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Abstract—This paper presents MOJITO-R, a tool that per- design goals
forms variation-aware structural synthesis of analog ciraiits. v
It returns trustworthy topologies, by searching across a spce manually select
of thousands of possible topologies defined by hierarchidst hoxt candidate initial topology

organized analog structural building blocks. “Structural ho- wodoloay ¥ gl
motopy” conducts search at several objective-function tigten- Rology
ing levels (numbers of process corners) simultaneously. Miit Manual or auto sizing
g . X . . . manually || manually ool
objective evolutionary search returns sized topologies wbh design - on one topology
trade off power, area, performances,and yield. An experimental
. . . . . o new new
validation run returned 78,643 Pareto-optimal designs, haing ! topology || topology
982 sized topologies with various specification/yield conitations. 2

A decision tree is extracted to visualize the performanceeipology Only do i
relationship. absolutely
. . i . necessary
Index Terms—analog, integrated circuit (IC), design automa- (cost, risk,
tion, process variation, multi-objective optimization. time)
sized topology
|. INTRODUCTION Fig. 1. Status quo industrial flow for topology selectiorsige and sizing.

HE choice of analog circuit topology has a giant impact
on circuit power, performance, area, and yield. Figure 1

shows a typical industrial topology selection / sizing fldhe tools to help the designer in optimal selection and design
designer starts by manually selecting an off-the-shelbkogy. of topologies, especially because of the dramatic incréase
He / she then sizes it, either manually or with an automatigocess varations of recent years [3]. This introductiomneses
optimizer e.g. [1]. However, even the best optimizers caly onsuch tools, then proposes a new tool, upon which the rest of
produce as good a result as the chosen topology allows [2]. 8t paper will elaborate.
sometimes other topologies must be tried, re-looping thhou  One approach is to automate topology selection, by setgctin
the flow. These iterations continue until success is achiigwe from a given topologies database (DB) according to rules.
topology choices are exhausted. If necessary, a noveldggol Rule-based systems like BLADES [5], ISAID [6], OASYS
is designed, but only if the payoff is worth the risk. [7], and others [8]-[13] follow this flow. For example, OASYS

Designers typically make the topology selection decisiqq] has a pre-specified decision tree [14] that chooses among
based on experience. Unfortunately, a suboptimal topology different topologies based on input specifications. ©Bnfo
choice can occur: the topology may not handle worseningnately, these approaches require an up-front setup teffor
effects due to Moore’s law, such as larger statistical Vs of weeks to months, which must be repeated dach new
[3], time-to-market pressure may give the designer todelittprocess node on each circuit type. AMGIE [15] aimed to
time to be thorough, or the designer just does not have tbgercome the process node issue by learning selection rules
experience level to know what might be best. This last poinking SPICE in the loop, prior to the main sizing loop.
is understandable, as it is well recognized that learnirdan However, it supported few topologies, and rule-learningkto
circuit design is a process that takes years to get staribstantial computational effort. [16] is more flexible beeds
and decades to master [4]. Hence, it is desirable for CAehavioral models to be specified.

Copyright (©2009 IEEE. Personal use of this material is permitted. How- For the Fase _Of (ﬂat) muIti-topoI_ogy sizing, fam"y of
ever, permission to use this material for any other purposest be obtained topologies is defined by parameterizing the topologies™-pos
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circuit is required, which is independent of the processenodopologies, with no clear path to get bigger. The answer is
However, each approach relies on a sneaky definition of thre using hierarchical analog building blocks. Some building
search space that is specific to the circuit type. There isanoblocks can instantiate into one afanybuilding blocks.
clear path to generalize. The flat search space makes itudiffic There is a further challenge: process variations. Sinceesom
to compose libraries with large numbers of topologies. Qe topologies are naturally more robust than others, process
these limitations, DARWIN and MINLP have just 24 and 64ariations must be considered within the topology sel@ectio
possible opamp topologies, respectively. design flow. We resolve this witktructural homotopywhich
Genetic programming (GP) [22] is an evolutionary algosimultaneously searches across increasing levels of gmobl
rithm that searches across trees and graphs (e.g. tops)ogithoroughness (more process corners). To our knowledg®, thi
Accordingly, many approaches use GP for the automatigdthe first time trustworthy structural synthesis has been
design flow [23]-[35]. GP is given a set of devices that itombined with process variations.
can connect in arbitrary ways without rules — all the buitdin  Since different topologies are useful in different regions
blocks are “invented” (or reinvented) from scratch. This i%f the performance space, multi-objective search is a ahtur
what gives it the open-ended nature. Early approaches lig [38], [39] did multi-objective sizing on one topology at
[23]-[26] had few constraints, but needed prohibitive CPH time, and merged the results. However, with thousands of
effort. Even worse, results of almost all approaches wete nepologies, thousands of runs is infeasibly expensive. iinom
trustworthybecause there was no apparent logic behind theay multi-objective with variation-awarenesseld becomes an
[36]. This trust issue was exacerbated because the resulglitional objective (just like single-topology multijelstive
often looked strange, e.g. in early papers [23] to recembust sizers like [40]-[43]). This paper combines search
papers like [35]. A design is only trusted if the designescross thousands of topologies (trustworthy structurail- sy
feels confident enough to commit it to silicon. Researchetisesis), accounting for process variations, and multeotije
aiming for industrially palatable circuits found themsesdv optimization into one system. Once the search returns ad?are
adding constraints, then re-running the system, and addigigtimal set, that set can then be stored, and subsequently
more constraints, and so on, in a seemingly non-stop loqueried by designers for ailmmediate-turnaround specs-to-
GP-based efforts like [27], [32], [33], [37] and a non-GRoeff sized-topology flowThe combination of multiple topologies
[37] added constraints using domain knowledge, but stlegi and multiple objectives is where MOJITO earns its label:

no guarantee of trustworthy results. multi-objective and_tpology sizing. The “R” in MOJITO-R
is for robust design.
e —
Novel contributions of this paper are:

e —
Predefined Building Blocks
Library (= Giant Set of Topologies)

e A topology synthesis search space, specified by structural

information only (no rules or behavioral information), tvit

a massive count of possible trustworthy-by-construction
_.| simulator topologies. The key isierarchical pre-specified analog
building blocks. Using this space, a library for opamps
is designed that is50x larger than past trustworthy
structural-only space§l7], [18]. A search algorithm tra-
verses the space in lderarchy-awarefashion, using ge-

Fig. 2. Proposed flow using MOJITO(-R) for trustworthy-bymstruction netic programming [22]. lvoids premature convergence

analog topology synthesis. A small library of analog stk building blocks via an age-layered population structure (ALPS) [44].

combine hierarchically to create massivelibrary of possible topologies. L.
MOJITO outputs sized topologies which are Pareto-optineabeding to the ~® A Means to handle process variatistructural homotopy

objectives of area, power, performancesd yield. a novel homotopy approach that conducts search simulta-
o neously on multiple layers of problem tightening, such that
We propose a new flow, shown in Figure 2. It returns higher layers use more process corners. The approach is

trustworthy circuits (like the CAD approaches), that aressp  10x faster than brute force and just 3x slower than nominal.
ified by structural information only (like flat multi-topody

sizing), yet searches through a structurally-diverse cear
space (like open-ended GP). Because the topologies library
has asufficiently richnumber of topologies, the designer does
not have to intervene in a typical design problem. It uses the _ )
same inputs and outputs as existing industrial automazedssi ® Finally, a means to help the designer understand the Pareto-
like [1]. It uses SPICE-in-the-loop for accuracy, flexibjliand optimal results byautomatically constructinga visual
easy adaptation to new technology processes. Actuallyethe decision treethat maps specifications to topologies.
is even one less input — unlike the sizers, the topology does n An industrial-strength accurate model of process vantio
need to be specified. The flow is “specs in, sized topologitsused [46]. SPICE is used for evaluating circuits, withgtlet
out”. This is industrially-palatablanalog structural synthesis processing to reduce overall runtime. Combining these stem
The challenge is specification of a sufficiently rich libraryresults in MOJITO-R: a variation-aware, multi-objectiveaa
After all, the “flat” topology libraries for opamps had 100 log topology synthesis approach having industrially pés

MOJITO

e —
Sized, trustworthy
topologies

e A means to do multi-objective search, returning a Pareto-
optimal set of sized topologies which trade off among
performances anglield. This is done via NSGA-II multi-
objective selection [45] at each ALPS layer.
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. . . w, L
accuracy, setup requirements, runtime, generallty, aswl, p Wb w,L, p Use_pmos,

