in bold-case; terminal symbols are not. Each line
(or two) shows the possible expressions that a nonterminal
symbol on the left can map (7→) into. The possible expressions,
i.e. “derivation rules” are separated by the OR operator “|”.

We now explain how the grammar implements canonical
form functions.REP is short for “repeating”, such as “re-
peating operators”REPOP and “repeating variable combo”
REPVC, which are explained further. The start symbol is
REPVC, which expands into one basis function (remember
that an individual has several root-level basis functions). Note
the strong distinction among operators. The root is a product
of variables (REPVC) and / or nonlinear functions (REPOP).
Within each nonlinear function isREPADD, the weighted sum
of next-level basis functions.

A VC is a “variable combo”, intended to maintain a compact
representation of polynomials/rationals. Its expansion could
have been implemented directly within the grammar; though
in our baseline system we store a vector holding an integer
value per design variable as the variable’s exponent. An
example vector is [1,0,-2,1], which means(x1 ∗ x4)/(x3)

2,
and according to eqn. (6) has cost|1|+ |0|+ | − 2|+ |1| = 4.
This approach guarantees compactness and allows for special
operators on the vector.

In determining coefficient values, we distinguish between
linear and nonlinear coefficients. As described, a CAFFEINE
individual is a set of basis functions which are linearly added.
Each basis function is a tree of grammatical derivations. Linear
coefficients are found by evaluating each tree across all input
samples to get a matrix of basis function outputs, then to apply
least-squares regression with that matrix and the target output
vector to find the optimal linear weights.

With each nonlinear coefficientW in the tree (i.e. ones
that are not found via linear regression), a real value will
accompany it, taking a value in the range[−2 ∗ B, +2 ∗ B].
During interpretation of the tree the value is transformed into
[−1e + B,−1e−B]∪ [0.0]∪ [1e−B, 1e + B]. B is user-set;
see section VI-A.
POW(a,b) is ab. When the symbol2ARGS expands to

includeMAYBEW, either the base or the exponent (but not both)
can be constants.

The designer can turn off any of the rules in the grammar
of Table I, if they are considered unwanted or unneeded. For
example, he could easily restrict the search to polynomialsor
rationals, or remove potentially difficult-to-interpret functions
such assin and cos. He could also change or extend the
operators or inputs, e.g. includeWi, Li, andWi/Li.

C. High-Level CAFFEINE Algorithm

Table II gives the algorithmExtractSymbolicCaffeineMod-
els(). It takes in the training inputsX and training outputs
y. It will output a Pareto-optimal set of models,M . Line 1
initializes M , the current set of parentsP , and current set
of children Q, all to empty sets. Lines 2-3 loops across the
population sizeNpop to randomly draw each individualPi

from the space of possible canonical form functionsΨ. Line
4 begins the EA’s generational loop of lines 5 and 6. The

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 0, NO. 0, JANUARY 2000. 5

loop stops when the target number of generationsNgen,max

is hit. Line 5 does the main EA work, which here is a single
generation of the NSGA-II multi-objective EA (see [30] for
details). Line 6 updates the external archive of Pareto-optimal
individuals,M , by nondominated-filtering on the existingM
with the recently updated parentsP and childrenQ. Line
7 of Table II concludes theExtractSymbolicCaffeineModels()
routine, by returning the Pareto-optimal symbolic models,M .

TABLE II
PROCEDUREEXTRACTSYMBOLICCAFFEINEMODELS()

Inputs: X, y
Outputs: M
1. M = ∅; P = ∅; Q = ∅
2. for i = 1..Npop:
3. Pi ∼ Ψ
4. for Ngen = 1..Ngen,max:
5. {P, Q} = OneNsgaiiGeneration(P, Q)
6. M = nondominatedFilter(M ∪ P ∪ Q)
7. returnM

D. Evolutionary Search Operators

We now describe how trees are randomly generated, and
explain the search operators on the trees. The search operators
are grouped by the aspect of search representation that they
concern: grammar, real-valued coefficient, variable combos
(VCs), and basis functions.

Random generation of trees and subtrees from a given sym-
bol involves merely randomly picking one of the derivationsof
one of the symbols, and recursing the (sub)tree until terminal
symbols are encountered (subject to tree depth limits).

Grammatical restrictions on the trees lead to a natural
grammar-obeying crossover operator and mutation operator, as
described by Whigham [29]. Whigham-style crossover works
as follows: it randomly picks a node on the first parent, then
randomly picks a node on the second parent with the constraint
that it must be the same grammatical symbol (e.g.REPOP) as
the first node, and finally swaps the subtrees corresponding
to each node. Whigham-style mutation involves randomly
picking a node, then replacing its subtree with a randomly-
generated subtree (as in the generation of initial trees).

Real-valued coefficients are mutated according to a Cauchy
distribution [38], which cleanly combines aggressive local
tuning with the occasional large change.

The specialized structure ofVCs get appropriate operators,
which include: one-point crossover, and randomly adding or
subtracting to an exponent value.

Each individual has a list of basis functions, which also
leads to special operators: creating a new individual by ran-
domly choosing>0 basis function from each of 2 parents;
deleting a random basis function; adding a randomly generated
tree as a basis function; copying a subtree from one individual
to make a new basis function for another.

VI. EXPERIMENTAL RESULTS

This section describes the application of CAFFEINE to
building symbolic models for analog circuits that map de-
sign variables to performances, for problems with 13 input

variables. It shows the actual symbolic models generated,
measured error vs. complexity tradeoffs, how prediction error
and complexity compare to posynomials, and how prediction
error compares to other state-of-the-art (blackbox) regression
approaches. The extension to larger problems is described in
section VII.

A. Experimental Setup

Unary operators allowed are:
√

(x), log10(x), 1/x, x2,
sin(x), cos(x), tan(x), max(0, x), min(0, x), 2x, and10x,
wherex is an expression. Binary operators allowed arex1+x2,
x1∗x2, max(x1, x2), min(x1, x2), power(x1, x2), andx1/x2.
Conditional operators included≤ (testExpr, condExpr,
exprIfLessThanCond, elseExpr) and ≤ (testExpr, 0,
exprIfLessThanCond, elseExpr). Any input variable
could have an exponent in the range{. . . , -1, 1, 2, . . .}. While
real-valued exponents could have been used, that would have
harmed interpretability.

The circuit being modeled in this example is a high-speed
CMOS OTA as shown in Figure 5. The goal is to discover
expressions for the low-frequency gain (ALF), unity-gain
frequency (FU), phase margin (PM), input-referred offset
voltage (V OFF), and the positive and negative slew rate
(SRp, SRn). To allow a direct comparison to the posynomial
approach [10], an almost-identical problem setup was used,as
well as identical simulation data. The only difference is that,
because scaling makes the model less interpretable, neither the
inputs nor the outputs were scaled. The one exception is that
FU is log-scaled so that the mean-squared error calculations
and linear learning are not wrongly biased towards high-
magnitude samples ofFU . The technology is 0.7µm CMOS.
The supply voltage is 5V.Vth,nom is 0.76V and -0.75V for the
NMOS and PMOS devices, respectively. The load capacitance
is 10 pF.

Fig. 5. CMOS high-speed OTA.

