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Abstract—This paper presents MOJITO-R, a tool that per-
forms variation-aware structural synthesis of analog circuits.
It returns trustworthy topologies, by searching across a space
of thousands of possible topologies defined by hierarchically-
organized analog structural building blocks. “Structural ho-
motopy” conducts search at several objective-function tighten-
ing levels (numbers of process corners) simultaneously. Multi-
objective evolutionary search returns sized topologies which
trade off power, area, performances,and yield. An experimental
validation run returned 78,643 Pareto-optimal designs, having
982 sized topologies with various specification/yield combinations.
A decision tree is extracted to visualize the performance-topology
relationship.

Index Terms—analog, integrated circuit (IC), design automa-
tion, process variation, multi-objective optimization.

I. I NTRODUCTION

T HE choice of analog circuit topology has a giant impact
on circuit power, performance, area, and yield. Figure 1

shows a typical industrial topology selection / sizing flow.The
designer starts by manually selecting an off-the-shelf topology.
He / she then sizes it, either manually or with an automatic
optimizer e.g. [1]. However, even the best optimizers can only
produce as good a result as the chosen topology allows [2]. So,
sometimes other topologies must be tried, re-looping through
the flow. These iterations continue until success is achieved, or
topology choices are exhausted. If necessary, a novel topology
is designed, but only if the payoff is worth the risk.

Designers typically make the topology selection decision
based on experience. Unfortunately, a suboptimal topology
choice can occur: the topology may not handle worsening
effects due to Moore’s law, such as larger statistical variations
[3], time-to-market pressure may give the designer too little
time to be thorough, or the designer just does not have the
experience level to know what might be best. This last point
is understandable, as it is well recognized that learning analog
circuit design is a process that takes years to get started
and decades to master [4]. Hence, it is desirable for CAD
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Fig. 1. Status quo industrial flow for topology selection/design and sizing.

tools to help the designer in optimal selection and design
of topologies, especially because of the dramatic increasein
process varations of recent years [3]. This introduction reviews
such tools, then proposes a new tool, upon which the rest of
the paper will elaborate.

One approach is to automate topology selection, by selecting
from a given topologies database (DB) according to rules.
Rule-based systems like BLADES [5], ISAID [6], OASYS
[7], and others [8]–[13] follow this flow. For example, OASYS
[7] has a pre-specified decision tree [14] that chooses among
12 different topologies based on input specifications. Unfor-
tunately, these approaches require an up-front setup effort
of weeks to months, which must be repeated foreach new
process node on each circuit type. AMGIE [15] aimed to
overcome the process node issue by learning selection rules
using SPICE in the loop, prior to the main sizing loop.
However, it supported few topologies, and rule-learning took
substantial computational effort. [16] is more flexible butneeds
behavioral models to be specified.

For the case of (flat) multi-topology sizing, afamily of
topologies is defined by parameterizing the topologies’ pos-
sible structures using a fixed-length vector. Each variablein
the vector is used to either (a) enable, disable, or choose
specific components in a “flat” fashion, or (b) set sizing/biasing
values. Such approaches include DARWIN [17] and MINLP
[18] for opamps, and [19]–[21] for system-level designs. A
key advantage is that only structural information about the
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circuit is required, which is independent of the process node.
However, each approach relies on a sneaky definition of the
search space that is specific to the circuit type. There is nota
clear path to generalize. The flat search space makes it difficult
to compose libraries with large numbers of topologies. Due to
these limitations, DARWIN and MINLP have just 24 and 64
possible opamp topologies, respectively.

Genetic programming (GP) [22] is an evolutionary algo-
rithm that searches across trees and graphs (e.g. topologies).
Accordingly, many approaches use GP for the automated
design flow [23]–[35]. GP is given a set of devices that it
can connect in arbitrary ways without rules – all the building
blocks are “invented” (or reinvented) from scratch. This is
what gives it the open-ended nature. Early approaches like
[23]–[26] had few constraints, but needed prohibitive CPU
effort. Even worse, results of almost all approaches were not
trustworthybecause there was no apparent logic behind them
[36]. This trust issue was exacerbated because the results
often looked strange, e.g. in early papers [23] to recent
papers like [35]. A design is only trusted if the designer
feels confident enough to commit it to silicon. Researchers
aiming for industrially palatable circuits found themselves
adding constraints, then re-running the system, and adding
more constraints, and so on, in a seemingly non-stop loop.
GP-based efforts like [27], [32], [33], [37] and a non-GP effort
[37] added constraints using domain knowledge, but still give
no guarantee of trustworthy results.

Fig. 2. Proposed flow using MOJITO(-R) for trustworthy-by-construction
analog topology synthesis. A small library of analog structural building blocks
combine hierarchically to create amassivelibrary of possible topologies.
MOJITO outputs sized topologies which are Pareto-optimal according to the
objectives of area, power, performances,and yield.

We propose a new flow, shown in Figure 2. It returns
trustworthy circuits (like the CAD approaches), that are spec-
ified by structural information only (like flat multi-topology
sizing), yet searches through a structurally-diverse search
space (like open-ended GP). Because the topologies library
has asufficiently richnumber of topologies, the designer does
not have to intervene in a typical design problem. It uses the
same inputs and outputs as existing industrial automated sizers
like [1]. It uses SPICE-in-the-loop for accuracy, flexibility, and
easy adaptation to new technology processes. Actually, there
is even one less input – unlike the sizers, the topology does not
need to be specified. The flow is “specs in, sized topologies
out”. This is industrially-palatableanalog structural synthesis.

The challenge is specification of a sufficiently rich library.
After all, the “flat” topology libraries for opamps had< 100

topologies, with no clear path to get bigger. The answer is
in using hierarchical analog building blocks. Some building
blocks can instantiate into one ofmanybuilding blocks.

There is a further challenge: process variations. Since some
topologies are naturally more robust than others, process
variations must be considered within the topology selection /
design flow. We resolve this withstructural homotopy, which
simultaneously searches across increasing levels of problem
thoroughness (more process corners). To our knowledge, this
is the first time trustworthy structural synthesis has been
combined with process variations.