The rest of this paper is organized as follows. Section Il (mes— a )mg'i‘:ge el =
describes the hierarchical search space. Section Il ihescr v
(nominal) MOJITO, with experimental results in section IV. || w-w, B
Section V describes the MOJITO-R extension for process vari f e
ation, with experimental results in Section VI to validabe t e-pmes
overall approach. Section VIl describes extraction of acspe s
to-topology decision tree, to enhance designer insigttti@e S

VIII discusses other applications. Section IX concludes.
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Fig. 4. Example compound blocks. mos3 is a wrapper for mos4hat
II. THE MOJITO SEARCH SPACE the mos4’s ‘B’ node is not seen at higher levels. mosDiode thgether two
' internal ports to only present two external ports. biasesMses a 1-port dcvs

This section describes a topology space that is specifi@d-controlled voltage source) block to set its gate bidsrirally.
by structural information only, searchable, trustwortlayd

flexible. Its flexibility is due to a hierarchical descriptithav- D' (choice_i=-use_pmos, W,L)
ing parameter mappings, where the parameter mappings car mosd
choose sub-block implementations. We go on to describe an GO & hoicei B
exemplary cell-level library for opamp synthesis to illade. —O—

'y S %

]

W L= x * “W.L=
A. Search Space Framework WWL=D - ‘.(W W=
L) *
We define the library using hierarchically organized blocks D s D
Each block has external ports and parameters for an ineerfac G D B G B B
Some blocks may have sub-blocks; sub-block parameters are® __ B G B
a function of the block’s parameters. To generate a netist f U ~S'
S

a given block, the only extra information needed is a value fo
each parameter of the bIOCk'. Just .three block types are deeg%. 5. Example flexible block: mos4 turns the choice of NMGS RMOS
to define a whole topology library: into a parameterchosenpart_index. Note how parameters get assigned from
e Atomic Block. Have no embedded blocks. Being le 0s4 to either of its sub-blocks. In this case both sub-tdacde the mos4’s
. T . ’ g and L parameters as their own W and L values.
nodes in the building block hierarchy, only these blocks
that would show up on a flat netlist. Fig. 3 gives examples.

e Compound Block. These have one or more sub-blocksuch blocks, the combination of blocks means that a given
embedded. Sub-blocks can have internal connectiamidck is its own library of possible topologiesA block’s
among themselves and to the block’s external ports. Figearch space is merely the possible values that each sizing /
4 gives examples. topology choice parameter in the block can take. Largerksoc

e Flexible Block. These have the special topological padre built up from smaller blocks. To make a whole library, we
rameterchosen_part_index, which, during netlisting, is continue the process to eventually reach the level of tigetar
used to select one of several candidate embedded blo€gk§uit, such as an operational amplifier (opamp). The dock
and respective wirings, thereby enabling a library. Exangan readily be specified in an analog HDL, a circuit schematic
ple: a current mirror which may be simple or cascodeditor, or a programming language (we use Python [51]).

(chosen_part_index = 0 or 1). Fig. 5 gives an example. For all these subblocks, instantiation into sets of NMOS
vs. PMOS devices is deferred until the very leaf block, as
D wo S wo a function of the decision parameters that flow from higher
o omic levels. This flexibility allows for a large number of topoleg
c - : at the top level, without having an excess number of building
blocks. It also means that many parameters are shared in
: the conversion from one block to subblocks, which improves
search space locality [50] (more on this later).
Fig. 3. Example atomic blocks: nmos4 transistor, pmos4stsaor, resistor, The MOJITO_gxampIe opamp library allows for: one-and
capacitor. Example of ports and input parameters: nmos4fdasexternal  two-stage amplifiers, PMOS vs. NMOS loads, PMOS vs.
ports:G, D, S andB; it has two input parametersy andL. Note howdevs  NMOS inputs, stacked vs. folded cascode vs. non-cascode in-
&'ﬁg&ﬁ;ﬂgogffuﬂtage source) has only one extemal fosother portties 1 yo casc0de vs. non-cascode vs. resistor loads, levehghi
different current mirrors, single-ended and differentigbuts,
Each block has its own parameters, such as transistor wid®#{¥! single-ended outputs.
or branch currents, which fully describe how to implemertan FOr an industrial setting, this limited initial library wali
size the block and its sub-blocks. Despite the simplicity dypically be provided by the tool provider, and will require
low maintenance because it is generic across all semiceoduc
1An earlier, nominal-only version of MOJITO was presented4i). processes, and does not rely on any definitions of behavioral
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Vdd

models. Some designers will wish to alter the library them-
selves, e.g. to try out new ideas of building blocks.

B. Size of Search Space

Table | gives the topology count for the MOJITO opamp li-
brary, compared to other approachdsshows that MOJITO’s
flexible hierarchical nature increases the number of p&ssib
trustworthy opamp topologies in our library by 50x compared
to previous publications [17], [18].

TABLE |
SIZE OF OPAMP TOPOLOGYSPACES

Technique # topologies | Trustworthy?
GP without reuse, e.g. [29] > billions NO
DARWIN [17] 24 YES Fig. 6.  Four circuits with similar conceptual behavior, iramatically
MINLP [18] 64 YES different phenotypes. The circuits on the left have PMOSuispand on
GP with reuse: MOJITO 3508 YES thg ‘right hgave NMOS inputsifput_is_PMOS = True/False). The load’s

: rail is vdd in the top row, andgnd in the bottom row loadrail_is_vdd =

True/False).

Having a massive number of options can qualitatively
change the designer's perception of the process: rather tha
doing selection from a few dozen t0p0|og|ﬂ'm tool is Synthe- those sub-blocks are wired to their parent block. As an
sizingthe optimal combination of building blocks from a huge&xample, we describe how the framework handles Figure
set of possibilities. The number of topologies is suffidignt 6's circuits. Near the top of the library’s hierarchy are the
rich that the designer will feel less need to intervene inpi-ty Parametersloadrail_is_vdd (‘is the load's rail attached to
cal design problem. Since the library only needs to be definedd, not vss?”), andinput_is_pmos(“are the input devices
once for a given problem type (e.g. opamp), the designer RB10S,not nmos?”). Those values propagate down the higrarch
|0nge|’ needs to view it as an input to the t00|, not even h‘ntll a choice for folded vs. cascode must be mad_é[)lded
the process node changes. The space can be expanded gveAput is PMOS == loadrail_is_vdd). Figure 6 illustrates
further, via adding even more building blocks. For exampléhe effects of the four parameter combinations.
[48] added blocks to support symmetrical transconductance
amplifiers [49], which increased the MOJITO library’s opamp. Worked Example

count to 101,904 topologies{1500x more than MINLP [18]). 14 search space is a library of circuit building blotks

Therefore, a point in the search space is a circuit, or in EA

C. Search Space Locality terms, an individual. This section illustrates some défer

Good locality means that small changes to the genotype lesdys one can view an individual. The schematic view is
to expected small changes in performance (objective fankti both concrete and intuitive (Figure 7). It is annotated tovsh
Good locality is important for an effective search algarith the hierarchical composition of library blocks. A choicesha
[50]. In analog circuits, there is a complication to achigyi been made for each Flexible block. The library’s root node
locality. If a designer makes a small conceptual change it dsViAmp2 VddGndPorts (as indicated in the schematic’s
a circuit (genotype) that corresponds to a small change top left corner). Its sub-blocks are dsViAmp1#{ stage),
electrical behavior / performance, there may still bdramatic  ssViAmpl @"? stage), and viFeedback (Miller feedback ca-
change in the netlist (phenotype). For example, Figure @vshopacitor), which subdivide further until Atomic blocks (fea
four circuits with similar electrical behavior / performae nodes) like nmos4, pmos4, and capacitor.
However, as we see in the figure, they hawery different An individual is represented within the synthesis engine’s
schematics / netlists / phenotypes. The analog design faeld lsode with a vector for a genotype. All the other represeotesti
many more examples [49], [52]. can be computed from the genotype. The vector representatio

The MOJITO blocks framework handles this. It leverages an unordered mapping from the root block’s variable names
the flexible block’schosenpart_index parameter, which can to corresponding value. Some variables specify for topplog
be afunction of one or more higher-level parameters, andhoices ¢hosenpart_index, and others are for setting specific
choose between sub-blocks that are identical except for hdevice valuesl(s andV'’s which translate toV's andL's) via

an operating-point driven formulation [53]. Table Il giviése

“Topology count is computed by the following rules: the cdanan atomic oy ample individual’s topology choice values. Each paramet
block is one; for a flexible block, it's the sum of the countseafch choice . . - .
block; for a compound block, it's the product of the countseaich of its 1S @ choice for a Flexible Block. The first parameteho-
sub-blocks. But there are subtleties. Subtlety: for a gighnice of flexible sen part_index decides between one and two stages (value of

block, other choice parameters at that level may not maErample: if a 1 means t\No-stage);tagelloadraiI is vdd = 0 means that
one-stage amplifier is chosen, do not count choices relatesbdond stage. = -

Subtlety: one higher-level choice might goversl lower-level choices, so Stage 1's loadrail is not set tedd, but to gnd instead, as
don't overcount. Example: a two-transistor current mirsbrould have two
choices (NMOS vs. PMOS), not four (NMOS vs. PMOS x 2). 1Equivalently, the library is a parameterized grammar.
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dsViAmp2_VddGndPorts

dsViAmp1 if it meets all constraints{g;(¢) < 0}Vj, {hx(¢) = 0}VE,
/*3;;}{3353' _ Feedback ¢ € ®. By definition, all the designs it are nondominated
biasedMos Vvireedbac| vdd . . . . . .
— I = __ssviamp1 i.e. no designy in Z dominates any other design . A
) :/55"/‘?“" feasible designy, dominatesanother feasible design, if
_‘I ’ {fi(da) < fi(dw)}Vi, and{fi(da) < fi(dp)}3i.
ssVilnput lout The next subsection describes the high-level search algo-

rithm, and subsequent sections describe details.