Good training data is essential to the methodology. The
choice of design variables and sampling methodology deter-
mines the extent to which the designer can make inferences
about the physical basis, and what regions of design space the
model is valid in. We used an operating-point driven formu-
lation [39], where currents and transistor gate drive voltages
comprise design variables (13 variables in our case). Device
sizings could have been used as design variables instead; it

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 0, NO. 0, JANUARY 2000. 6

all depends on designer preference. Full orthogonal-hypercube
Design-Of-Experiments (DOE) [34] sampling of design points
was used, with scaleddx=0.1 (wheredx is % change in
variable value from center value)1 to have 243 samples.
Simulation time for one sample was about 1 s, or 4 min for
all samples; this is fully dependent on the circuit, analyses,
and experimental design method being used. These samples,
otherwise unfiltered, were used as training data inputs. Testing
data inputs were also sampled with full orthogonal-hypercube
DOE and 243 samples, but withdx=0.03. Thus, in this
experiment we are creating a somewhat localized model; one
could just as readily model a broader design space, but this
allows us to compare the results to [10].

The run settings were:NB = maximum number of basis
functions = 15 (any larger is definitely non-interpretable),Npop

= population size = 200 (like NSGA-II’s default),Ngen,max

= 5000 generations (more than enough time to converge),
maximum tree depth = 8 (so that each basis function has
exactly one layer of nonlinear operators), and “W” coefficients
range[−1e + 10,−1e − 10] ∪ [0.0] ∪ [1e − 10, 1e + 10] (i.e.
B=10; therefore coefficients can cover 20 orders of magnitude,
both positive and negative). All operators had equal probability
(a reliable setting), except parameter mutation was 5x more
likely (to encourage tuning of a compact function). Complexity
measure settings werewb = 10, wvc = 0.25. That is, the cost
of adding a basis function is relatively high compared to the
cost of adding another variable combo.

One run was done for each performance goal, for 6 runs
total. The original non-optimized implementation was in Mat-
lab, therefore using pass-by-value functions; a single runtook
approximately 12 hours. The optimized implementation was in
Python using pass-by-reference functions, caching, and more
as described in section VII; a single run on these problems
took approximately 10 minutes.

We calculate normalized mean-squared error on the training
data and on the separate testing data:ǫtr andǫtest as described
in eqn. (4). These are standard measurements of model quality
in regression literature. The testing errorǫtest is ultimately the
more important measure, because it measures the model’s abil-
ity to generalize to unseen data. These measures are identical
to two of the three posynomial “quality of fit” measures in
[10]: its measure “worst-case quality”qwc is the training error
ǫtr, and its measure “typical case quality”qtc is ǫtest (as long
as long as the constant ‘c’ in the denominator is set to zero,
which [10] did.)

B. Results: Whitebox Models and Tradeoffs

Let us first examine some symbolic models generated by
CAFFEINE. We ask: “which symbolic models have< 10%
training and testing error, with the lowest complexity?” Table
III shows those functions. (Note thatFU has been converted
to its true form by putting the generated function to the
power of 10). We see that each function has up to four basis
functions, not including the constant. ForV OFF , a constant
was sufficient to keep the error within 10%. We see that a
rational functional form was favored heavily; at these target

1The simpler problem ofdx=0.01 from [10] is ignored in this paper.

errors only one nonlinear function,ln(), appears (forALF).
The ln() indicates that the order of magnitude of some input
variables is meaningful.

TABLE III
CAFFEINE-GENERATED SYMBOLIC CIRCUIT MODELS OF THEOTA OF

FIGURE 5 WITH <10%TRAINING ERROR AND<10%TESTING ERROR.

Perf. Expression
Char.

ALF −10.3 + 7.08e-5/id1

+1.87 ∗ ln(−1.95e+9+1.00e+10/(vsg1 ∗ vsg3)
+1.42e+9∗(vds2 ∗ vds5)/(vsg1 ∗ vgs2 ∗ vgs5 ∗ id2))

FU 10(5.68−0.03∗vgs1/vds2−55.43∗id1+5.63e−6/id1)

PM 90.5 + 190.6 ∗ id1/vgs1 + 22.2 ∗ id2/vds2

V OFF −2.0e-3
SRp 2.36e+7+1.95e+4∗id2/id1 − 104.7/id2 + 2.15e+9∗id2

+4.63e+8∗id1

SRn −5.72e+7−2.50e+11∗(id1 ∗ id2)/vgs2

+5.53e+6∗vds2/vgs2 + 109.7/id1

One can examine the equations in more detail to gain an
understanding of how design variables in the topology affect
performance. For example,ALF is inversely proportional to
idl, the current at the OTA’s differential pair. Or,SRp is solely
dependent onid1 and id2 and the ratioid1/id2. Or, within
the design region sampled, the nonlinear coupling among the
design variables is quite weak, typically only as ratios for
variables of the same transistor. Or, that each expression only
contains a (sometimes small) subset of design variables. Or,
that transistor pairsM1 andM2 are the only devices affecting
five of the six performances (within 10% error).

We now examine the CAFFEINE-generated tradeoffs be-
tween training errorǫtr (eqn. (4)) and complexity (eqn. (5)).
Figure 6 illustrates. All models in the tradeoff of trainingerror
vs. complexity are shown: as complexity increases, the training
error decreases. In each performance instance, CAFFEINE
generates a tradeoff of about 50 different models. As expected,
a zero-complexity model (i.e. a constant) has the highest
training error of 10-25%. The highest-complexity models have
the lowest training error, of 1-3%.

We can also examine the curves relating complexity to
the number of basis functions. Recall that complexity is a
function of both number of basis functions, and the complexity
of each tree within each basis function. In the curves, we
see that the number of basis functions usually increases with
the complexity. However, sometimes complexity increases by
having larger trees within existing basis functions, rather than
adding more basis functions. This can be seen in the curves: as
complexity increases, the number of bases temporarily levels
off, or even decreases.

The testing error,ǫtest, is also shown in Figure 6. We
see that unlike the training error, it is not monotonically
decreasing as complexity rises. This means that some less
complex models are more predictive than more complex ones.
However, we can prune the models down to the ones that give
a tradeoff between testing error and complexity, as shown in
Figure 7. These are the most interesting and useful.

It is notable that the testing error is lower than the training
error in almost all cases. This sounds promising, but such
behavior is rare in the regression literature, and made us

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 0, NO. 0, JANUARY 2000. 7

Fig. 6. Plots of models’ training error, testing error, and number of bases vs. the complexity for each performance goal for the opamp of Figure 5. Every
(diamond, triangle, square) triplet corresponds to a symbolic model at a given complexity.

Fig. 7. Every (diamond, triangle) is a symbolic model forALF like
Figure 6, except filtered to only keep models on the tradeoff of testingerror
vs. complexity.

question what was happening. It turns out that there is a valid
reason: recall that the training data is from extreme pointsof
the sampling hypercube (scaleddx=0.10), and the testing data
is internal to the hypercube (dx=0.03). This testing data tests
theinterpolationability. Thus, models that reallyarepredictive
should be able to interpolate well, even at the cost of a perfect
fit to the extreme points. In any case, validly having the testing
error lower than the training error demonstrates the strength
of the CAFFEINE approach.

By only putting the relevant variables into a model, the
approach demonstrates the potential to provide expressions for
circuits with significantly more variables (see next section).