Since different topologies are useful in different regions
of the performance space, multi-objective search is a natural
fit. [38], [39] did multi-objective sizing on one topology at
a time, and merged the results. However, with thousands of
topologies, thousands of runs is infeasibly expensive. Combin-
ing multi-objective with variation-awareness,yield becomes an
additional objective (just like single-topology multi-objective
robust sizers like [40]–[43]). This paper combines search
across thousands of topologies (trustworthy structural syn-
thesis), accounting for process variations, and multi-objective
optimization into one system. Once the search returns a Pareto-
optimal set, that set can then be stored, and subsequently
queried by designers for animmediate-turnaround specs-to-
sized-topology flow. The combination of multiple topologies
and multiple objectives is where MOJITO earns its label:
multi-objective and topology sizing. The “R” in MOJITO-R
is for robust design.

Novel contributions of this paper are:

• A topology synthesis search space, specified by structural
information only (no rules or behavioral information), with
a massive count of possible trustworthy-by-construction
topologies. The key ishierarchical pre-specified analog
building blocks. Using this space, a library for opamps
is designed that is50x larger than past trustworthy
structural-only spaces[17], [18]. A search algorithm tra-
verses the space in ahierarchy-awarefashion, using ge-
netic programming [22]. Itavoids premature convergence
via an age-layered population structure (ALPS) [44].

• A means to handle process variation,structural homotopy,
a novel homotopy approach that conducts search simulta-
neously on multiple layers of problem tightening, such that
higher layers use more process corners. The approach is
10x faster than brute force and just 3x slower than nominal.

• A means to do multi-objective search, returning a Pareto-
optimal set of sized topologies which trade off among
performances andyield. This is done via NSGA-II multi-
objective selection [45] at each ALPS layer.

• Finally, a means to help the designer understand the Pareto-
optimal results byautomatically constructinga visual
decision treethat maps specifications to topologies.

An industrial-strength accurate model of process variations
is used [46]. SPICE is used for evaluating circuits, with parallel
processing to reduce overall runtime. Combining these items
results in MOJITO-R: a variation-aware, multi-objective ana-
log topology synthesis approach having industrially palatable
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accuracy, setup requirements, runtime, generality, and results1.
The rest of this paper is organized as follows. Section II

describes the hierarchical search space. Section III describes
(nominal) MOJITO, with experimental results in section IV.
Section V describes the MOJITO-R extension for process vari-
ation, with experimental results in Section VI to validate the
overall approach. Section VII describes extraction of a specs-
to-topology decision tree, to enhance designer insight. Section
VIII discusses other applications. Section IX concludes.

II. T HE MOJITO SEARCH SPACE

This section describes a topology space that is specified
by structural information only, searchable, trustworthy,and
flexible. Its flexibility is due to a hierarchical description hav-
ing parameter mappings, where the parameter mappings can
choose sub-block implementations. We go on to describe an
exemplary cell-level library for opamp synthesis to illustrate.

A. Search Space Framework

We define the library using hierarchically organized blocks.
Each block has external ports and parameters for an interface.
Some blocks may have sub-blocks; sub-block parameters are
a function of the block’s parameters. To generate a netlist for
a given block, the only extra information needed is a value for
each parameter of the block. Just three block types are needed
to define a whole topology library:

• Atomic Block. Have no embedded blocks. Being leaf
nodes in the building block hierarchy, only these blocks
that would show up on a flat netlist. Fig. 3 gives examples.

• Compound Block. These have one or more sub-blocks
embedded. Sub-blocks can have internal connections
among themselves and to the block’s external ports. Fig.
4 gives examples.

• Flexible Block. These have the special topological pa-
rameterchosen part index, which, during netlisting, is
used to select one of several candidate embedded blocks
and respective wirings, thereby enabling a library. Exam-
ple: a current mirror which may be simple or cascode
(chosen part index = 0 or 1). Fig. 5 gives an example.

Fig. 3. Example atomic blocks: nmos4 transistor, pmos4 transistor, resistor,
capacitor. Example of ports and input parameters: nmos4 hasfour external
ports: G, D, S, andB; it has two input parameters,W andL. Note howdcvs
(DC-controlled voltage source) has only one external port;the other port ties
directly to ground.

Each block has its own parameters, such as transistor widths
or branch currents, which fully describe how to implement and
size the block and its sub-blocks. Despite the simplicity of

1An earlier, nominal-only version of MOJITO was presented in[47].

Fig. 4. Example compound blocks. mos3 is a wrapper for mos4, so that
the mos4’s ‘B’ node is not seen at higher levels. mosDiode ties together two
internal ports to only present two external ports. biasedMos uses a 1-port dcvs
(dc-controlled voltage source) block to set its gate bias internally.

Fig. 5. Example flexible block: mos4 turns the choice of NMOS vs. PMOS
into a parameter “chosenpart index”. Note how parameters get assigned from
mos4 to either of its sub-blocks. In this case both sub-blocks use the mos4’s
W and L parameters as their own W and L values.

such blocks, the combination of blocks means that a given
block is its own library of possible topologies. A block’s
search space is merely the possible values that each sizing /
topology choice parameter in the block can take. Larger blocks
are built up from smaller blocks. To make a whole library, we
continue the process to eventually reach the level of the target
circuit, such as an operational amplifier (opamp). The blocks
can readily be specified in an analog HDL, a circuit schematic
editor, or a programming language (we use Python [51]).

For all these subblocks, instantiation into sets of NMOS
vs. PMOS devices is deferred until the very leaf block, as
a function of the decision parameters that flow from higher
levels. This flexibility allows for a large number of topologies
at the top level, without having an excess number of building
blocks. It also means that many parameters are shared in
the conversion from one block to subblocks, which improves
search space locality [50] (more on this later).

The MOJITO example opamp library allows for: one-and
two-stage amplifiers, PMOS vs. NMOS loads, PMOS vs.
NMOS inputs, stacked vs. folded cascode vs. non-cascode in-
puts, cascode vs. non-cascode vs. resistor loads, level shifting,
different current mirrors, single-ended and differentialinputs,
and single-ended outputs.