Vinl

| | A. High-Level Search Algorithm
I

) We use an evolutionary algorithm (EA) as the base of our
;”J'I search algorithm because EAs can perform constrained-multi
] J objective optimization, e.g. [45], support parallel cortipg,
and offer flexibility in overall algorithm design.

A key issue with most EAs is premature convergence, i.e.
Fig. 7. An example individual (“PMOS-input Miller OTA") shen in  the algorithm converges to a local region of the design space
schematic form, annotated with MOJITO building block label too early in the search without having explored the global
space sufficiently, which leads to sub-optimal resultsti¢ac

we already saw. And so on. Note that some variables mg%soften this ?nclug:ie huge popul_ations [25]’ [29], restat
be ignored, depending on values of other variables, e.g.ei1g' [54]. or dlversn_y fmleas_ures like croé\{\flng e.g. [45]1 Al
chosenpart_index=0 to choose a one-stage opamp, then éh‘ese tactics are painful or inadequate [44].

variables related to the second stage have no effect.

Random injection of individuals might help because fresh
building blocks can enter, except they get killed off too
TABLE |I quickly during selection. To give random individuals a cban
EXAMPLE INDIVIDUAL : VALUES FORTOPOLOGYCHOICE VARIABLES. the age-layered population structure (ALPS) [44] segesjat
individuals intoagelayers, and restricts competition to within

| Variable Name | Value | ) 4 . o ,
. layers. Genetic age is how many generations an individual's
chosenpart_index 1 i . ] .
stageLloadrail is vdd 0 pldg;t gen_etlc material has been_arqund. the age of anl ||_1|t|a
stageLinput is_pmos 1 individual is 0; the age of a child is the maximum of its
stageldegenchoice 0 parents’ ages; age is incremented by 1 each generatiorreFigu
stagelinputcascodeis_wire 1 8 illustrates. Each age layé?, holds Ny individuals. Layer
stagelinputcascoderecurse 0 Py allows individuals with age<19; P, allows age<39, and
stagelload chosenpart index | 1 so on; the top levePx allows oo age. If an individual exceeds
stage2loadcascoderecurse 0 th . f fit | it et df that
stage2load part index 0 e maxmium age for a fitness layer, it gets removed from tha
stage2inputcascodeis_wire 1 layer. Selection at an age Iay_kruses the individuals at th_at
stage2loadrail_is_vdd 1 layer k. and layerk — 1 as candidates, such that younger high-
stage2input_is_pmos 0 fitness individuals can propagate to higher layers.
stage2 degen choice 0
stage2inputcascoderecurse 0 :
MOEA at age layer k=9 :
Max age = inf P
. THEMOJITO SEARCH ALGORITHM P, individuals available ?forselection
MOJITO search is a multi-objective evolutionary algorithm MOEA at age layer k=2 ‘6
(MOEA) that uses an age-layered population structure (ALPS Max age = 59 generations g
[44] to balance exploration vs. exploitation. The algarith P, individuals available Tfo,se,ec,,-o,, g
aim is formulated as a constrained multiobjective optirtiira MOEA — i.Ei
at age layer k=1 HE—H
problem: ' > S
Max age = 39 generations H §§
minimize  f;(¢) i=1.Ng P, individuals available Tfor selection =i
s.t. gj(¢) <0 j=1.N, 1) MOEA at age layer k=0
hi (¢) =0 k=1.Ny Max age = 19 generations
ped

Initial individuals T :
Generate initial individuals | .

where @ is the “general” space of possible topologies and
sizings. The algorithm traversds to return a Pareto-optimal
setZ = {¢7, 93, -+ ,dn,,, } ON Ny oObjectives,N, inequality
constraints, andy, equa“ty constraints. Without loss OfFig. 8. Structure of MajitoSynthesis(), which uses an ageted population

generality, we can minimize all objectives and have ineitjual structure (ALPS) and adds multi-objective support via iraltjective EA
constraints with ain< 0. By definition, a desigr is feasible selection at each age layer.
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TABLE Il

PROCEDUREM 0JITOSYNTHESIS() an off-the-shelf algorithm whether it be a classical MINLP
solver or an EA operating on vectors.

Inputs: ®, No, K, N, But a vector-oriented view does not recognize the hiergrchy
?Ut%ts Z O N0 Z @ P g which causes issues. One issue is that a change to varjable(s
2. While Nipy < Nontaw: may not change the resulting netlist at all, because those
3. if (Ngen%Na) = O: variables are in sub-blocks that are turned off. Anotheméss
e i ‘P]L< K ’ is that ann-point or uniform crossover operator could readily
6. P =‘P~H<Il>,i:1..NL disrupt the values of the building blocks in the hierarchy,
7. fork=1to|P|: ' e.g. the sizes of some sub-blocks’ transistors change while
g N (Ijﬂ’NZ) g T?%@EAE%@"‘T“%' TI’;T' 2) others stay the same, thereby hurting the resulting togytsog
10 retumy Lo i T ind T L 0k likelihood of having decent behavior. We cannot reconcile

this by applying a hierarchical design methodology [558][5
because there are not complete goals on the sub-blocks, just
We use ALPS in our search algorithrivojitoSynthesis() ©On the highest-level blocks To compensate, we design the
which has the pseudocode of Table Ill. Evel, (“age EA mutation and crossover operators to have both tree- and

gap”) generations (Table III, line 3), a new age layer mayector-based aspects.

be added (lines 4-5), and initial individuals enter laye0 \ytation Operator. This operator varies one or more param-
as random individuals (line 6). Only a single-objective AP eters. Continuous-valued parameters follow Cauchy nuitati
exists in the literature [44]. So, we designed a multi-obyec [57] which allows for both tuning and exploration. Integer-
version, by having multi-objective EA (MOEA) at each ag&aluedchosen_part_index parameters follow a discrete uni-
layer k, running one generation at a time (line 9 in Tablgyrm gistribution. Other integer and discrete parametelisi

II). Whereas a canonical MOEA would select at just layegiscretized Cauchy mutations. While this can be viewed as
k, here the MOEA selection also considers layer—1)'s  mytations to the parameter nodes in a tree, it can also be
individuals. An external archive holding the Pareto-o@tim yiewed as changes to a vector in multi-dimensional Canesia

set Z is always maintained. We use a maximum number @hace, so that insights from vector-based optimizatiorlyapp
individuals, N;n4.maz, as the stopping criterion (line 2). (e.g. evolutionary programming [57]).

TABLE IV Crossover Operator.Because crossover needs two individuals
PROCEDUREONEMOEAGENERATION() to operate on, the population-based nature of EAs make them
a natural choice [22]. Crossover works as follows: given two

Inputs: Py, Pr_1, Z

Outputs: P}, Z’ parent individuals, randomly choose a sub-block S in parent
1. Pye; = SelectParents$t, U Py_1) A, identify all the parameters associated with sub-blocir&]

g: 5; :ésgllzgtgle{it;)rsf’”l) swap those parameters between parent A and parent B. It is
4. P =P, UP,, possible that S shares parameters with other sub-blocks tha
5. 7" = NondominatedFitef U P..,) have the same higher-level block as S; and in that case the
6. return (P, Z’)

new parameters for S will affect those other sub-blocks.