One may improve the understanding of the basic dependen-
cies in a circuit in another fashion: by examining expressions
of varying complexity for a single performance characteristic.
Low-complexity models will show the macro-effects; alter-
ations to get improved error show how the model is refined to
handle second-order effects. Table IV shows models generated
for the phase margin (PM) for decreasing training and testing

error. A constant of 90.2, while giving 15% training error, had
only 4% test error. For better prediction, CAFFEINE injected
two more basis functions; one basis being the current into
the differential pairid1, the other basis,id2/vds2, being the
ratio of the current to the drain-source voltage ofM2; i.e.
M2’s small-signal output conductance (1/rout2). The next
model turns the input current term into a ratioid1/vgs1; i.e.
M1’s transconductance, inverted (1/gm1). Interestingly, and
reassuringly, almost all ratios use the same transistor in the
numerator and denominator.

Such analyses demonstrate the core aim of CAFFEINE sym-
bolic modeling: gaining insight into the design-performance
relationship.

C. Results: Comparison to Posynomial Symbolic Models

We also compared CAFFEINE to the posynomial approach
using the posynomial results in [10]. We first compare model
complexity. To pick the models to compare, we first choose
the CAFFEINE model which meets the reported posynomial
training and test error of [10], then we compare the number of
posynomial coefficients to the number of coefficients appear-
ing in the CAFFEINE expressions (this is reasonable when the
CAFFEINE expressions are largely rationals; more complex
symbolic models would be less appropriate). As Figure 8
shows, the CAFFEINE models are 1.3 to 6.4 times more
compact than the posynomial models. And, inV OFF , the
only performance that the posynomials had slightly better pre-
diction error than CAFFEINE (see Figure 9), the CAFFEINE
model is 6.2x more compact.

We can also compare the prediction abilities of CAFFEINE
to posynomials. To pick a model from a CAFFEINE-generated
tradeoff for comparison, we fixed the training error to what
the posynomial achieved, then compared the testing errors.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 0, NO. 0, JANUARY 2000. 8

TABLE IV
CAFFEINE-GENERATED MODELS FORPM OF THE OTA OF FIGURE 5, IN ORDER OF DECREASING ERROR AND INCREASING COMPLEXITY.

Test
error (%)

Train
error (%)

PM Expression

3.98 15.4 90.2
3.71 10.6 90.5 + 186.6 ∗ id1 + 22.1 ∗ id2/vds2

3.68 10.0 90.5 + 190.6 ∗ id1/vgs1 + 22.2 ∗ id2/vds2

3.39 8.8 90.1 + 156.85 ∗ id1/vgs1 − 2.06e-3∗id2/id1 + 0.04 ∗ vgs2/vds2

3.31 8.0 91.1 − 2.05e-3∗id2/id1 + 145.8 ∗ id1 + 0.04 ∗ vgs2/vds2 − 1.14/vgs1

3.20 7.7 90.7 − 2.13e-3∗id2/id1 + 144.2 ∗ id1 + 0.04 ∗ vgs2/vds2 − 1.00/(vgs1 ∗ vgs3)
2.65 6.7 90.8 − 2.08e-3∗id2/id1 + 136.2 ∗ id1 + 0.04 ∗ vgs2/vds2 − 1.14/vgs1 + 0.04 ∗ vgs3/vds5

2.41 3.9 91.1 − 5.91e-4∗(vgs1 ∗ id2)/id1 + 119.79 ∗ id1 + 0.03 ∗ vgs2/vds2 − 0.78/vgs1 + 0.03 ∗ vgs1/vds5
−2.72e-7/(vds2 ∗ vds5 ∗ id1)+7.11 ∗ (vgs2 ∗ vgs4 ∗ id2)− 0.37/vsg5− 0.58/vgs3 − 3.75e-6/id2 − 5.52e-6/id1

Fig. 8. Comparison of the complexity of CAFFEINE models to posynomial
models [10]. Method: (1) choose CAFFEINE model that meets posynomial
training and test error, then (2) compare number of coefficients.

Fig. 9. Comparison of CAFFEINE testing error to posynomial testing error.
The CAFFEINE model training error corresponding to the given test errors
is also shown.

The results are in Figure 9. In one case,V OFF , CAFFEINE
did not meet the posynomial training error (0.4%), although
it probably could have with more basis functions; we instead
picked an expression which very nearly matched the posyn-
omial approach’s testing error of 0.8%. What we saw in the
previous data, and what we see again here, is that CAFFEINE
has a lower testing error than training error, which provides
great confidence to the models. In contrast, in all cases but
V OFF , the posynomials had a higher testing error than train-
ing error, even on this interpolative data set. The CAFFEINE
models’ testing errors were2x to 5x lower than ones from
the posynomial models. The exception isV OFF , where the
posynomial achieves 0.8% testing error compared to 0.95%
for CAFFEINE. In short, posynomials have poor prediction

ability even in interpolation. CAFFEINE models predict far
better, and with more compact models. Given this, one can
reasonably question the trustworthiness of constraining analog
circuit performance models to posynomials.

D. Results: Comparison to State-of-the-Art Blackbox Regres-
sion Approaches

While other modeling techniques may produce models
that are opaque (and therefore not interpretable), it is still
instructive to see how well CAFFEINE compares to them in
terms of prediction ability. So, on the 6 problems already
described in section VI-A, we tested the following regres-
sion techniques: a constant, linear models with least-squares
fit, full quadratic models with least-squares fit, projection-
based quadratic (PROBE) [13], posynomial [10], state-of-the-
art feedforward neural networks (FFNN) [40], boosting the
FFNNs, multivariate adaptive regression splines (MARS) (i.e.
piecewise polynomial with stepwise construction) [41], least-
squares support vector machines (LS-SVM) [42], and kriging
[43].

Model builders were coded and configured as follows. The
code to build constant, linear, and full quadratic models was
about 25 lines of Matlab. The model building time was a few
seconds, at most. The code to build PROBE was about 100
lines of python, using Numeric / LAPACK for least-squares
regression and maximum rank of 2. Model building time was
a few seconds, at most. The posynomial results were taken
directly from [10]; it reports that the model building time
was 1-4 minutes (on a slower machine). The target training
error for the other model builders was the posynomial’s
training error from [10]. The FFNN is trained via an adaptive
Levenberg-Marquardt optimization scheme (OLMAM); we
used the Matlab code of [40]. Settings were NumRestarts = 10,
MaxEpochs = 5000. The time to build a single network was
about 10 s. A suitable error was typically found in the first or
second restart of about 3 hidden neurons. Therefore the total
model building time was about (10 s) * (10 restarts) * (first 2
neurons) + (10 s) * (2 restarts) * (1 final neuron) = 10*10*2 +
10*2 = 220 s = 3.7 min. The boosted FFNN was Matlab code
wrapping the OLMAM code. Settings were NumModels = 20.
Model building time was about (220 s to discover NumHid)
+ (10 s)*(20 models) = 220 s + 200 s = 420 s = 7.0 min.
A 10x speedup via a C implementation would make this 42
s. The MARS model builder was about 500 lines of Matlab
code; model building time was about 5 minutes. The SVM is

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 0, NO. 0, JANUARY 2000. 9

trained using the least-squares strategy (LS-SVM); we usedthe
Matlab code from [42], with all settings at “fully automatic”;
model building time was about 5 minutes. The kriging model
builder was about 200 lines of Matlab code, withΘmin = 0.0,
Θmax = 10.0,pmin = 0.0, pmax = 1.99. The model building
time was about 5 minutes.

Figure 10 shows the resulting test errors for the 6 perfor-
mances (adapted from [25]).

Fig. 10. Comparison of prediction ability of CAFFEINE to state-of-the-art
modeling techniques.