For an industrial setting, this limited initial library would
typically be provided by the tool provider, and will require
low maintenance because it is generic across all semiconductor
processes, and does not rely on any definitions of behavioral
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models. Some designers will wish to alter the library them-
selves, e.g. to try out new ideas of building blocks.

B. Size of Search Space

Table I gives the topology count for the MOJITO opamp li-
brary, compared to other approaches1. It shows that MOJITO’s
flexible hierarchical nature increases the number of possible
trustworthy opamp topologies in our library by 50x compared
to previous publications [17], [18].

TABLE I
SIZE OF OPAMP TOPOLOGYSPACES.

Technique # topologies Trustworthy?
GP without reuse, e.g. [29] ≫ billions NO
DARWIN [17] 24 YES
MINLP [18] 64 YES
GP with reuse: MOJITO 3528 YES

Having a massive number of options can qualitatively
change the designer’s perception of the process: rather than
doing selection from a few dozen topologies,the tool is synthe-
sizingthe optimal combination of building blocks from a huge
set of possibilities. The number of topologies is sufficiently
rich that the designer will feel less need to intervene in a typi-
cal design problem. Since the library only needs to be defined
once for a given problem type (e.g. opamp), the designer no
longer needs to view it as an input to the tool, not even if
the process node changes. The space can be expanded even
further, via adding even more building blocks. For example,
[48] added blocks to support symmetrical transconductance
amplifiers [49], which increased the MOJITO library’s opamp
count to 101,904 topologies (≈1500x more than MINLP [18]).

C. Search Space Locality

Good locality means that small changes to the genotype lead
to expected small changes in performance (objective function).
Good locality is important for an effective search algorithm
[50]. In analog circuits, there is a complication to achieving
locality. If a designer makes a small conceptual change to
a circuit (genotype) that corresponds to a small change in
electrical behavior / performance, there may still be adramatic
change in the netlist (phenotype). For example, Figure 6 shows
four circuits with similar electrical behavior / performance.
However, as we see in the figure, they havevery different
schematics / netlists / phenotypes. The analog design field has
many more examples [49], [52].

The MOJITO blocks framework handles this. It leverages
the flexible block’schosenpart index parameter, which can
be a function of one or more higher-level parameters, and
choose between sub-blocks that are identical except for how

1Topology count is computed by the following rules: the countfor an atomic
block is one; for a flexible block, it’s the sum of the counts ofeach choice
block; for a compound block, it’s the product of the counts ofeach of its
sub-blocks. But there are subtleties. Subtlety: for a givenchoice of flexible
block, other choice parameters at that level may not matter.Example: if a
one-stage amplifier is chosen, do not count choices related to second stage.
Subtlety: one higher-level choice might govern>1 lower-level choices, so
don’t overcount. Example: a two-transistor current mirrorshould have two
choices (NMOS vs. PMOS), not four (NMOS vs. PMOS x 2).

Fig. 6. Four circuits with similar conceptual behavior, butdramatically
different phenotypes. The circuits on the left have PMOS inputs, and on
the right have NMOS inputs (input is PMOS = True/False). The load’s
rail is vdd in the top row, andgnd in the bottom row (loadrail is vdd =
True/False).

those sub-blocks are wired to their parent block. As an
example, we describe how the framework handles Figure
6’s circuits. Near the top of the library’s hierarchy are the
parametersloadrail is vdd (“is the load’s rail attached to
vdd, not vss?”), and input is pmos (“are the input devices
pmos,not nmos?”). Those values propagate down the hierarchy
until a choice for folded vs. cascode must be made:is folded
= (input is PMOS == loadrail is vdd). Figure 6 illustrates
the effects of the four parameter combinations.

D. Worked Example

The search space is a library of circuit building blocks1/
Therefore, a point in the search space is a circuit, or in EA
terms, an individual. This section illustrates some different
ways one can view an individual. The schematic view is
both concrete and intuitive (Figure 7). It is annotated to show
the hierarchical composition of library blocks. A choice has
been made for each Flexible block. The library’s root node
is dsViAmp2 VddGndPorts (as indicated in the schematic’s
top left corner). Its sub-blocks are dsViAmp1 (1st stage),
ssViAmp1 (2nd stage), and viFeedback (Miller feedback ca-
pacitor), which subdivide further until Atomic blocks (leaf
nodes) like nmos4, pmos4, and capacitor.

An individual is represented within the synthesis engine’s
code with a vector for a genotype. All the other representations
can be computed from the genotype. The vector representation
is an unordered mapping from the root block’s variable names
to corresponding value. Some variables specify for topology
choices (chosenpart index), and others are for setting specific
device values (I ’s andV’s which translate toW’s andL’s) via
an operating-point driven formulation [53]. Table II givesthe
example individual’s topology choice values. Each parameter
is a choice for a Flexible Block. The first parameter,cho-
sen part index, decides between one and two stages (value of
1 means two-stage).stage1loadrail is vdd = 0 means that
stage 1’s loadrail is not set tovdd, but to gnd instead, as

1Equivalently, the library is a parameterized grammar.
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Fig. 7. An example individual (“PMOS-input Miller OTA”) shown in
schematic form, annotated with MOJITO building block labels.

we already saw. And so on. Note that some variables may
be ignored, depending on values of other variables, e.g. if
chosenpart index=0 to choose a one-stage opamp, then all
variables related to the second stage have no effect.

TABLE II
EXAMPLE INDIVIDUAL : VALUES FORTOPOLOGYCHOICE VARIABLES.