Table IV shows the algorithm for the.MC.)I.EA at each age V. MOJITO EXPERIMENTAL RESULTS
layer R, for one generation. Note how individuals from the i
lower layerk — 1 are imported for selection. NSGA-II [45] A. General Experimental Setup
does selection. Therefore NSGA-II's dominance rules aeglus The search space hadl; = 50 topology selection and
for handling constraints: fasibledesign always dominates ansizing variables; there were 3528 possible topologies. NIOJ
infeasibledesign, and if two designs are infeasible then the oneas implemented in Python [51]. The experimental setup
with smallest constraint violation is considered domind&ur parameters are given in Table V.
feasible designs, NSGA-II's usual “nondominated filtefing

approach applies [45] . B. Experiment: Hit Target Topologies?
In this section, we aim to validate MOJITO’s ability to
B. Search Operators find targeted topologies. The objectives were to maximize

Tree vs. Vector View. Each building block has its own GBW, and to minimize power. Three runs were done, the only
parameters, which fully describe how to implement the blodgkfference between them being the specified common-mode
and its sub-blocks. As we build up the hierarchy of buildingoltageVe,m,i» at the input. We know that for, = 1.8V and
blocks, we eventually reach the level of the block we want t6:mm.in = 1.5V, topologies should result in an NMOS input
search for, such as the amplifier block. So, the search sp&@. FOr Ve in = 0.3V, topologies should result in PMOS
for the circuit type (e.g. fully differential amplifier) is emely Inputs. At Ve, in = 0.9V, there is no restriction between
the possible values that each of the block’s parameters ddMOS and PMOS inputs.

take. Since these parameters can be continuous, discrete, Q _ _ ,
integer-valued, one could view the problem as a mixed-'nfrtegan We could, however, still apply a hierarchical methodologythe results,

) ’ . ~and that is exactly how MOJITO would translate to design aftemy-level
nonlinear programming problem, which one could solve withnalog circuits.
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Fig. 9. Combined result plot for 3 synthesis runs. Set (awsha Pareto front foV.,,m,in = 1.5V, set (b) is forVey,m,in = 0.3 V and set (c) is for
Vemm,in = 0.9 V. Aim is to minimize power and maximize Gain-BandwidBach point is a sized topology; each topology has manyrdiitesets of sizings.
The expected topologies were found.

TABLE V

EXPERIMENTAL SETUP PARAMETERS the folded-cascode input, is needed. To get deeper insight y
the designer can use his expertise in circuit analysis,he
iec?bno'org]y IO.lgum C'V_'tos — R SRS he would see that since going from a non-folded to a folded
estbenc oad capacitance = 1pF, supply voltage = 1.8V, outpu .
parameters| voltage = 0.9V input needs one more current bran(_:h, the extra brgnch has
Simulator | HSPICE™ extra current (power) needs. Interestingly, the searchirret!
Constraints| PM > 65°, DC Gain> 30 dB, GBW > 1 GHz, power a stacked current-mirror load for about 250MHz GBW. All
< 100 mW, dynamic range- 0.1 V, Sk > 1e6 VIs, | iy g|| this experiment validated that MOJITO did find the
dozens of device operating constraints [58] . .
Objectives | See specific experiment topologies that we had expectadpriori.
EA num. age layers = 10, num. individuals per age layer
settings Ny = 100, age gapV, = 20, max. num. individuals|
Nind mas = 100,000 V. MOJITO FORROBUSTDESIGN: MOJITO-R

A. Problem Specification

Each run took the equivalent of overnight on ten single-core N(_)mlnal M_O‘]ITO had many se_zarch obJectN_es,_ but did
2.0 GHz Linux machines, covering about 100,000 individuaIE_Ot include yield. When we add yleld_ as an objectl_eech
Fig. 9 illustrates the outcome of the experiments. It cargtajSi2€d topology has itown Pareto-optimal set, trading off
the combined results of the three optimization runs. peffm”.‘a”?es with ylc_eld_. For exa'.””p'e' let us have gain as

Result (a) had/,,m in = 1.5V, and has indeed only topolo-one objective (to maximize) and yield as the other. Then, an

gies with NMOS inputs. MOJITO chose to use 1-stage awattainably large gain specification will give a yield = %0

2-stage amplifiers, depending on the power-GBW tradeoﬁ.Ut yield will rise as we loosen the gain specification (0.0%
Result (b) hasV. ., = 0.3V, and MOJITO only returns < yield < 100%), and eventually the specification will always

amplifiers with PMOS input pairs. For result (C)Vaumm.in = be met (yield = 100%). This whole tradeoff of gain vs. yield

0.9V has been specified. Though both amplifiers with NMOi§ possible from esingle design. We can generalize to 1

and PMOS input pairs might have arisen, the optimizati&egorr;;ance objecti(\j/e, ?f Cou:i:‘ Tfl}en,dall gfe_?ir?n car:)elikjla
preferred NMOS inputs. tradeoffs are merged to form tlewerall tradeoff. The problem

The curve clearly shows the switch in topology arount?rmmat'on IS:
GBW =~ 1.9GHz, moving from a folded-cascode input (larger

. . LM i , =1..N
GBW) to a simple current-mirror amp (smaller GBW). Note minimize - fi(@) ‘ _ /
o . ) st. gj(¢) <0 j=1.N,
that there would be more amplifiers with folded-cascodeinpu he(é) =0 k=1.N 2)
at GBW < 1.9GHz, but they are not part of the Pareto-optimal ¢k€ & o
set and therefore do not show up in the plot. An algorithmic
answer is: By definition, the Pareto-optimal set only cargai where all symbols are like section Ill, excepgt is the
the designs that are no worse than any other designs. @gective to maximize yield. As discussed, the value ofdsiel
the apparent “jump” is merely a side effect of a maximurfor a given¢ is dependent on the values ¢f, f3,-- -, fn,.

achievable GBW otz 1.9GHz for the simple current-mirror Before we proceed to describe MOJITO-R, we first describe
amp, after which a significantly higher-power amplifier, mgy  a foundational technology: homotopy.
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B. Homotopy filtering on the resulting combined yield-performances

Homotopy or continuation methods (sec. 11.3 of [59]) are VeCtors.
an optimization strategy in which the original optimizatio e At every generation, the final nondominated set is updated
problem of solvingf(d) = 0 is not solved directly. Instead, by merging the tradeoffs of each sized design in the top two
an easy problem with an obvious solution is set up. This layers (layers with full evaluation), then applying furthe
easy problem is gradually transformed to the true problem, nondominated filtering.
and during the transformation, the solution to the problem To further help topology diversity, the algorithm of Table
is Continuously tracked. Eventually, the problem beconhes tv] rep]aces the random Samp"ng in step 6 of Table III.
true problem, and therefore its solution is the true sotutio It defers Competition among random]y_generated topobgie
Specifically, thehomotopy magt (d, n) is defined as: until each topology is at least close to feasible. It does so
by optimizing sizings & biasings in a series of constraint-
H(d,n)=nx*f(d)+(1—n)*(d—a) (3) satisfaction “gates” that are successively more expensive
evaluate: from function-based device operating condsain
(DOCs) (lines 2-5), to simulation-based DOCs (lines 6-8j a
finally to performance constraints (lines 10-13). In allethr
Ig;ates, mutateSizings() applies Gaussian mutation to ZAfigsi
and biasing parameters of the design.

wheren is a scalar parameter arde V<. Whenn = 0, egn
(3) becomes the easy initial problefi(d, n) = d— a, having
the obvious solution ofl = a. H(d,n) becomes the original
problem whenn = 1. The steps in between, i.e. the path i
the space ofl Un where H(d,n) = 0 for various values of
7, is called thezero path

There are various strategies for shifting from the easy
problem atn = 0 to the true problem af = 1. The most
obvious is to gradually change from 0 to 1, and solve at
each step along the way. However, this may not always work
because the zero path may not always follow monotonically
increasing values of).. More successful strategies track the
zero path itself, rather than thgvalue.

Nondominated
sort across

inds available for selection performance
specs & yield

Nondominated
set

inds available for selection

Layer 7 MOEA: max age = 79
Sim at 21 process points

T inds available for selection

Layer 6 MOEA: max age = 69
Sim at 21 process points
T inds available for selection

C. MOJITO-R Approach
Whereas typical homotopy algorithms tightdgnamically

Layer 5 MOEA: max age = 59

towards the true objective functiosfructural homotopyem-

beds objective function tightening into the search state’s
structure searches at several different tightening levels are
conducted simultaneously. MOJITO-R extends MOJITO with

Sim at 7 process points

T inds available for selection

Layer 4 MOEA: max age = 49
Sim at 7 process points

T inds available for selection

structural homotopy to handle variation issues. It retuans
Pareto-optimal set of sized topologies, which trade oftdyie
and performances. Its high-level structure is shown in Fégu
10. Its algorithm and sub-algorithms are identical to MAJIT
(section IlI), except:

e Evaluations at ever-higher levels get progressively tight
ened (i.e. structural homotopy), by adding more Monte-
Carlo sampled process points with the counts shown in
Figure 16. Each age layer simulates all testbenches.

e For each sized topology, a yield-performances tradeoff
is generated by (1) sweeping through all combinations

of specmcatloné and computing y'eld _fOI‘ each VefCtorFig. 10. MOJITO-R adds structural homotopy to MOJITO to echi
of performance values, then (2) applying hondominatesriation-aware topology synthesis.