On this dataset, CAFFEINE has the lowest average predic-
tion error. MARS comes in very close. Kriging is the next-best.
The FFNN, boosted FFNN, and SVM are all very close, and
perform about the same as the linear model. The quadratic and
posynomial approaches and posynomial approaches perform
the worst.

The results on different regressors inform us about the
nature of the data and models. Progressing across the spectrum
of polynomial complexity – from the simplest linear models
to posynomials to projection-based quadratic to full quadratic
– the prediction error continually worsens. It turns out that
the polynomials even capture thetraining error poorly; for
example the projection-based quadratic had a training error of
about 10% for each performance. Since the prediction error
became lower the more constrained the polynomial model
was, this indicates that where the models do attempt to use
the added flexibility to predict better, it backfires. In general,
this is indicative that a polynomial functional template isnot
appropriate for circuit performance mappings, even for this
relatively simple OTA circuit.

CAFFEINE only selects input variables that really matter.
It is biased towards the axes of the input variables rather than
being affine-invariant. That is, CAFFEINE expressions and
search operators work on one or a few input variables at a time,
as opposed to using all variables in a weighted sum. MARS
did similarly, because its stepwise-forward nature makes it also
biased towards the axes and is selective of input variables.
While CAFFEINE had the best or near-best prediction error
on 5 of the 6 performance goals, MARS had the best or near-
best on 3. As we shall see, the other approaches lose prediction

performance because they have different biases.
Kriging performed fairly admirably in this setting. This

is not surprising because it tends to perform well when the
input samples have relatively uniform spacing, as they do
here with the DOE sampling. Kriging, FFNNs, and boosted
FFNNs did worse than CAFFEINE and MARS, most likely
because they did not have the helpful (for this application)
bias towards the input axes. The boosted FFNN did not have
noticeably superior performance to the FFNN, which means
that overfitting was likely not an issue with the FFNN. The
SVM’s performance was poor, probably because it treated the
variables it selected too uniformly. Also, the support vector at
the center of the sampling hypercube has to reconcile all the
other samples, which it does not really have enough parameters
to do properly. Because kriging did substantially better than
SVMs, the choice of kernel distance function was likely
not an issue. Interestingly, only three approaches, namely
CAFFEINE, MARS, and kriging, did better at prediction than
a constant. This is not because constants are good predictors
per se, but because other predictors failed for the various
reasons described. Put in another way, the other predictors’
attempts to predict outputs from unseen (testing) inputs did
poorly because the models generalized in poor directions that
caused more extreme error values, whereas the constant never
had extreme error values.

We can consider how well a model’s structure can capture
the mapping where no overfitting is present, by taking the
number of training samplesNtr → ∞. If the model can
approximate arbitrary nonlinear functions, then with enough
model building effort, training errorǫtr = 0, and ǫtest → 0
as Ntr → ∞. The following approaches can approximate
arbitrary nonlinear functions: MARS (with enough basis func-
tions), CAFFEINE (with enough basis functions and depth),
FFNN (with enough hidden nodes), boosted FFNN (with
enough hidden nodes and ensemble entries), SVM (using all
support vectors and a narrow kernel bandwidth), and kriging
(using all training datapoints and a narrow kernel bandwidth).

VII. SCALING UP CAFFEINE: ALGORITHM

We ran the algorithm described in section V on larger
circuits – problems with more than 100 input variables.
The results were disappointing: despite good performance on
smaller problems, CAFFEINE was too slow to return interest-
ing results on these larger problems in reasonable time. That
experience motivates this section. The aim is to alter the search
algorithm so that it can scale to problems of 100 variables. The
specific aims are to run faster (hours or minutes), yet maintain
predictive and interpretable models. The improved CAFFEINE
leverages four complementary techniques:

• Subtree caching [32]

• Gradient-directed regularization [33] to simultaneously
prune basis functions and set coefficients for the remaining
basis functions

• Filter single-variable expressions in a pre-evolution step

• Always consider all linear basis functions

We now describe each technique in detail.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 0, NO. 0, JANUARY 2000. 10

A. Subtree Caching

In the original implementation of CAFFEINE, every time
a tree was changed, it would have to befully re-evaluated.
The technique of sub-tree caching [32] sidesteps evaluations
in some nodes of the tree. Given that the training dataset
does not change, when a new tree is created from parent
tree(s) via the search operators, onlypart of the new tree is
different. Therefore, we evaluate just the nodes of the treethat
have changed, and their parent nodes, andcachethe results.
The “evaluation” for other nodes merely uses the evaluated
results that have been cached previously. Note that to do this
cleanly, CAFFEINE was re-implemented in Python, whereas
the previous implementation was in Matlab. This improved
runtime further because Python passes function values by
reference, whereas Matlab passes by value.

B. On-the-fly Pruning with Gradient-Directed Regularization

In previous subsections, the linear coefficientsa of eqn.
(3) were learned by minimizing the least-squares (LS) loss
function on the training data. But for larger problems having
potentially more basis functions, the LS predictions can be
unstable because there is higher variance in the range of
possible parameters. Furthermore, to keep the complexity
down, it is desirable to have a more aggressive way to prune
the basis functions. Regularization is promising because it
explicitly accounts for parameter variance and can implicitly
prune basis functions on-the-fly. Historically, the main reg-
ularization choices have been ridge regression [44] and the
lasso [45]. Unfortunately, ridge regression does little pruning,
and the lasso prunestoo aggressively. Fortunately, a new
technique, gradient-directed regularization (GDR) [33],strikes
a compromise. GDR does gradient-based optimization on the
loss functionf2 in eqn. (1) according toa’s update rule:

a = a + ∆ν ∗ h (7)

where ∆ν is a small (“infinitesimal”) value andh is the
direction of the next step. The starting value ofa is [0, 0,
. . . , 0]. The gradient to the loss function is:

g = −
d

da

1

Ntr

Ntr∑

i=1

L(yi, F (xi; a)) (8)

whereL is given in eqn. (2). One could directly optimize using
g instead ofh in (7), but little pruning would happen, and
collinear or near-collinear bases get similar values (likeridge
regression). Instead, GDR encourages diversity by selectively
updating coefficients. Specifically, it changesaj at a given step
only if |gj | is sufficiently large:

h = {hj}∀j = {γj ∗ gj}∀j; j = 1, 2, . . . , NB (9)

γj = I(|gj |) ≥ τ ∗ max
0≤k≤NB

|gk|) (10)

whereγj is an indicator function that returns 0 or 1, andhj

either outputs 0 orgj as it combines the indicator function
and the gradient.τ is a parameter which controls the degree

of pruning: 0.0 is like ridge regression, 1.0 is like lasso, and
values in between strike a compromise.

We employ GDR here (with settings given in section
VIII-A). The result is that we can have CAFFEINE individuals
with a large number of basis functions, and in a single pass
GDR will drive many linear coefficients to zero (i.e. prune
the basis functions), and set robust values for the remaining
linear coefficients. GDR is fast too: our 300-line python
implementation of GDR has about the same runtime as the
highly-optimized LAPACK linear LS solver [46].

C. Pre-Evolution Filtering of Single-Variable Expressions

The third scalability-improving technique focuses the search
towards the most promising single-variable nonlinear ex-
pressions. It determines those expressions with the routine
ExtractUsefulExpressions()shown in Table V, prior to the
evolutionary run (i.e. right before line 2 in the procedure of
Table II). ExtractUsefulExpressions()considers a large set of
possiblesingle-variableexpressions at once, and extracts the
most promising ones.