Variable Name Value
chosenpart index 1
stage1 loadrail is vdd 0
stage1 input is pmos 1
stage1degenchoice 0
stage1 inputcascodeis wire 1
stage1 inputcascoderecurse 0
stage1 load chosenpart index 1
stage2 loadcascoderecurse 0
stage2 load part index 0
stage2 inputcascodeis wire 1
stage2 loadrail is vdd 1
stage2 input is pmos 0
stage2degenchoice 0
stage2 inputcascoderecurse 0

III. T HE MOJITO SEARCH ALGORITHM

MOJITO search is a multi-objective evolutionary algorithm
(MOEA) that uses an age-layered population structure (ALPS)
[44] to balance exploration vs. exploitation. The algorithm’s
aim is formulated as a constrained multiobjective optimization
problem:

minimize fi(φ) i = 1..Nf

s.t. gj(φ) ≤ 0 j = 1..Ng

hk(φ) = 0 k = 1..Nh

φ ∈ Φ

(1)

where Φ is the “general” space of possible topologies and
sizings. The algorithm traversesΦ to return a Pareto-optimal
setZ = {φ∗

1
, φ∗

2
, · · · , φ∗

NND
} on Nf objectives,Ng inequality

constraints, andNh equality constraints. Without loss of
generality, we can minimize all objectives and have inequality
constraints with aim≤ 0. By definition, a designφ is feasible

if it meets all constraints:{gj(φ) ≤ 0}∀j, {hk(φ) = 0}∀k,
φ ∈ Φ. By definition, all the designs inZ arenondominated,
i.e. no designφ in Z dominates any other design inZ. A
feasible designφa dominatesanother feasible designφb if
{fi(φa) ≤ fi(φb)}∀i, and{fi(φa) < fi(φb)}∃i.

The next subsection describes the high-level search algo-
rithm, and subsequent sections describe details.

A. High-Level Search Algorithm

We use an evolutionary algorithm (EA) as the base of our
search algorithm because EAs can perform constrained multi-
objective optimization, e.g. [45], support parallel computing,
and offer flexibility in overall algorithm design.

A key issue with most EAs is premature convergence, i.e.
the algorithm converges to a local region of the design space
too early in the search without having explored the global
space sufficiently, which leads to sub-optimal results. Tactics
to soften this include huge populations [25], [29], restarting
e.g. [54], or diversity measures like crowding e.g. [45]. All
these tactics are painful or inadequate [44].

Random injection of individuals might help because fresh
building blocks can enter, except they get killed off too
quickly during selection. To give random individuals a chance,
the age-layered population structure (ALPS) [44] segregates
individuals intoagelayers, and restricts competition to within
layers. Genetic age is how many generations an individual’s
oldest genetic material has been around: the age of an initial
individual is 0; the age of a child is the maximum of its
parents’ ages; age is incremented by 1 each generation. Figure
8 illustrates. Each age layerPk holdsNL individuals. Layer
P1 allows individuals with age≤19; P2 allows age≤39, and
so on; the top levelPK allows∞ age. If an individual exceeds
the maxmium age for a fitness layer, it gets removed from that
layer. Selection at an age layerk uses the individuals at that
layerk and layerk−1 as candidates, such that younger high-
fitness individuals can propagate to higher layers.

Fig. 8. Structure of MojitoSynthesis(), which uses an age-layered population
structure (ALPS) and adds multi-objective support via multi-objective EA
selection at each age layer.
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TABLE III
PROCEDUREMOJITOSYNTHESIS()

Inputs: Φ, Na, K, NL

Outputs: Z
1. Ngen = 0; Nind = 0; Z = ∅; P = ∅
2. while Nind < Nind,max:
3. if (Ngen%Na) = 0:
4. if |P | < K:
5. P|P |+1 = ∅
6. P0,i = ∼ Φ, i = 1..NL

7. for k = 1 to |P |:
8. (Pk, Z) = OneMOEAGeneration(Pk , Pk−1, Z)
9. Ngen = Ngen + 1; Nind = Nind +

∑
k
|Pk|

10. returnZ

We use ALPS in our search algorithm,MojitoSynthesis(),
which has the pseudocode of Table III. EveryNa (“age
gap”) generations (Table III, line 3), a new age layer may
be added (lines 4-5), and initial individuals enter layerk=0
as random individuals (line 6). Only a single-objective ALPS
exists in the literature [44]. So, we designed a multi-objective
version, by having multi-objective EA (MOEA) at each age
layer k, running one generation at a time (line 9 in Table
III). Whereas a canonical MOEA would select at just layer
k, here the MOEA selection also considers layer(k − 1)’s
individuals. An external archive holding the Pareto-optimal
set Z is always maintained. We use a maximum number of
individuals,Nind,max, as the stopping criterion (line 2).

TABLE IV
PROCEDUREONEMOEAGENERATION()

Inputs: Pk, Pk−1, Z
Outputs: P ′

k
, Z′

1. Psel = SelectParents(Pk ∪ Pk−1)
2. Pch = ApplyOperators(Psel )
3. Pch = Evaluate(Pch )
4. P ′

k
= Psel ∪ Pch

5. Z′ = NondominatedFilter(Z ∪ Pch)
6. return(P ′

k
, Z′)

Table IV shows the algorithm for the MOEA at each age
layer R, for one generation. Note how individuals from the
lower layerk − 1 are imported for selection. NSGA-II [45]
does selection. Therefore NSGA-II’s dominance rules are used
for handling constraints: afeasibledesign always dominates an
infeasibledesign, and if two designs are infeasible then the one
with smallest constraint violation is considered dominant. For
feasible designs, NSGA-II’s usual “nondominated filtering”
approach applies [45] .

B. Search Operators

Tree vs. Vector View. Each building block has its own
parameters, which fully describe how to implement the block
and its sub-blocks. As we build up the hierarchy of building
blocks, we eventually reach the level of the block we want to
search for, such as the amplifier block. So, the search space
for the circuit type (e.g. fully differential amplifier) is merely
the possible values that each of the block’s parameters can
take. Since these parameters can be continuous, discrete, or
integer-valued, one could view the problem as a mixed-integer
nonlinear programming problem, which one could solve with

an off-the-shelf algorithm whether it be a classical MINLP
solver or an EA operating on vectors.

But a vector-oriented view does not recognize the hierarchy,
which causes issues. One issue is that a change to variable(s)
may not change the resulting netlist at all, because those
variables are in sub-blocks that are turned off. Another issue
is that ann-point or uniform crossover operator could readily
disrupt the values of the building blocks in the hierarchy,
e.g. the sizes of some sub-blocks’ transistors change while
others stay the same, thereby hurting the resulting topology’s
likelihood of having decent behavior. We cannot reconcile
this by applying a hierarchical design methodology [55], [56]
because there are not complete goals on the sub-blocks, just
on the highest-level blocks1. To compensate, we design the
EA mutation and crossover operators to have both tree- and
vector-based aspects.