Layer 3 MOEA: max age = 39
Sim at 4 process points

T inds available for selection

Layer 2 MOEA: max age = 29
Sim at 4 process points

T inds available for selection

Layer 1 MOEA: max age = 19
Sim at nominal (1 process point)

T inds available for selection
Layer 0 MOEA: max age =9
Sim at nominal (1 process point)

T initial inds

1These numbers were chosen using the following reasoningpréGess  We can estimate the additional simulation cost of running

points (+nominal) gives reasonable accuracy for the cantdxa yield _ ; ; i
optimizer. The jump from nominal to 4 process points, ananfibto 7, adds MOJITO-R versus running MOJITO. For Slmp|ICIty, let us

three process points each time which is not a giant jump ctatipnally, assume one testbench, for one generation at algorithmystead
but starts to account for process variations. Additionaicgss points have state when all age layers exist, with equal population size

diminishing returns, but 21 is a reasonable middle groundnamage the per age |ayer To start with. we also assume that generating
jump from 7 to 30 process points. ’ !

2The specification values for each performance were the enigt of initial individuals qomes_for free. For a _basel'ne' we aBS!g
observed performance values in simulation. Example: ieokesd values for a cost of 1 evalution-unit / layer for a single age layer with

gg;}?c;ss points Wezﬂ‘h{ﬁ} 6{%16266%2&”(1570@067’:{?60022' %%11; O'OC'}' MOJITO, and therefore with (1 + 1 + ... +1) =1 * 10 =
.02}, then unique values aréV'={61, 60, 62 andpower={0.02, 0.0%, an . .
yield is computated for each of thel{/,power) combinations of{(61,0.02), 10 evaluation-units for MOJITO. In MOJITO-R, upper age

(61,0.01), (60,0.02), (60,0.01), (62,0.02), (62,0}01) layers cost more, giving a cost of: 1 + 1 + 4 + 4 + 7
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PROCEDulAEFNquLl CIRCUIT() database of 78,643 Pareto-optimal points, composed of 982
sized topologies having various specification combination

Inputs: 284 of those sized topologies haxd 00% yield.
Outputs: ¢ € &
%: fvhileq)meetsFuncDOGﬁI # True: B. Performances on Whole Pareto Front
i: ﬁlﬂ]n?ggées%ﬂ;%%) < funcDOCSCostf): We first examine each raw point’s performance in Figure 11.
5. =¢ Each diagonal entry is a histogram for a performance metric
g- Whi'zlﬁeﬁjggggﬁ%f True: (or yield), and other entries in the grid give a 2-D scattetpf
8. if Si_mDOCSCOst(g) < SIMDOCSCOstf): performance / metric values. This plot offers insights iimti
9. =¢ tradeoffs between performancasd yield. The histogram for
i‘i- Wh”z,”jeﬁqtj;fg;;?fgr@# True: gain is bimodal, with peaks at 55 dB and~ 110 dB. These
12, if perfCostt') <gperf005t@: modes appear in other plots where gain is on one axis; e.g.
13. =¢ the gain vs. power plot has one distinctly higher-power grou
14. Returng and one distinctly lower-power group, plus some outlietse T

higher-gain cluster has lower power, indicating that onesdo
not have to compromise gain for power, or vice versa. On the

+ 7 + 21 + 21 + 31 + 31 = 128. Therefore MOJITO-Ryther hand, the plot of GBW versus gain indicates that there
is 128 / 10 = 12.8 times slower than MOJITO from thesgap pe either high GBW or high gain, but not both.

assumptions. However, we cannotignore the cost of generati The yield dimension affects what these insights mean. The
initial individuals. Via some ad-hoc tests, we saw that @ko yield histogram is in the upper left of Figure 11. All points
Procedure InitialCircuit()on average 500 simulations. If initial 3re not 100% yield, which means some of the performance
individuals are generated evetry, = 10 generations, this exiremes are only attainable with100% yield. The his-
brings_ the cost of MOJ!TO to 500/10 (for init. ge.n._) + 1Qogram’s peak is 10-20% vyield, with most points haviag
(baseline) = 60 eval.-units, MOJITO-R to 500/10 (init. 9ensgogyield; therefore Figure 11 s tradeoffs are are mostly fo
+ 128 (baseline) = 178 eval.-units, and therefM®JITO- 1009 yield. Let us examine the subplots of Figure 11
R is only 3.0 times slower than nominal MOJITO. For \yhere yield is the x-axis. At first glance, these plots seem
comparison: a brute-force Monte Carlo (MC) implementatiogrprisingly uninteresting because the yield value does no
in which all individuals are evaluated on 30 MC samples iseem to strongly affect the distribution. But it means that
30 times slower than MOJITO, and 10 times slower thagach individual performance value is achievable regasdiés
MOJITO-R. A brute-force implementation in which all bUtyieId requirement is, but at a tradeoff to other performance
the initial individuals are evaluated on 30 MC samples haspngtiable exception is slew rate versus yield (bottom left:

cost of 10 (30) + 500/10 = 350 eval.-units, which is 350/178ny way to achieve the higheest values of slew rate is with
~ 2 times slower than MOJITO-R. These numbers may Bge|ds of <10%.

slightly different on other circuit types.
The yield numbers are statistical estimates based on 30 MC Topologies on the Whole Pareto Front

samples (the “corners”), a compromise between runtime and ) . )
In the Pareto front, there were nine different topologies.

accuracy (statistical confidence). On sized topologiesgifer Th il din Fi 12. 982 sized logi
interest, if desired, the designer could invoke more adeura eé/ zér_e ! l;SBtrg;[le?’ Pm \gure I < Size d.topo o_gle; ex-
yield estimations or even a final sizing-only yield tuner. \&h panded into 78, areto-optimal points (as discussezka s

the proposed approach cannot be directly applied to higﬁgpology can have- 1 Pareto-optimal point because the same

sigma synthesis, it could be conceivably altered to do p, cdesign will give a variety of yield-performance tradeoff8)l

via a final step of high-sigma yield-tuning and/or high-s'agm:jh; topologiesd aLe tWO'St‘Egef_With NMOS inputs, IbUt_ thehir
corners instead of MC samples. ifferences end there. In the first stage, some topologids ha

cascode inputs and some did not. Some topologies had source-

degeneration and some did not. The first stage’s currerromir

load was either a simple current mirror, a cascode current
This section describes experimental results from runningirror, or a low-voltage current mirror. The second stages wa

MOJITO-R for opamp synthesis. We also describe extracti@fther PMOS input or NMOS input, sometimes had source

of a specs-to-topology decision tree from the synthesisit®es gegeneration, and sometimes there was a bias transistor in

parallel with the input stage.

A. Experimental Setup and Run Table VII gives a count per topology in the whole Pareto

We use the same experimental settings as section IVfEONt (second column). Topologies 4 and 7 had about 44,000

The problem has seven objectives: maximize yield, minimiZd 30,000 points respectively, while topologies 2 and 6 had
power, minimize area, maximize GBW, maximize gain, mapltst 98 and 25 points respectively, and the rest are in betwee

imize dynamic range, and maximize slew rate. ]

The MOJITO-R run took approximately 48 hours on &- 100%-Yield Pareto Front
Linux cluster having 30 cores of 2.5 GHz each (palatable for On the yield-performances tradeoff, the most interesting
an industrial setting), covering 242 generations. It netara subset is the one with 100% (estimated) yield. Designers can

VI. MOJITO-R EXPERIMENTAL VALIDATION
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transistor and a biased transistor (a constant currentepur

Topologies in the MOJITO-R experimental run's Rariont. A
hanging gate implies either a bias voltage source conmectioinput node.
Parallel connected transistor pairs are combinations etarsd stage amplifier

view this as “solving at all corners”. Of the 78,643 Pareto-
optimal points which were composed of 982 sized topologies
having various specification combinations, 284 of thosedsiz
topologies have 100% vyield (estimated).