TABLE V
PROCEDUREEXTRACTUSEFULEXPRESSIONS()

Inputs: X, y, ιthr

Outputs: Buseful

1. B = {}; i = 1
2. for each input variablev = {x1, x2, . . .}
3. for each operatorop = {unity(), log10, . . .}
4. for each exponentexp = {-2, -1.5, . . .}
5. defineBi asop(v)exp

6. B = B ∪ Bi; i = i + 1
7. XB = simulateX on eachBi

8. a = GDR linear learning onXB 7→ y.
9. ιi = compute influence ofBi according to (11); for eachBi

10. B = sort B in descending order ofιi
11. Buseful = ∅; ιtot = 0; i = 1
12. while ιtot < ιthr:
13. Buseful = Buseful ∪ Bi

14. ιtot = ιtot + ιi
15. i = i + 1
16. returnBuseful

We now describeExtractUsefulExpressions()in detail. It
inputs the target training inputs and outputs{X, y}, andιthr,
which we discuss later. It returns a set of chosen expressions,
Buseful. Lines 1-6 construct the candidate expressionsB,
by enumerating through all combinations of input variables
(line 2), operators (line 3), and exponents (line 4). Line 7
simulates each candidate expression on each of the training
input vectors inX . Each row of the resulting matrixXB has
the values of each training input vector as input to a given
expressionBi. Line 8 computes the influence of eachBi via
linear learning onXB 7→ y. Since the number of expressions
may exceed the number of training samples, GDR is used
because it can handle underdetermined linear systems. GDR
assigns a linear coefficientai to each expressionBi. Line 9
computes the influence,ιi, of expressionBi:

ιi = |ai| ∗ (max
1≤j≤N

(Bi(xj)) − min
1≤j≤N

(Bi(xj))) (11)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 0, NO. 0, JANUARY 2000. 11

where xj is the jth training sample. max
1≤j≤N

(Bi(xj)) is the

largest value thatBi computes to across the training data,
and min

1≤j≤N
(Bi(xj)) is the smallest value. Influenceιi is an

absolute and normalized version of linear coefficientai. Lines
10-16 use theιi’s to select basis functions. Line 10 sorts them
such thatB1 has highest influence,B2 has second-highest,
etc. Line 11 initializes the loop. Line 12 loops until the total
influence quota,iotathr, is hit; e.g. iotathr = 0.95 means
that the highest-influence expressions totaling 95% of total
influence are returned. To implement, line 13 adds the next-
most influencing expression, and lines 14-15 do bookkeeping.
Line 16 returnsBuseful.

TheseBuseful get stored for use during the evolutionary
run. During the run, whenever a sum of products expression
is about to be randomly generated (as a basis function, or
at a lower level in the CAFFEINE expression tree), then
κ% of the time, only the useful expressions are considered.
There has to be enough opportunity to try other expressions to
avoid over-constraining the search, but the majority of search
effort can be focused on known-promising expressions. We
set κ = 80%. Note that variable interactions can easily be
generated via crossover and mutation operations on single-
variable expressions. This strategy is reminiscent of MARS
[41], which builds up complex multi-variable expressions from
a foundation of single-variable expressions.

D. Always Include All Linear Basis Functions

This scale-up technique is based on a few observations: (a)
circuit problems with a larger number of input variables tend
to have at least partially linear responses to some variables, (b)
GDR was very effective at pruning bases, and (c) [47] showed
improved prediction by combining linear basis functions and a
(non-CAFFEINE) nonlinear model. So, we altered the search
to always consider all linear basis functions (but not to evolve
them). Specifically, when evaluating an individual, there is a
step which does linear learning to find the best coefficients
for the tree-based basis functions (and the offset). We altered
that step to include more basis functions – one linear basis
function for each input variable. This increases the numberof
basis functions for linear learning, but not for the evolutionary
search itself which only sees the GP trees.

VIII. SCALING UP CAFFEINE: EXPERIMENTAL RESULTS

A. Experimental Setup

In this section, the aim is to determine how well the scalabil-
ity goals have been achieved with the improved CAFFEINE.

The tests are on three progressively larger circuits – the
operational amplifiers shown in Figures 11. The simplest is
the well-known Miller opamp, and the other two are larger
fully-differential opamps with more complex compensation
schemes. The circuit regression problems have been set up
with the parameters of Table VI. Four output performances are
modeled for each circuit, with the intent to represent a cross-
section of analyses and measures:AV (gain), THD (total
harmonic distortion),SR (slew rate), andOS (overshoot). The
technology is 0.13µm CMOS. The design variables are widths

W , lengthsL, multipliersM , capacitancesC, and resistances
R. The samples were taken using Latin hypercube sampling
[48] on a uniform distribution in the hypercube having its
center at a “good” design, and variable ranges±10%. The
training and test data were split apart by sorting the samples
according to the output value, allocating every4th sample to
the test data, and the rest to training (i.e. 25% test data).

TABLE VI
PARAMETERS OFCIRCUITS FOR THECAFFEINE SCALING

EXPERIMENTS.

#
Variables

#
Devices

Train
Samples

Test
Samples

Performances
Modeled

24 10 129 32 AV , THD,
SR, OS

59 30 330 82 AV , THD,
SR, OS

129 50 1050 262 AV , THD,
SR, OS

Fig. 11. Schematics of circuits for test problems. Top left:10-device
amplifier. Top right: 30-device amplifier. Bottom: 50-device amplifier.

The search strategy settings were as follows. For pre-
evolution filtering: influence thresholdιthr = 25%, bias to
useful expressionsκ = 80%. In GDR, pruning degreeτ
= 0.5. In CAFFEINE, all settings were like in section VI,
except population sizeNpop = 100, and maximum number of
generationsNgen,max = 50. Far fewer generations are now
needed to get to reasonable results because the pre-evolution
filtering picks highly useful expressions, and the linear bases
are always available.

B. Experimental Results

This section aims to see how well the scalability goals were
achieved on the above examples, in terms of runtime, model
prediction abilities, and model interpretability. To assess the
scalable CAFFEINE, we compare its models to a reference
regression algorithm that has a good track record of predictive
ability and of scalability: MARS [41]. To make the comparison
as fair as possible, we used GDR for MARS’ linear regression
subroutine. A further motivation for MARS is that it was the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 0, NO. 0, JANUARY 2000. 12

most competitive to CAFFEINE in the experiments of section
VI.

We first consider the interpretability of MARS-generated
models versus CAFFEINE-generated models. We recognize
that the judgement of interpretability is necessarily subjective,
so here we aim to give the reader a feel. To do so, we must
review MARS slightly further. Each MARS basis function is
a product of “hockey stick” (HS) functions:

BMARS(x) =

Nprod∏

i=1

HS(i)(x(i), ti, qi) (12)

whereHS(i) is the ith HS function having either a+ or −
sign, andx(i), ti, and qi are the chosen input variable, split
value, and power forHS(i), respectively. AHS function is:

HS±(x, t, q) = ±

{
0 if x < t

(x − t)q if x ≥ t (13)

To see how MARS basis functions look on real problems,
we will use an arbitrarily chosen exampleOS, from the largest
circuit (50T opamp). Table VII shows the equation for just a
singleMARS basis function. As we can see, the hockey stick
functions translate to very hard-to-interpret functions.