Mutation Operator. This operator varies one or more param-
eters. Continuous-valued parameters follow Cauchy mutation
[57] which allows for both tuning and exploration. Integer-
valuedchosen part index parameters follow a discrete uni-
form distribution. Other integer and discrete parameters follow
discretized Cauchy mutations. While this can be viewed as
mutations to the parameter nodes in a tree, it can also be
viewed as changes to a vector in multi-dimensional Cartesian
space, so that insights from vector-based optimization apply
(e.g. evolutionary programming [57]).

Crossover Operator.Because crossover needs two individuals
to operate on, the population-based nature of EAs make them
a natural choice [22]. Crossover works as follows: given two
parent individuals, randomly choose a sub-block S in parent
A, identify all the parameters associated with sub-block S,and
swap those parameters between parent A and parent B. It is
possible that S shares parameters with other sub-blocks that
have the same higher-level block as S; and in that case the
new parameters for S will affect those other sub-blocks.

IV. MOJITO EXPERIMENTAL RESULTS

A. General Experimental Setup

The search space hadNd = 50 topology selection and
sizing variables; there were 3528 possible topologies. MOJITO
was implemented in Python [51]. The experimental setup
parameters are given in Table V.

B. Experiment: Hit Target Topologies?

In this section, we aim to validate MOJITO’s ability to
find targeted topologies. The objectives were to maximize
GBW, and to minimize power. Three runs were done, the only
difference between them being the specified common-mode
voltageVcmm,in at the input. We know that forVdd = 1.8V and
Vcmm,in = 1.5V, topologies should result in an NMOS input
pair. ForVcmm,in = 0.3V, topologies should result in PMOS
inputs. At Vcmm,in = 0.9V, there is no restriction between
NMOS and PMOS inputs.

1We could, however, still apply a hierarchical methodology to the results,
and that is exactly how MOJITO would translate to design of system-level
analog circuits.
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Fig. 9. Combined result plot for 3 synthesis runs. Set (a) shows a Pareto front forVcmm,in = 1.5 V, set (b) is forVcmm,in = 0.3 V and set (c) is for
Vcmm,in = 0.9 V. Aim is to minimize power and maximize Gain-Bandwidth. Each point is a sized topology; each topology has many different sets of sizings.
The expected topologies were found.

TABLE V
EXPERIMENTAL SETUP PARAMETERS

Technology 0.18µm CMOS
Testbench
parameters

load capacitance = 1pF, supply voltage = 1.8V, output DC
voltage = 0.9V

Simulator HSPICETM

Constraints PM > 65◦, DC Gain> 30 dB,GBW > 1 GHz, power
< 100 mW, dynamic range> 0.1 V, SR > 1e6 V/s,
dozens of device operating constraints [58]

Objectives See specific experiment
EA
settings

num. age layersK = 10, num. individuals per age layer
NL = 100, age gapNa = 20, max. num. individuals
Nind,max = 100,000

Each run took the equivalent of overnight on ten single-core
2.0 GHz Linux machines, covering about 100,000 individuals.
Fig. 9 illustrates the outcome of the experiments. It contains
the combined results of the three optimization runs.

Result (a) hasVcmm,in = 1.5V, and has indeed only topolo-
gies with NMOS inputs. MOJITO chose to use 1-stage and
2-stage amplifiers, depending on the power-GBW tradeoff.
Result (b) hasVcmm,in = 0.3V, and MOJITO only returns
amplifiers with PMOS input pairs. For result (c) aVcmm,in =
0.9V has been specified. Though both amplifiers with NMOS
and PMOS input pairs might have arisen, the optimization
preferred NMOS inputs.

The curve clearly shows the switch in topology around
GBW ≈ 1.9GHz, moving from a folded-cascode input (larger
GBW) to a simple current-mirror amp (smaller GBW). Note
that there would be more amplifiers with folded-cascode input
at GBW< 1.9GHz, but they are not part of the Pareto-optimal
set and therefore do not show up in the plot. An algorithmic
answer is: By definition, the Pareto-optimal set only contains
the designs that are no worse than any other designs. So
the apparent “jump” is merely a side effect of a maximum
achievable GBW of≈ 1.9GHz for the simple current-mirror
amp, after which a significantly higher-power amplifier, having

the folded-cascode input, is needed. To get deeper insight yet,
the designer can use his expertise in circuit analysis, e.g.here
he would see that since going from a non-folded to a folded
input needs one more current branch, the extra branch has
extra current (power) needs. Interestingly, the search retained
a stacked current-mirror load for about 250MHz GBW. All
in all, this experiment validated that MOJITO did find the
topologies that we had expecteda priori.

V. MOJITO FOR ROBUST DESIGN: MOJITO-R

A. Problem Specification

Nominal MOJITO had many search objectives, but did
not include yield. When we add yield as an objective,each
sized topology has itsown Pareto-optimal set, trading off
performances with yield. For example, let us have gain as
one objective (to maximize) and yield as the other. Then, an
unattainably large gain specification will give a yield = 0.0%.
But yield will rise as we loosen the gain specification (0.0%
< yield < 100%), and eventually the specification will always
be met (yield = 100%). This whole tradeoff of gain vs. yield
is possible from asingle design. We can generalize to> 1
performance objective, of course. Then, all design candidates’
tradeoffs are merged to form theoverall tradeoff. The problem
formulation is:

minimize fi(φ) i = 1..Nf

s.t. gj(φ) ≤ 0 j = 1..Ng

hk(φ) = 0 k = 1..Nh

φ ∈ Φ

(2)

where all symbols are like section III, exceptf1 is the
objective to maximize yield. As discussed, the value of yield
for a givenφ is dependent on the values off2, f3, · · · , fNf

.
Before we proceed to describe MOJITO-R, we first describe
a foundational technology: homotopy.
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B. Homotopy

Homotopy or continuation methods (sec. 11.3 of [59]) are
an optimization strategy in which the original optimization
problem of solvingf(d) = 0 is not solved directly. Instead,
an easy problem with an obvious solution is set up. This
easy problem is gradually transformed to the true problem,
and during the transformation, the solution to the problem
is continuously tracked. Eventually, the problem becomes the
true problem, and therefore its solution is the true solution.