Whereas Figure 11 showed all points in the Pareto Front,
Figure 13 shows the 284 100%-yield designs. The general
tradeoffs are largely the same, including the clusters. The
performance values are less aggressive; most notable tis tha
the maximum slew rate isz 3x smaller. Some performances
have very strong relation in terms of tradeoffs, such as the
area-GBW tradeoff. The tradeoffs against slew rate (fordiow
performing slew rates) are now more visible. We see that a
typical improvement to slew rate will not affect gain, inase
power (implying a tradeoff between slew rate and power),
increase GBW (a bonus), reduce area (a bonus), and reduce
dynamic range (a tradeoff).

The third column of Table VII gives the count for each
topology. Some topologies never achieved 100% yield. So,
when yield matters, fewer topologies are needed. Topasogie
with the most 100%-yield entries (third column) are the ones
with the most any-yield entries (second column).

So far, we have only examined performances and topologies
separately. Let us now examine the topology-performariae re
tion by highlighting specific topologies. Figure 13 illustes.

As hinted before, the topologies break into two clusters of
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Fig. 13. The 100%-yield points in the Pareto front. The sgsdrighlight topology 7, and the pluses are from topologied, B, and 9.

TABLE VIl

TOPOLOGYCOUNT IN PARETO FRONT

Topology Label # Instances in # Instances in
Whole Pareto Front | 100%-Yield Front
1 1165 5
2 98 0
3 169 0
4 44037 177
5 346 1
6 25 0
7 29687 89
8 219 0
9 2717 12

performance: topology 7 for one cluster (higher gain, lowe|g3r
power, lower GBW, higher area, higher dynamic range, an ¥
lower slew rate), and topologies 1, 4, 5, and 9 for the othlee. T :
next section shows a way to further explore the performanc| 1

topology relation.

VIlI. SPECSTO-TOPOLOGYDECISION TREE EXTRACTION

weeks to months of effort, used rules of thumb that became
obsolete when the process node changed, and needed updating
whenever a new topology was added to its library. In contrast
we construct a decision tregutomatically from data. This

is only possible now, because a prerequisite to get the data
was a competent multi-objective, trustworthy-by-constian
topology synthesis system. MOJITO(-R) is the first such
system. Its output Pareto-optimal set becomes the input for
automated tree extraction.

asf-
5

sl R 37 mw

Power < 37 mW

Gain-Bandwidth (GHz)

Fig. 14. Left: results of a two-objective run (minimize pawenaximize

D(?CiSion trees [14] can _be used to gain insight into th€sin-BandwidthG B17") which gave two topology choices indicated by the
relation between specifications and topology. These trees ¢llipses. Right: corresponding a decision tree to guidettimmlogy choice

turn a topology choice, given input specifications. OASY&3sed on the power input specifications
[7] proposed a decision tree for a topology-choosing expert
system, but its tree was manually constructed which tookFigure 14 gives a 2-objective example mapping from raw
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. . . - de < 0.0064
Pareto-optimal data to decision tree. The raw data is froen tt _——omodes

nominal MOJITO run (a) of Figure 9. The tree reads: if 5, — — UH
power < 37 mW is chosen, the 2-stage amplifier is choser «T% ) e
otherwise a 1-stage amplifier with folded-cascode inputs |¢ &'
chosen. In two dimensions, manual tree construction igtriv |,'s
But because visualization past 2-3 dimensions is extreme e \\
difficult (see Figure 13), automated extraction is preferre

We formulate decision tree induction as elassi-
fication problem, using a Pareto-optimal sef =
{#1,95,...,95,..., 05, resulting from a MOJITO-R run.
Within Z, there areN unique topologies N1 < Nz) with
corresponding class labels set #s= {1,2,...,Nr}. For
individual ¢%, let v; be its topology class label); € Y. Let
f; be the objective function values correspondingio f; =
{f1(67), f2(95), - - -, fn, (#7)}, an Ny — dimensional vector.
Tree induction constructs a classifierthat maps fromf; to
vj, i.e.0; = w(f;)}. w can be viewed as a collection dfx

pwrnode
<0.0098

\. c

Thi
j” brep
L2

pwrnode gain
<0.0083 /\<76.0
/
\

H
g 3

disjoint hypercube regiong;, ¢ = 1..Ng; where each region SN ‘L‘ 7
R; has an associated classe 7T. E { I
Tree construction using the CART algorithm [14] finds®® = ===

a treew in the space of p055|ble tredd using a greedy Fig. 15. A decision tree for topology choices in the 100%d/i€areto

algorithm. It begins with just a root node holding all dat&ont. This was automatically constructed from the resoltsa MOJITO-R
points{ f;,v;},7 = 1..Nz and therefore is represented by aun. Technology is 0.18m CMOS.

single regionR; covering all of inputf space. Each objectivie

is a possible split variable, and the valygs for that objective

comprise the possible split values (with duplicates rerddve compatibility (EMC) effects. [62] used simple voltage-in,
From among all possiblésplit_var, split_value} tuples in voltage-out computational circuits as “weak learners”hivit
the data, the algorithm chooses the tuple which splits df tlthe context of a boosting algorithm [63] to realize complex
most data points (“gini” criterion) [14]. That split createa computational circuits and flash analog-to-digital cotee.

left and right child, where left child is assigned data psint

and region meetingplit_var < split_value, and the right

child is assigned the remaining data points and region. The IX. CONCLUSION
algorithm recurses, splitting each leaf node until a leadeno
has just one class left. This paper has presented MOJITO-R, a novel approach

We used this approach on the data of Figure 13, to extrdot variation-aware structural synthesis of analog cigui
the tree shown in Figure 15 (100%-yield Pareto frént)MOJITO-R returns sized topologies that are trustworthy by
Extraction took<5 s. At the top node, a power requirementonstruction, using building blocks that are specified Ibycst
of < 6.4 mW will lead to selecting topology 7. Then, iftural information only, which combine to form thousands
dynamic range must be 1.72, then topology 9 is chosen.of possible topologies. MOJITO-R uses SPICE in the loop,
The rest of the tree distinguishes between topology 1 (omed an accurate model of process variations [46]. These
case), topology 5 (one case), and topology 9 (other casatfyibutes allow MOJITO-R to be used in any process tech-
using area and gain as decision factors. Topology 5 takes thiogy, with no additional setup effort. MOJITO-R handles
most decisions to get to, implying that it occupies a tinyioag variation-awareness efficiently viatructural homotopy in
of performances space, as confirmed by its single entry \hich searches at several different tightening levels (oem
Table VII. In summary, an automatically-extracted decisioof process corners) are conducted simultaneously. MOJITO-
tree is a new means for a designer to gain insight into ttie performs multi-objective search to return a Pareto-oatim

process-specific performance-topology relationship. set of sized topologies which trade off among power, area,
performancesand yield The novel evolutionary algorithm
VIII. A PPLICATION TOOTHER CIRCUIT TYPES implementing the search has an age-layered populatioo-stru

o ture to avoid premature convergence, multi-objective cear
To apply MOJITO to other circuit problems, one only needgg parallel computing. MOJITO-R is experimentally vali-
to modify the library and objectives / constraints. Thedity yateq in a synthesis run that searches across 3528 different
can_be readily modified by building up blocks and/or usingna_ and two-stage opamp topologies simultaneously, gen-
a different block as the root node. In [61], MOJITO Wagating a Pareto-optimal set holding 78,643 Pareto-optima
applied to designing current mirrors robust to electromedign points composed of 982 sized topologies, of which 284 have
1The / illuminates that the classifer makesgaessof the true class. 100% yleld' A decision tree is extracted to visualize the

2The earlier paper [60] does decision-tree extraction oninahMOJITO- p_erformancg-topo_logy relat'onSh'p' capturing decisiamsa
generated Pareto fronts. high-dimensional input space.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATEDIRCUITS AND SYSTEMS, VOL. 0, NO. 0, JANUARY 2000. 13

ACKNOWLEDGMENT [25]

Funding for the reported research results is acknowledged
from IWT/Medea+ Uppermost, Solido Design Automatiof?®!
Inc. and FWO Flanders.

[27]

REFERENCES
[28]

[1] Cadence Design Systems, Inc. (2005). Product pageuoéd NeoCir-
cuit. http://www.cadence.com, last accessed 2005.

[21 R.A.Rutenbar, G.G.E. Gielen, and B.A.A. Antao, Edsamputer aided [29]
design of analog integrated circuits and systerRsscataway, NJ: IEEE
Press, pp. 3-30, 2002.

[3] International Technology Roadmap for Semiconductord30]
http://public.itrs.net, last accessed April 2008.