TABLE VII
A SINGLE BASIS FUNCTION IN MARS-GENERATED EQUATION FOROS

PERFORMANCE METRIC OF50-TRANSISTOR OPAMP. EACH MARS MODEL

TYPICALLY HAS 3-10BASIS FUNCTIOMS.

{
0 if LM2 < 2.13 ∗ 10−6

(LM2 − 2.13 ∗ 10−6) if LM2 ≥ 2.13 ∗ 10−6

}

*
{

0 if mDP1M2 < 8.416 ∗ 10−6

(mDP1M2 − 8.416 ∗ 10−6) if mDP1M2 ≥ 8.416 ∗ 10−6

}

*
{

0 if LM3 < 290
(LM3 − 290) if LM3 ≥ 290

}

TABLE VIII
CAFFEINE-GENERATED EQUATION OFOSFOR THE50-TRANSISTOR

OPERATIONAL AMPLIFIER CIRCUIT. (ALL BASIS FUNCTIONS.)

−780.8
+9.90 ∗ 108 ∗ LMDP3 + 5.23 ∗ 108 ∗ LMCM1 + 4.18 ∗ 108 ∗ LM9

−9.27 ∗ 108 ∗ LMCMB2 − 4.24 ∗ 108 ∗ LM4 − 4.20 ∗ 108 ∗ LM13

+11.46 ∗ mM2 + 7.11 ∗ mM17 − 8.83 ∗ mCM1M2

+1.14 ∗ 108 ∗ WMDP3 + 7.09 ∗ 107 ∗ WMCM3

+2.39 ∗ 107 ∗ WM11 − 2.45 ∗ 107 ∗ WM4

−8.86 ∗ 106 ∗ log10(WMCM3) ∗ m
3/2
M10

∗ W
3/2
MCM3

∗ (0.655 ∗ m2
CM5M1 + m

5/2
CM2M1)

We saw that even a single basis function from MARS is
extremely challenging to interpret. Table VIII shows the 50T
opampOS expression that CAFFEINE generated. The model
is are not as interpretable as we have seen for smaller circuits,
but someinsights can be extracted. It is notable that of the
109 input variables, CAFFEINE pruned down to just use
17 variables, i.e. about 10% of the variables. The variables
include widthsW , lengthsL, and multipliersm. Most of
the basis functions have a linear relation toOS. To decrease
OS, there are someL’s which need to be decreased (e.g.
LMDP3 and 5.23 ∗ 108 ∗ LMCM1), while other L’s need
their values increased (e.g.LMCMB2 and LM4). Similarly,

to decreaseOS with m’s, somem’s need decreasing and
others need increasing. And similarly forW ’s too. There
is a single base with nonlinearity. It has interactions among
the variablesWMCM3, mM10, mCM5M1, and mCM2M1. It
is very notable that of the 109 input variables, only 4 have
significant interactions (in terms of affectingOS).

Table IX summarizes the interpretability results for CAF-
FEINE versus MARS. In short, MARS models are definitely
not interpretable, and CAFFEINE models (arguably) are, at
least enough to extract some insights.

Table IX also lists the CPU time that MARS and CAF-
FEINE each took to build each regression model. We see that
the runtime is indeed reasonable, even for the largest problems.
It is far faster than the original CAFFEINE on the smaller
problems.

TABLE IX
MARS AND CAFFEINEBUILD TIMES AND INTERPRETABILITY, FOR

DIFFERENT PROBLEM SIZES. CIRCUIT SIMULATION TIME NOT INCLUDED .

#
Vari-
ables

Can
interpret
MARS
model?

MARS
build
time
(min)

Can
interpret
CAFFEINE
model?

CAFFEINE
build time
(min)

24 No 7 ≈ Yes 20
59 No 11 ≈ Yes 40
129 No 25 ≈ Yes 100

We have considered the interpretability and model construc-
tion times of MARS versus CAFFEINE. What about ability
to predict on unseen inputs? Table X presents the results of
the regressors’ prediction performance. We see that MARS
and CAFFEINE have similar performance: in some cases
CAFFEINE is slightly better, in other cases MARS is. We see
that some problems are quite difficult to model (e.g.THD
of the 10-device circuit), while other problems are quite easy
(e.g.OS of the 50-device circuit).

TABLE X
PREDICTION ERROR(TESTING ERROR) OF MARS VS. CAFFEINEON

LARGER CIRCUIT MODELING PROBLEMS.

#
Variables

#
Devices

Output MARS
error (%)

CAFFEINE
error (%)

24 10 AV 3.52 2.95
24 10 THD 24.98 24.90
24 10 SR 0.18 0.42
24 10 OS 4.31 5.21

59 30 AV 6.19 5.54
59 30 THD 3.53 6.85
59 30 SR 0.32 1.23
59 30 OS 6.25 6.06

109 50 AV 3.42 3.28
109 50 THD 4.47 4.51
109 50 SR 0.90 0.92
109 50 OS 0.08 0.08

IX. OTHER APPLICATIONS

This section briefly describes other problem types that
CAFFEINE has been or could be applied to.

CAFFEINE was applied to statistical modeling, to give
insight into the mapping from design variables to process

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 0, NO. 0, JANUARY 2000. 13

capability (Cpk) [49] for the 50-device circuit of Figure 11.
It followed the same methodology as performance modeling,
except the Cpk is computed from SPICE simulation data
having both local and global process variation. Table XI shows
the extracted CAFFEINE equation, which has 6.3% testing
error. Note that the technology variations are embedded in the
numerical coefficients of the model – Cpk is not a function
of these process parameters, only their aggregate effect onthe
design variables. We see that just 5 variables are needed to
get 6.3% test error:Cc, Wdp2, Wdp1, Wdp2, Wmt4, Wmt1.
The variables comprise one compensation capacitor and four
widths, and no lengths nor multipliers. There are significant
nonlinear interactions among the variables. An increase to
Wmt4 will increase Cpk, as will a decrease toWmt1. Cpk
is quite dependent on the square root ofCc. Cpk can also be
increased by increasingWdp2 (big effect) or increasingWdp1

(much smaller effect).

TABLE XI
CAFFEINE-GENERATED EQUATION OFCPK FOR50-DEVICE AMP.

+1231.4 + 4.21 ∗ 106 ∗ W 2
mt4/Wmt1 − 0.0012/

√
Cc

−9.39 ∗ 108 ∗W 2
dp2 ∗

√
Wdp1 ∗min(0.104, 6.60 ∗ 107 − 76.9/

√
Cc)

+1.21 ∗ 1012/min(−4.96 ∗ 106, 1010 − 2.48 ∗ 105/(
√

Wdp2 ∗ Cc))

CAFFEINE has also used to extract behavioral models [50].
Despite much progress in automated behavioral modeling,
manual design of models remains popular because humans
can leverage their insights and vouch for the final model.
CAFFEINE bridges manual and automated design by offering
behavioral model “suggestions” to guide the modeling expert.

In [26], CAFFEINE extracted whitebox models relating
performance-tradeoff objectives. The input dataset contained
1576 Pareto-optimal points in five objectives. One objective
was set as the target output, and the other four became model
input variables. The extracted model with 4.1% training error
was:GBW = 4.48 + 24.9/

√
ALF − (8.60 ∗ 106)/(A2

LF ∗
√

SR).
Future CAFFEINE applications include the following. First

is to extract the (nonlinear) sensitivity of the model output rel-
ative to each input variable, in a flow similar to [26]. Note that
other sensitivity-extraction approaches have been proposed,
but they were specific to the model template; e.g. quadratics
[13] or LVR [22], [23]. A second application is based on how
LVR approaches plot the mapping from an LVR’s first affine
transformw1∗x to the outputy = f1(w1 ∗x). A special case
of CAFFEINE could be put into an LVR framework for the
same insight, via: (a) evolving just one basis function at a time,
using the previous basis function’s residuals as the targety,
and (b) restricting the depth of CAFFEINE trees so that only
linear models of the formw ∗x are within eachfnonlin basis
function.