Specifically, thehomotopy mapH(d, η) is defined as:

H(d, η) = η ∗ f(d) + (1 − η) ∗ (d − a) (3)

whereη is a scalar parameter anda ∈ ℜNd . Whenη = 0, eqn
(3) becomes the easy initial problemH(d, η) = d−a, having
the obvious solution ofd = a. H(d, η) becomes the original
problem whenη = 1. The steps in between, i.e. the path in
the space ofd ∪ η whereH(d, η) = 0 for various values of
η, is called thezero path.

There are various strategies for shifting from the easy
problem atη = 0 to the true problem atη = 1. The most
obvious is to gradually changeη from 0 to 1, and solve at
each step along the way. However, this may not always work
because the zero path may not always follow monotonically
increasing values ofη. More successful strategies track the
zero path itself, rather than theη value.

C. MOJITO-R Approach

Whereas typical homotopy algorithms tightendynamically
towards the true objective function,structural homotopyem-
beds objective function tightening into the search state’s
structure: searches at several different tightening levels are
conducted simultaneously. MOJITO-R extends MOJITO with
structural homotopy to handle variation issues. It returnsa
Pareto-optimal set of sized topologies, which trade off yield
and performances. Its high-level structure is shown in Figure
10. Its algorithm and sub-algorithms are identical to MOJITO
(section III), except:

• Evaluations at ever-higher levels get progressively tight-
ened (i.e. structural homotopy), by adding more Monte-
Carlo sampled process points with the counts shown in
Figure 101. Each age layer simulates atall testbenches.

• For each sized topology, a yield-performances tradeoff
is generated by (1) sweeping through all combinations
of specifications2, and computing yield for each vector
of performance values, then (2) applying nondominated

1These numbers were chosen using the following reasoning. 30process
points (+nominal) gives reasonable accuracy for the context of a yield
optimizer. The jump from nominal to 4 process points, and from 4 to 7, adds
three process points each time which is not a giant jump computationally,
but starts to account for process variations. Additional process points have
diminishing returns, but 21 is a reasonable middle ground tomanage the
jump from 7 to 30 process points.

2The specification values for each performance were the unique set of
observed performance values in simulation. Example: if observed values for
4 process points wereAV ={61, 60, 60, 62} and power={0.02, 0.01, 0.01,
0.02}, then unique values areAV ={61, 60, 62} andpower={0.02, 0.01}, and
yield is computated for each of the (AV ,power) combinations of{(61,0.02),
(61,0.01), (60,0.02), (60,0.01), (62,0.02), (62,0.01)}.

filtering on the resulting combined yield-performances
vectors.

• At every generation, the final nondominated set is updated
by merging the tradeoffs of each sized design in the top two
layers (layers with full evaluation), then applying further
nondominated filtering.

To further help topology diversity, the algorithm of Table
VI replaces the random sampling in step 6 of Table III.
It defers competition among randomly-generated topologies
until each topology is at least close to feasible. It does so
by optimizing sizings & biasings in a series of constraint-
satisfaction “gates” that are successively more expensiveto
evaluate: from function-based device operating constraints
(DOCs) (lines 2-5), to simulation-based DOCs (lines 6-9), and
finally to performance constraints (lines 10-13). In all three
gates, mutateSizings() applies Gaussian mutation to all sizing
and biasing parameters of the design.

Fig. 10. MOJITO-R adds structural homotopy to MOJITO to achieve
variation-aware topology synthesis.

We can estimate the additional simulation cost of running
MOJITO-R versus running MOJITO. For simplicity, let us
assume one testbench, for one generation at algorithm steady
state when all age layers exist, with equal population size
per age layer. To start with, we also assume that generating
initial individuals comes for free. For a baseline, we assign
a cost of 1 evalution-unit / layer for a single age layer with
MOJITO, and therefore with (1 + 1 + ... + 1) = 1 * 10 =
10 evaluation-units for MOJITO. In MOJITO-R, upper age
layers cost more, giving a cost of: 1 + 1 + 4 + 4 + 7
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TABLE VI
PROCEDUREINITIAL CIRCUIT()

Inputs: Φ
Outputs: φ ∈ Φ
1. φ ∼ Φ
2. while meetsFuncDOCs(φ) 6= True:
3. φ′ = mutateSizings(φ)
4. if funcDOCsCost(φ′) < funcDOCsCost(φ):
5. φ = φ′

6. while meetsSimDOCs(φ) 6= True:
7. φ′ = mutateSizings(φ)
8. if simDOCsCost(φ′) < simDOCsCost(φ):
9. φ = φ′

10. while meetsPerfConstraints(φ) 6= True:
11. φ′ = mutateSizings(φ)
12. if perfCost(φ′) < perfCost(φ):
13. φ = φ′

14. Returnφ

+ 7 + 21 + 21 + 31 + 31 = 128. Therefore MOJITO-R
is 128 / 10 = 12.8 times slower than MOJITO from these
assumptions. However, we cannot ignore the cost of generating
initial individuals. Via some ad-hoc tests, we saw that it took
Procedure InitialCircuit()on average 500 simulations. If initial
individuals are generated everyNa = 10 generations, this
brings the cost of MOJITO to 500/10 (for init. gen.) + 10
(baseline) = 60 eval.-units, MOJITO-R to 500/10 (init. gen.)
+ 128 (baseline) = 178 eval.-units, and thereforeMOJITO-
R is only 3.0 times slower than nominal MOJITO. For
comparison: a brute-force Monte Carlo (MC) implementation
in which all individuals are evaluated on 30 MC samples is
30 times slower than MOJITO, and 10 times slower than
MOJITO-R. A brute-force implementation in which all but
the initial individuals are evaluated on 30 MC samples has a
cost of 10 (30) + 500/10 = 350 eval.-units, which is 350/178
≈ 2 times slower than MOJITO-R. These numbers may be
slightly different on other circuit types.