[4] J. Williams, Ed.Analog design: Art, science, and personalitidewnes
Press, ISBN: 0750696400, 1991. (31]

[5] F.M. E1-Turky and R.A. Nordin, “BLADES: An expert systerior
analog circuit design,” inProc. Intern. Conf. Circuits and Systpp.
552-555, 1986. (32]

[6] C. Toumazou, C.A. Makris, and C.M. Berrah, “ISAID: A metiplogy
for automated analog IC design,” iroc. Intern. Symp. Circuits and
Syst, vol. 1, pp. 531-555, 1990. (33]

[7] R. Harjani, R.A. Rutenbar, and L.R. Carley, “OASYS: Arnawork for
analog circuit synthesis,” IHEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst.vol. 8, no. 12, pp. 1247-1266, 1992. (34]

[8] E. Berkcan, M. d’Abreu, and W. Laughton, “Analog compiten based
on successive decompositions,” Broc. Des. Autom. Conf1988. 35]

[9] H.Y. Koh, C.H. Séquin, and P.R. Gray, “OPASYN: A compilfor
CMOS operational amplifiers JEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst.vol. 9, pp. 113-125, 1990

[10] Z.Ning, A.J. Mouthaan, and H. Wallinga, “SEAS: A simidd evolution
approach for analog circuit synthesis,” Rroc. Custom Integr. Circuits
Conf, pp. 5.2-1-4, 1991.

[11] K. Swings, S. Donnay, and W.M.C. Sansen, “HECTOR: A dniehical
topology-construction program for analog circuits basedaeclarative
approach to circuit modeling,” ifProc. Custom Integr. Circuits Conf.
1991.

[12] B.A.A. Antao and A.J. Brodersen, “ARCHGEN: Automateghthesis
of analog systems,” ifEEE Trans. Very Large Scale Integr. Circuits [39]
vol. 3, no. 2, pp. 231-244, 1995.

[13] N.C. Horta and J.E. Franca, “Algorithm-driven syntise®f data
conversion architectures,” itEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 10(16), Oct. 1997, pp. 1116-1135. [40]

[14] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stdblassification
and Regression Tree€hapman & Hall, 1984.

[15] G. van der Plas, G.G.E. Gielen, and W.M.C. Sanséh,computer- [41]
aided design and synthesis environment for analog integratrcuits
Springer, ISBN:0792376978, 2002.

[16] E. Martens and G.G.E. Gielentigh-level modeling and synthesis of [42]
analog integrated systemSpringer. ISBN: 9781402068010, 2008.

[17] W. Kruiskamp and D. Leenaerts, “DARWIN: CMOS opamp $atis [43]
by means of a genetic algorithm,” iroc. Des. Autom. Conf1995.

[18] P.C. Maulik, L.R. Carley, and R.A. Rutenbar, “Integerogramming
based topology selection of cell level analog circuitdEEE Trans. [44]
Comput.-Aided Des. Integr. Circuits Systol. 14, no. 4, 1995.

[19] K. Francken, P. Vancorenland, and G.G.E. Gielen, “DAIA
simulation-based high-level synthesis tool for deltaysgmodulators,” [45)
in Proc. Intern. Conf. Comput. Aided Desjgop. 188-192, 2000.

[20] A. Doboli and R. Vemuri, “Exploration-based high-lév&ynthesis of
linear analog systems operating at low/medium frequericie|cEE  [46]
Trans. Comput.-Aided Des. Integr. Circuits Sy&(11), 2003.

[21] H. Tang and A. Doboli, “High-level synthesis of deltai®a modulator [47]
topologies optimized for complexity, sensitivity, and pwconsump-
tion,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Sy2%(3), pp.
597-607, 2005. [48]

[22] J.R. Koza.Genetic programming: On the programming of computers by
means of natural selectionrCambridge, MA: MIT Press, 1992.

[23] J.R. Koza et al., “Automated synthesis of analog irdéggt circuits by [49]
means of genetic programminglEEE Trans. Evol. Computl(2), July [50]
1997, pp. 109-128.

[24] J.D. Lohn and S.P. Colombano, “Automated analog drsyinthesis [51]
using a linear representation,” iRroc. Second Intern. Conf. Evolv. [52]
Syst.: From Biology To Hardwayep. 125-133. Springer-Verlag, 1991.

[36]

[37]

(38]

J.R. Koza, D. Andre, F.H. Bennett Ill, and M. KeaneGenetic
programming 3: Darwinian invention and problem solvinglorgan
Kaufman, 1999.

H. Shibata, S. Mori, and N. Fujii (2002), “Automated @psof analog
circuits using cell-based structure,” iAroc. Nasa/DoD Conf. Evolv.
Hardware 2002.

T. Sripramong and C. Toumazou, “The invention of CMOSpifiers
using genetic programming and current-flow analysisEEE Trans.
Comput.-Aided Des. Integr. Circuits Sys21(11), 2000.

R. Zebulum, M. Pacheco, and M. Vellasc&volutionary Electronics:
Automatic Design of Electronic Circuits and Systems by Gemdgo-
rithms CRC Press, 2002.

J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J., ¥énd G.
Lanza. Genetic programming IV: Routine human-competitive maehin
intelligence Kluwer Academic Publishers, 2003.

S. Ando, M. Ishizuka, and H. Iba, “Evolving analog ciitsuby variable
length chromosomes,” iAdvances in evolutionary computing. Ghosh
and S. Tsutsui, Eds. New York: Springer, pp. 643-662, 2003.

J. Hu and E. Goodman, “Robust and efficient genetic @lyos with
hierarchical niching and sustainable evolutionary corafiom model,”
in Proc. Genetic and Evol. Computing Cqrz004.

T.R. Dastidar, P.P. Chakrabarti, and P. Ray, “A syntheystem for
analog circuits based on evolutionary search and topabgeuse,” in
IEEE Trans. Evol. Compytvol. 9, no. 2, pp. 211-224, 2005.

C. Mattiussi and D. Floreano, “Analog genetic encodimigthe evolution
of circuits and networks,” inEEE Trans. Evol. Computvol. 11, no.
5, pp. 596-607, 2007.

A. Das, R. Vemuri, “Topology synthesis of analog citsubased on
adaptively generated building block$2toc. Design Autom. Conf2008.
Y. Sapargaliyev and T.G. Kalganova, “Unconstrainedlation of ana-
logue computational 'QR’ circuit with oscillating lengtepresentation,”
in G.S. Hornby et al., ed®roc. Intern. Conf. Evolv. Sys008.

T. McConaghy and G.G.E. Gielen, “Genetic programmingnidustrial
analog CAD: Applications and challenges,” @®enetic Programming
Theory and Practice I|IT. Yu, R.L. Riolo, and B. Worzel, Eds., ch. 19,
pp. 291-306. Springer, 2005.

X. Wang and L. Hedrich, “An approach to topology synikes analog
circuits using hierarchical blocks and symbolic analysis, Proc. Asia
South Pac. Design Autom. Cgn2006.

B. De Smedt, and G.G.E. Gielen, “WATSON: Design spacaniary
exploration and model generation for analog and RF/IC aésigEE
Trans. Comput.-Aided Des. Integr. Circuits Sy&2(2), 2003.

T. Eeckelaert, R. Schoofs, G.G.E. Gielen, and M. Steyaan efficient
methodology for hierarchical synthesis of mixed-signasteyns with
fully integrated building block topology selection,” iRroc. Design
Autom. and Test Europe Confip. 81-86, 2007.

B. De Smedt, and G.G.E. Gielen, “HOLMES: Capturing theldr
optimized design space boundaries of analog and RF ineshycitcuits,”
in Proc. Design Autom. and Test Europe Ga2®03.

S.K. Tiwary, P.K. Tiwary, R.A. Rutenbar, “Generatior yield-aware
Pareto surfaces for hierarchical circuit design spaceceapbn,” in
Proc. Design Autom. Confpp. 31-36, 2006.

H.E. Graeb, Analog design centering and sizingpringer, ISBN-10:
1402060033, 2007.

G. Yu, P. Li, “Yield-aware analog integrated circuit topization using
geostatistics motivated performance modeling,” Firoc. Intern. Conf.
Comput. Aided Desigrpp. 464—-469, 2007.

G.S. Hornby, “ALPS: The age-layered population stmuetfor reducing
the problem of premature convergence,” in M. Keijzer, etkdls.,Proc.
Conf. Genetic and Evol. Computol. 1, pp. 815-822, 2006.

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fastda
elitist multiobjective genetic algorithm: NSGA-II'IEEE Trans. Evol.
Comput, vol. 6, no. 2, pp. 182-197, 2002.