X. CONCLUSION

This paper presented CAFFEINE, a tool that can generate
interpretable symbolic models of nonlinear analog circuit
performances as a function of the circuit’s design variables,
without a priori requiring a model template. The keys to
CAFFEINE are: a flow using SPICE simulation data, multi-
objective GP search to extract template-free functions from

the simulation data, and canonical-form constraints on the
functions for interpretability. In the first round of experiments,
visual inspection of the models has demonstrated that the
models are interpretable. The performance models were also
shown to be significantly more compact than posynomials.
The CAFFEINE models also had lower average prediction
error than posynomials, projection-based polynomials, support
vector machines, MARS splines, neural networks, and boosted
neural networks. CAFFEINE has also demonstrated promise
in applications like robustness modeling, behavioral modeling,
and tradeoff modeling. This paper also described techniques to
scale up CAFFEINE to handle more input variables: subtree
caching, gradient-directed regularization to prune during linear
learning, pre-filtering single-variable expressions, andalways
considering linear bases.

REFERENCES

[1] R.A. Rutenbar, G.G.E. Gielen, and J. Roychowdhury, “Hierarchical
modeling, optimization and synthesis for system-level analog and RF
designs,” inProc. of the IEEE, 95(3), March 2007, pp. 640-669.

[2] G.G.E. Gielen, “Techniques and applications of symbolic analysis for
analog integrated circuits: a tutorial overview”, inComputer Aided
Design of Analog Integrated Circuits And Systems, R.A. Rutenbar et
al., eds., IEEE, 2002, pp. 245–261.

[3] G.G.E. Gielen, H. Walscharts, and W.M.C. Sansen, “ISAAC: A symbolic
simulator for analog integrated circuits,” inIEEE Journ. Solid-State
Circuits 24(6), Dec. 1989, pp. 1587–1597.

[4] A. Manthe, Z. Li, and C.-J. Richard Shi, “Symbolic analysis of analog
circuits with hard nonlinearity”, inProc. Design Autom. Conf., 2003.

[5] J. Yang et al, “Hierarchical symbolic piecewise-linearcircuit analysis”,
in Proc. Behavioral Modeling and Simulation, 2005.

[6] N. Dong and J. Roychowdhury, “General-purpose nonlinear model order
reduction using piecewise polynomial representations”, in IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., 27(2), 2008, pp. 249–264.

[7] P. Drennan, M. Kniffin, and D. Locascio, “Implications ofproximity
effects for analog design”,Proc. Custom Integr. Circ. Conf., 2006.

[8] H.E. Graeb,Analog design centering and sizing.Springer, 2007.
[9] X. Li and H. Liu, “Statistical regression for efficient high-dimensional

modeling of analog and mixed-signal performance variations,” in Proc.
Design Autom. Conf., 2008, pp. 38–43.

[10] W. Daems, G.G.E. Gielen, and W.M.C. Sansen, “An efficient
optimization-based technique to generate posynomial performance mod-
els for analog integrated circuits”, inProc. Design Autom. Conf., 2002.

[11] W. Daems, G.G.E. Gielen, and W.M.C. Sansen, “Simulation-based
generation of posynomial performance models for the sizingof analog
integrated circuits”, inIEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., 22(5), May 2003, pp. 517–534.

[12] V. Aggarwal and U.-M. O’Reilly, “Simulation-based reusable posyno-
mial models for MOS transistor parameters,” inProc. Des. Autom. Test
Europe Conf., 2007, pp. 69–74.

[13] X. Li, P. Gopalakrishnan, Y. Xu, and L. Pileggi, “Robustanalog/RF
circuit design with projection-based performance modeling”, in IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., January 2007.

[14] Z. Feng and P. Li, “Performance-oriented statistical parameter reduction
of parameterized systems via reduced rank regression,” inProc. Intern.
Conf. Comput.-Aided Design, 2006, pp. 868–875.

[15] G. Wolfe and R.Vemuri, “Adaptive sampling and modelingof analog
circuit performance parameters with pseudo-cubic splines,” in Proc.
Intern. Conf. Comput.-Aided Design, 2004

[16] P. Vancorenland, G. Van der Plas, M. Steyaert, G.G.E. Gielen, and
W.M.C. Sansen, “A layout-aware synthesis methodology for RF cir-
cuits”, in Proc. Intern. Conf. Comput.-Aided Des., Nov. 2001, p.358.

[17] G. Wolfe and R.Vemuri, “Extraction and use of neural network models in
automated synthesis of operational amplifiers,” inIEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., 22(2), Feb. 2003, pp. 198–212.

[18] H. Liu, A. Singhee, R.A. Rutenbar, and L.R. Carley, “Remembrance
of circuits past: macromodeling by data mining in large analog design
spaces”, inProc. Design Autom. Conf., 2002, pp. 437–442.

[19] F. De Bernardinis, M.I. Jordan, and A. L. Sangiovanni-Vincentelli, “Sup-
port vector machines for analog circuit performance representation”, in
Proc. Design Autom. Conf., 2003, pp. 964–969.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 0, NO. 0, JANUARY 2000. 14

[20] T. Kiely and G.G.E. Gielen, “Performance modeling of analog integrated
circuits using least-squares support vector machines”, inProc. Des.
Autom. and Test Europe Conf., 2004, pp. 448–453.

[21] M. Ding and R. Vemuri, “A two-level modeling approach toanalog
circuit performance macromodeling”, inProc. Des. Autom. and Test
Europe Conf., 2005, pp. 1088–1089.

[22] A. Singhee and R.A. Rutenbar, “Beyond low-order statistical response
surfaces: latent variable regression for efficient, highlynonlinear fitting,”
in Proc. Design Autom. Conf., 2007.

[23] X. Li and Y. Cao, “Projection-based piecewise-linear response surface
modeling for strongly nonlinear VLSI performance variations,” in Proc.
Intern. Symp. Quality Electronic Design, 2008, pp. 108–113.

[24] G. Yu and P. Li, “Yield-aware analog integrated circuitoptimization
using geostatistics motivated performance modeling,” inProc. of the
Intern. Conf. on Comput. Aided Design, pp. 464–469, 2007.

[25] T. McConaghy and G.G.E. Gielen, “Analysis of simulation-driven
numerical performance modeling techniques for application to analog
circuit optimization”, inProc. Intern. Symp. Circ. and Syst., May 2005.

[26] T. McConaghy, P. Palmers, G.G.E. Gielen, and M. Steyaert, “Automated
extraction of expert knowledge in analog topology selection and sizing,”
in Proc. Intern. Conf. Comput.-Aided Design, San Jose, November 2008.

[27] T. McConaghy, T. Eeckelaert, and G.G.E. Gielen, “CAFFEINE:
template-free symbolic model generation of analog circuits via canonical
form functions and genetic programming”, inProc. Des. Autom. and
Test Europe Conf., March 2005.