The yield numbers are statistical estimates based on 30 MC
samples (the “corners”), a compromise between runtime and
accuracy (statistical confidence). On sized topologies of higher
interest, if desired, the designer could invoke more accurate
yield estimations or even a final sizing-only yield tuner. While
the proposed approach cannot be directly applied to high-
sigma synthesis, it could be conceivably altered to do so, e.g.
via a final step of high-sigma yield-tuning and/or high-sigma
corners instead of MC samples.

VI. MOJITO-R EXPERIMENTAL VALIDATION

This section describes experimental results from running
MOJITO-R for opamp synthesis. We also describe extraction
of a specs-to-topology decision tree from the synthesis results.

A. Experimental Setup and Run

We use the same experimental settings as section IV-A.
The problem has seven objectives: maximize yield, minimize
power, minimize area, maximize GBW, maximize gain, max-
imize dynamic range, and maximize slew rate.

The MOJITO-R run took approximately 48 hours on a
Linux cluster having 30 cores of 2.5 GHz each (palatable for
an industrial setting), covering 242 generations. It returned a

database of 78,643 Pareto-optimal points, composed of 982
sized topologies having various specification combinations.
284 of those sized topologies have≈100% yield.

B. Performances on Whole Pareto Front

We first examine each raw point’s performance in Figure 11.
Each diagonal entry is a histogram for a performance metric
(or yield), and other entries in the grid give a 2-D scatterplot of
performance / metric values. This plot offers insights intointo
tradeoffs between performancesand yield. The histogram for
gain is bimodal, with peaks at≈ 55 dB and≈ 110 dB. These
modes appear in other plots where gain is on one axis; e.g.
the gain vs. power plot has one distinctly higher-power group,
and one distinctly lower-power group, plus some outliers. The
higher-gain cluster has lower power, indicating that one does
not have to compromise gain for power, or vice versa. On the
other hand, the plot of GBW versus gain indicates that there
can be either high GBW or high gain, but not both.

The yield dimension affects what these insights mean. The
yield histogram is in the upper left of Figure 11. All points
are not 100% yield, which means some of the performance
extremes are only attainable with<100% yield. The his-
togram’s peak is 10-20% yield, with most points having<≈
50%yield; therefore Figure 11 ’s tradeoffs are are mostly for
≪ 100% yield. Let us examine the subplots of Figure 11
where yield is the x-axis. At first glance, these plots seem
surprisingly uninteresting because the yield value does not
seem to strongly affect the distribution. But it means that
each individual performance value is achievable regardless of
yield requirement is, but at a tradeoff to other performances.
A notable exception is slew rate versus yield (bottom left):the
only way to achieve the higheest values of slew rate is with
yields of <10%.

C. Topologies on the Whole Pareto Front

In the Pareto front, there were nine different topologies.
They are illustrated in Figure 12. 982 sized topologies ex-
panded into 78,643 Pareto-optimal points (as discussed, a sized
topology can have> 1 Pareto-optimal point because the same
design will give a variety of yield-performance tradeoffs). All
the topologies are two-stage with NMOS inputs, but their
differences end there. In the first stage, some topologies had
cascode inputs and some did not. Some topologies had source-
degeneration and some did not. The first stage’s current-mirror
load was either a simple current mirror, a cascode current
mirror, or a low-voltage current mirror. The second stage was
either PMOS input or NMOS input, sometimes had source
degeneration, and sometimes there was a bias transistor in
parallel with the input stage.

Table VII gives a count per topology in the whole Pareto
front (second column). Topologies 4 and 7 had about 44,000
and 30,000 points respectively, while topologies 2 and 6 had
just 98 and 25 points respectively, and the rest are in between.

D. 100%-Yield Pareto Front

On the yield-performances tradeoff, the most interesting
subset is the one with 100% (estimated) yield. Designers can
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Fig. 11. 2-D scatterplots and histograms of the whole Paretofront. Each “+” is a different entry in the Pareto front. There are 78,643 entries.

Fig. 12. Topologies in the MOJITO-R experimental run’s Pareto front. A
hanging gate implies either a bias voltage source connection or input node.
Parallel connected transistor pairs are combinations of a second stage amplifier
transistor and a biased transistor (a constant current source).

view this as “solving at all corners”. Of the 78,643 Pareto-
optimal points which were composed of 982 sized topologies
having various specification combinations, 284 of those sized
topologies have 100% yield (estimated).

Whereas Figure 11 showed all points in the Pareto Front,
Figure 13 shows the 284 100%-yield designs. The general
tradeoffs are largely the same, including the clusters. The
performance values are less aggressive; most notable is that
the maximum slew rate is≈ 3x smaller. Some performances
have very strong relation in terms of tradeoffs, such as the
area-GBW tradeoff. The tradeoffs against slew rate (for lower-
performing slew rates) are now more visible. We see that a
typical improvement to slew rate will not affect gain, increase
power (implying a tradeoff between slew rate and power),
increase GBW (a bonus), reduce area (a bonus), and reduce
dynamic range (a tradeoff).

The third column of Table VII gives the count for each
topology. Some topologies never achieved 100% yield. So,
when yield matters, fewer topologies are needed. Topologies
with the most 100%-yield entries (third column) are the ones
with the most any-yield entries (second column).

So far, we have only examined performances and topologies
separately. Let us now examine the topology-performance rela-
tion by highlighting specific topologies. Figure 13 illustrates.
As hinted before, the topologies break into two clusters of
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Fig. 13. The 100%-yield points in the Pareto front. The squares highlight topology 7, and the pluses are from topologies 1, 4, 5, and 9.

TABLE VII
TOPOLOGYCOUNT IN PARETO FRONT

Topology Label # Instances in # Instances in
Whole Pareto Front 100%-Yield Front

1 1165 5
2 98 0
3 169 0
4 44037 177
5 346 1
6 25 0
7 29687 89
8 219 0
9 2717 12

performance: topology 7 for one cluster (higher gain, lower
power, lower GBW, higher area, higher dynamic range, and
lower slew rate), and topologies 1, 4, 5, and 9 for the other. The
next section shows a way to further explore the performance-
topology relation.