P. Drennan and C. McAndrew, “A comprehensive MOSFETmatch
model,” in Proc. Intl. Electron Dev. Meetingl999.

T. McConaghy, P. Palmers, G.G.E. Gielen, and M. Stayd&imulta-
neous multi-topology multi-objective sizing across themms of analog
circuit topologies,” inProc. Design Autom. Conf. (DAC2007.

P. Palmers, T. McConaghy, M. Steyaert, and G.G.E. GjelMassively
multi-topology sizing of analog integrated circuits,” roc. Design
Autom. and Test in Europe Con2009.

W.M.C. SansenAnalog design essentialSpringer, 2006.

F. Rothlauf. Representations for genetic and evolutionary algorithms
Springer-Verlag,2"¢ edition. ISBN 3-540-25059, 2006.

Python languagehttp://www.python.orglast accessed April 23, 2008.
B. Razavi. Design of Analog CMOS Integrated CircuitcGraw-Hill,
ISBN: 00711883982000.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATEDIRCUIT

[53] F. Leyn, G.G.E. Gielen, and W.M.C. Sansen, “An efficieltt root
solving algorithm with guaranteed convergence for analoggrated
CMOS circuits,” in Proc. Intern. Conf. Comput. Aided Desjgpp.
304-307, 1998.

A. Auger and N. Hansen,
increasing population size,”
pp. 1769-1776, 2005.

H. Chang et al.,A Top Down, Constraint Driven Design Methodology
for Analog Integrated CircuitsKluwer. ISBN: 0792397940, 1997.
G.G.E. Gielen, T. McConaghy, and T. Eeckelaert, “Penance space
modeling for hierarchical synthesis of analog circuitsii Rroc. Des.
Autom. Conf. pp. 1070-1075, 2005.

X. Yao, Y. Liu, and G. Lin, “Evolutionary programming rde faster,”
in IEEE Trans. Evol. Compytvol. 3, no. 2, pp. 82-102, July 1999.

T. Massier, H. Graeb, and U. Schlichtmann. “The sizings method
for CMOS and bipolar analog integrated circuit synthesigi’ IEEE
Trans. Comput.-Aided Des. Integr. Circuits Sysbl. 27, no. 12, pp.
2209-2222, Dec. 2008.

J. Nocedal, S. Wright, Numerical optimization Springer. ISBN:
0387987932, 1999.

T. McConaghy, P. Palmers, G.G.E. Gielen, and M. Stey&gutomated
extraction of expert knowledge in analog topology selectod sizing,”
in Proc. Intern. Conf. Comput. Aided Desigban Jose, November 2008.
J. Loeckx, T. Deman, T. McConaghy, and G.G.E. Gielen, ridvel
EMI-immune current mirror topology obtained by genetic letion,”

in Proc. Conf. in Electro Magnetic Compatibiljturich, 2009.

P. Gao, T. McConaghy, and G.G.E. Gielen, “ISCLEs: Int@oce
sampled circuit learning ensembles for robust analog 1dgdés in
Proc. Intern. Conf. Comput. Aided DesjgBan Jose, Nov. 2008.

J.H. Friedman, “Stochastic gradient boostinggurn. Comput. Stats. &
Data Analysis 38(4), pp. 367-378, 2002.

[54] “A restart CMA evolution stratewith

iProc. IEEE Congress Evol. Comput.
[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

Trent McConaghy (S'95-M’'99) is co-founder and
Chief Scientific Officer of Solido Design Automa-

Analog Design Automation Inc., which was acquired
by Synopsys Inc. in 2004. Prior to that, he did

Engineering from the Katholieke Universiteit Leu-

lor's in Computer Science (with great distinction),
both from the University of Saskatchewan, Canada, in 19%9haks about 40
peer-reviewed technical papers and patents granted /mgnHie has given
invited talks / tutorials at many labs, universities, anahfecences such as
JPL, MIT, ICCAD, and DAC. He is regularly a technical programmmittee
member and reviewer in both the CAD and intelligent systerakldij such
as |IEEE Trans. CAD, ACM TODAES, Electronics Letters, to tlairdal of
Genetic Programming and Evolvable Machines, GPTP, GECCES] etc.
His research interest is in statistical machine learningtélligent systems,
with transistor-level CAD applications such as variatemare design, ana-
log topology design, automated sizing, knowledge exwma¢tand symbolic
modeling.

Pieter Palmers (S'04-M'09) was born in 1980
in Leuven, Belgium. He received his masters de

Katholieke Universiteit Leuven, Leuven, Belgium.
He recently completed his PhD at ESAT-MICAS,
Katholieke Universiteit Leuven, Belgium, and is now
at Mephisto Design Automation, Leuven, Belgium.

tomation.

tion Inc. He was a co-founder and Chief Scientist of

research for the Canadian Department of Nationa
Defense. He received his PhD degree in Electrical

S AND SYSTEMS, VOL. 0, NO. 0, JANUARY 2000. 14

Michiel Steyaert (SM'92-F'04) was born in Aalst,
Belgium, in 1959. He received the masters degree
in electrical-mechanical engineering and the Ph.D.
degree in electronics from the Katholieke Univer-
siteit Leuven (K.U.Leuven), Heverlee, Belgium in
1983 and 1987, respectively. From 1983 to 1986 he
obtained an IWNOL fellowship (Belgian National
Fundation for Industrial Research) which allowed
him to work as a Research Assistant at the Lab-
oratory ESAT at K.U.Leuven. In 1987 he was re-
sponsible for several industrial projects in the field
of analog micropower circuits at the Laboratory ESAT as arOIML Project
Researcher. In 1988 he was a Visiting Assistant Professtreatniversity

of California, Los Angeles. In 1989 he was appointed by théiddal Fund

of Scientific Research (Belgium) as Research Associate992 hs a Senior
Research Associate and in 1996 as a Research Director ataberdtory
ESAT, K.U.Leuven. Between 1989 and 1996 he was also a pagtAissociate
Professor. He is now a Full Professor at the K.U.Leuven. Hiseat research
interests are in high-performance and high-frequencyognialtegrated circuits
for telecommunication systems and analog signal procgss$tnof.Steyaert
received the 1990 and 2001 European Solid-State CircuitsfeBence Best
Paper Award. He received the 1991 and the 2000 NFWO Alcatéi-B
Telephone award for innovative work in integrated circuits telecommu-
nications. Prof.Steyaert received the 1995 and 1997 IEER:=IC Evening
Session Award, the 1999 IEEE Circuit and Systems Societylégin-Cauer
Award and is currently an IEEE-Fellow.

Georges G.E. GielenS'87-M'92-SM-'99-F'02) re-
ceived the MSc and PhD degrees in Electrical En-
gineering from the Katholieke Universiteit Leuven,
Belgium, in 1986 and 1990, respectively. He cur-
rently is a Full Professor at the Katholieke Univer-
siteit Leuven. His research interests are in the design
of analog and mixed-signal integrated circuits, and
especially in analog and mixed-signal CAD tools
and design automation (modeling, simulation and
symbolic analysis, analog synthesis, analog layout
generation, analog and mixed-signal testing). He is

ven, Belgium, in 2008. He received a Bachelor's incoordinator or partner of several (industrial) researchjgmts in this area,
Engineering (with great distinction), and a Bachedncluding several European projects (EU, MEDEA, ESA). He hathored or

coauthored five books and more than 300 papers in edited bimbésational
journals and conference proceedings. He regularly is a reewoftthe Program
Committees of international conferences (DAC, ICCAD, ISS;ADATE,
CICC...), and served as General Chair of the DATE conferanc006
and of the International Conference on Computer-Aided @resn 2007.
He serves regularly as member of editorial boards of intenal journals
(IEEE Transactions on Circuits and Systems, Springer natésnal journal
on Analog Integrated Circuits and Signal Processing, Eseintegration).
He received the 1995 Best Paper Award in the John Wiley iate&mal
journal on Circuit Theory and Applications, and was the 188dreate of the
Belgian Royal Academy on Sciences, Literature and Arts ediscipline of
Engineering. He received the 2000 Alcatel Award from thegizel National
Fund of Scientific Research for his innovative researchlec@mmunications,
and won the DATE 2004 Best Paper Award. He is a Fellow of theHEE
served as elected member of the Board of Governors of the IEEdtits And
Systems (CAS) society and as chairman of the IEEE Benelux &¥ter. He
served as the President of the IEEE Circuits And Systems jG&8iety in
2005. He was elected DATE Fellow in 2007, and received theEl EEmputer

gree in electronic engineering in 2003 at theSociety Outstanding Contribution Award and the IEEE Citiind Systems

Society Meritorious Service Award in 2007.

His main research interests are in the field of high
speed data converter design and analog design au-