[28] John R. Koza,Genetic ProgrammingMIT Press, 1992.
[29] P. A. Whigham, “Grammatically-based genetic programming”, in Proc.

Workshop on Genetic Progr., J.R. Rosca, ed., 1995.
[30] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and

elitist multiobjective genetic algorithm: NSGA-II,”IEEE Trans. Evol.
Comput., 6(2), 2002, pp. 182–197.

[31] M. O’Neill and C. Ryan.Grammatical evolution: evolutionary automatic
programming in an arbitrary language. Kluwer, Norwell, 2003.

[32] M. Keijzer, “Alternatives in subtree caching for genetic programming”,
in Proc. European Conf. in Genetic Programming, 2004, pp. 328–337.

[33] J.H. Friedman and B.E. Popescu, “Gradient directed regularization for
linear regression and classification”, inStanford Univ. Dept. Statistics,
Tech. Report, Feb. 2004.

[34] D.C. Montgomery, Design and analysis of experiments, 6th edition
John Wiley & Sons, NY, NY, USA. ISBN: 047148735X, 2004.

[35] T. Soule and R.B. Heckendom, “An analysis of the causes of code
growth in genetic programming”, inGenetic Programming and Evolv-
able Machines, 3(3), September 2002, pp. 283–309.

[36] E. Kirshenbaum and H.J. Suermondt, “Using genetic programming to
obtain a closed-form approximation to a recursive function”, in Proc.
Genetic and Evol. Comput. Conf., 2005, pp. 543–556.

[37] P. Wambacq et al, “Efficient symbolic computation of approximate
small-signal characteristics”, inIEEE Journ. Solid-State Circuits, 30(3),
March 1995, pp. 327–330.

[38] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Trans. Evol. Comput., 3(2), July 1999, pp. 82–102.

[39] F. Leyn, G.G.E. Gielen, and W.M.C. Sansen, “An efficientdc root
solving algorithm with guaranteed convergence for analog integrated
CMOS circuits”, inProc. Intern. Conf. Comput.-Aided Des., 1998.

[40] N. Ampazis and S.J. Perantonis, “Two highly efficient second order
algorithms for training feedforward networks,” inIEEE Trans. Neural
Networks, 13(5), Sept. 2002, pp. 1064–1074.

[41] J.H. Friedman, “Multivariate adaptive regression splines”, in Annals of
Statistics, 19, March 1991, pp. 1–141.

[42] J.A.K. Suykens and J.Vandewalle,Least Squares Support Vector
Machines. World Scientific Pub. Co., Singapore, 2002.

[43] D.R. Jones, M. Schonlau, and W.J. Welch, “Efficient global optimization
of expensive black-box functions”, inJourn. Glob. Optim., 13(4), 1998.

[44] A.E. Horel and R.W. Kennard, “Ridge regression: biasedestimation for
nonorthogonal problems”, inTechnometrics, 12, 1970, pp. 56–67.

[45] R. Tibshirani, “Regression shrinkage and selection via the lasso”, inJ.
Royal. Statist. Soc B, 58 (1), 1997, pp. 267–288.

[46] “LAPACK”: Linear Algebra PACKage, http://netlib.org/lapack, last
accessed Dec 22, 2008.

[47] J. H. Friedman and B.E. Popescu, “Predictive learning via rule
ensembles”, inStanford Univ. Dept. Statistics, Tech. Report, Feb. 2005.

[48] M.D. McKay, W.J. Conover, and R.J. Beckman, “A comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code”,Technometrics, 21, 1979, pp. 239–245.

[49] National Institute of Standards and Technology, “Whatis pro-
cess capability?” inNIST / SEMATECH e-Handbook of Statis-

tical Methods, sec 6.1.6. http://www.itl.nist.gov/div898/handbook/
pmc/section1/pmc16.htm, last accessed Dec 22, 2008.

[50] T. McConaghy and G.G.E. Gielen, “Automation in mixed-signal design:
challenges and solutions in the wake of the nano era”, inProc. Inter.
Conf. on Computer-Aided Design, 2006.

[50] T. McConaghy and G.G.E. Gielen, “IBMG: Interpretable behavioral
model generator for nonlinear analog circuits via canonical form func-
tions and genetic programming”,Proc. Intern. Symp. Circ. Syst., 2005.

Trent McConaghy (S’95-M’99) is co-founder and
Chief Scientific Officer of Solido Design Automa-
tion Inc. He was a co-founder and Chief Scientist of
Analog Design Automation Inc., which was acquired
by Synopsys Inc. in 2004. Prior to that, he did
research for the Canadian Department of National
Defense. He received his PhD degree in Electrical
Engineering from the Katholieke Universiteit Leu-
ven, Belgium, in 2008. He received a Bachelor’s in
Engineering (with great distinction), and a Bache-
lor’s in Computer Science (with great distinction),

both from the University of Saskatchewan, Canada, in 1999. He has about 40
peer-reviewed technical papers and patents granted / pending. He has given
invited talks / tutorials at many labs, universities, and conferences such as
JPL, MIT, ICCAD, and DAC. He is regularly a technical programcommittee
member and reviewer in both the CAD and intelligent systems fields, such
as IEEE Trans CAD, ACM TODAES, Electronics Letters, to IEEE Trans.
Evol. Comp, the Journal of GP and Evolvable Machines, GPTP, GECCO,
ICES, etc. His research interests are statistical machine learning and intelligent
systems, with transistor-level CAD applications of variation-aware design,
analog topology design, automated sizing, and knowledge extraction.

Georges G.E. Gielen(S’87-M’92-SM-’99-F’02) re-
ceived the MSc and PhD degrees in Electrical En-
gineering from the Katholieke Universiteit Leuven,
Belgium, in 1986 and 1990, respectively. He cur-
rently is a Full Professor at the Katholieke Univer-
siteit Leuven. His research interests are in the design
of analog and mixed-signal integrated circuits, and
especially in analog and mixed-signal CAD tools
and design automation (modeling, simulation and
symbolic analysis, analog synthesis, analog layout
generation, analog and mixed-signal testing). He is

coordinator or partner of several (industrial) research projects in this area,
including several European projects (EU, MEDEA, ESA). He has authored or
coauthored five books and more than 300 papers in edited books, international
journals and conference proceedings. He regularly is a member of the Program
Committees of international conferences (DAC, ICCAD, ISCAS, DATE,
CICC...), and served as General Chair of the DATE conferencein 2006
and of the International Conference on Computer-Aided Design in 2007.
He serves regularly as member of editorial boards of international journals
(IEEE Transactions on Circuits and Systems, Springer international journal
on Analog Integrated Circuits and Signal Processing, Elsevier Integration).
He received the 1995 Best Paper Award in the John Wiley international
journal on Circuit Theory and Applications, and was the 1997Laureate of the
Belgian Royal Academy on Sciences, Literature and Arts in the discipline of
Engineering. He received the 2000 Alcatel Award from the Belgian National
Fund of Scientific Research for his innovative research in telecommunications,
and won the DATE 2004 Best Paper Award. He is a Fellow of the IEEE,
served as elected member of the Board of Governors of the IEEECircuits And
Systems (CAS) society and as chairman of the IEEE Benelux CASchapter. He
served as the President of the IEEE Circuits And Systems (CAS) Society in
2005. He was elected DATE Fellow in 2007, and received the IEEE Computer
Society Outstanding Contribution Award and the IEEE Circuits and Systems
Society Meritorious Service Award in 2007.