VII. SPECS-TO-TOPOLOGYDECISION TREE EXTRACTION

Decision trees [14] can be used to gain insight into the
relation between specifications and topology. These trees re-
turn a topology choice, given input specifications. OASYS
[7] proposed a decision tree for a topology-choosing expert
system, but its tree was manually constructed which took

weeks to months of effort, used rules of thumb that became
obsolete when the process node changed, and needed updating
whenever a new topology was added to its library. In contrast,
we construct a decision treeautomatically from data. This
is only possible now, because a prerequisite to get the data
was a competent multi-objective, trustworthy-by-construction
topology synthesis system. MOJITO(-R) is the first such
system. Its output Pareto-optimal set becomes the input for
automated tree extraction.

Fig. 14. Left: results of a two-objective run (minimize power, maximize
Gain-BandwidthGBW ) which gave two topology choices indicated by the
ellipses. Right: corresponding a decision tree to guide thetopology choice
based on the power input specifications.

Figure 14 gives a 2-objective example mapping from raw
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Pareto-optimal data to decision tree. The raw data is from the
nominal MOJITO run (a) of Figure 9. The tree reads: if a
power < 37 mW is chosen, the 2-stage amplifier is chosen,
otherwise a 1-stage amplifier with folded-cascode inputs is
chosen. In two dimensions, manual tree construction is trivial.
But because visualization past 2-3 dimensions is extremely
difficult (see Figure 13), automated extraction is preferred.

We formulate decision tree induction as aclassi-
fication problem, using a Pareto-optimal setZ =
{φ∗

1
, φ∗

2
, . . . , φ∗

j , . . . , φ
∗

NZ
} resulting from a MOJITO-R run.

Within Z, there areNT unique topologies (NT ≤ NZ ) with
corresponding class labels set asΥ = {1, 2, . . . , NT}. For
individual φ∗

j , let υj be its topology class label;υj ∈ Υ. Let
fj be the objective function values corresponding toυj : fj =
{f1(φ

∗

j ), f2(φ
∗

j ), . . . , fNf
(φ∗

j )}, an Nf – dimensional vector.
Tree induction constructs a classifierω that maps fromfj to
υj , i.e. υ̂j = ω(fj)

1. ω can be viewed as a collection ofNR

disjoint hypercube regionsRi, i = 1..NR; where each region
Ri has an associated classυi ∈ Υ.

Tree construction using the CART algorithm [14] finds
a tree ω in the space of possible treesΩ using a greedy
algorithm. It begins with just a root node holding all data
points{fj, υj}, j = 1..NZ and therefore is represented by a
single regionR1 covering all of inputf space. Each objectivei
is a possible split variable, and the valuesfi,j for that objective
comprise the possible split values (with duplicates removed).
From among all possible{split var, split value} tuples in
the data, the algorithm chooses the tuple which splits off the
most data points (“gini” criterion) [14]. That split creates a
left and right child, where left child is assigned data points
and region meetingsplit var ≤ split value, and the right
child is assigned the remaining data points and region. The
algorithm recurses, splitting each leaf node until a leaf node
has just one class left.

We used this approach on the data of Figure 13, to extract
the tree shown in Figure 15 (100%-yield Pareto front)2.
Extraction took<5 s. At the top node, a power requirement
of < 6.4 mW will lead to selecting topology 7. Then, if
dynamic range must be≥ 1.72, then topology 9 is chosen.
The rest of the tree distinguishes between topology 1 (one
case), topology 5 (one case), and topology 9 (other cases)
using area and gain as decision factors. Topology 5 takes the
most decisions to get to, implying that it occupies a tiny region
of performances space, as confirmed by its single entry in
Table VII. In summary, an automatically-extracted decision
tree is a new means for a designer to gain insight into the
process-specific performance-topology relationship.

VIII. A PPLICATION TO OTHER CIRCUIT TYPES

To apply MOJITO to other circuit problems, one only needs
to modify the library and objectives / constraints. The library
can be readily modified by building up blocks and/or using
a different block as the root node. In [61], MOJITO was
applied to designing current mirrors robust to electromagnetic

1The ∧ illuminates that the classifer makes aguessof the true class.
2The earlier paper [60] does decision-tree extraction on nominal MOJITO-

generated Pareto fronts.

Fig. 15. A decision tree for topology choices in the 100%-yield Pareto
front. This was automatically constructed from the resultsof a MOJITO-R
run. Technology is 0.18µm CMOS.

compatibility (EMC) effects. [62] used simple voltage-in,
voltage-out computational circuits as “weak learners” within
the context of a boosting algorithm [63] to realize complex
computational circuits and flash analog-to-digital converters.

IX. CONCLUSION

This paper has presented MOJITO-R, a novel approach
for variation-aware structural synthesis of analog circuits.
MOJITO-R returns sized topologies that are trustworthy by
construction, using building blocks that are specified by struc-
tural information only, which combine to form thousands
of possible topologies. MOJITO-R uses SPICE in the loop,
and an accurate model of process variations [46]. These
attributes allow MOJITO-R to be used in any process tech-
nology, with no additional setup effort. MOJITO-R handles
variation-awareness efficiently viastructural homotopy, in
which searches at several different tightening levels (number
of process corners) are conducted simultaneously. MOJITO-
R performs multi-objective search to return a Pareto-optimal
set of sized topologies which trade off among power, area,
performances,and yield. The novel evolutionary algorithm
implementing the search has an age-layered population struc-
ture to avoid premature convergence, multi-objective search,
and parallel computing. MOJITO-R is experimentally vali-
dated in a synthesis run that searches across 3528 different
one- and two-stage opamp topologies simultaneously, gen-
erating a Pareto-optimal set holding 78,643 Pareto-optimal
points composed of 982 sized topologies, of which 284 have
100% yield. A decision tree is extracted to visualize the
performance-topology relationship, capturing decisionsin a
high-dimensional input space.
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