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Preface

The work described in this book was first presented at the Seventh Workshop
on Genetic Programming, Theory and Practice, organized by the Center for the
Study of Complex Systems at the University of Michigan, Ann Arbor, 14-16
May 2009. The goal of this workshop series is to promote the exchange of
research results and ideas between those who focus on Genetic Programming
(GP) theory and those who focus on the application of GP to various real-
world problems. In order to facilitate these interactions,the number of talks
and participants was small and the time for discussion was large. Further,
participants were asked to review each other’s chaptersbeforethe workshop.
Those reviewer comments, as well as discussion at the workshop, are reflected in
the chapters presented in this book. Additional information about the workshop,
addendums to chapters, and a site for continuing discussions by participants and
by others can be found at http://cscs.umich.edu/gptp-workshops/gptp2009 .

We thank all the workshop participants for making the workshop an exciting
and productive three days. In particular we thank the authors, without whose
hard work and creative talents, neither the workshop nor thebook would be
possible. We also thank our keynote speaker Margaret J. Eppstein, Associate
Professor in Computer Science and Director of the Complex Systems Center
at the University of Vermont. Maggie’s talk inspired a greatdeal of discussion
among the participants throughout the workshop.

The workshop received support from these sources:

The Center for the Study of Complex Systems (CSCS);

Third Millennium Venture Capital Limited;

Michael Korns, Investment Science Corporation;

State Street Global Advisors, Boston, MA;

Evolved Analytics;

Computational Genetics Laboratory at Dartmouth College;

Biocomputing and Developmental Systems Group, Computer Science
and Information Systems, University of Limerick; and

William and Barbara Tozier of Vague Innovation LLC.

We thank all of our sponsors for their kind and generous support for the work-
shop and GP research in general.

A number of people made key contributions to running the workshop and
assisting the attendees while they were in Ann Arbor. Foremost among them
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was Howard Oishi, who makes GPTP workshops run smoothly withhis diligent
efforts before, during and after the workshop itself. During the workshop Bill
Worzel moderated some of the sessions. After the workshop, many people
provided invaluable assistance in producing this book. Special thanks go to
Sarah Cherng, Patrick Hooper and Laura Tomassi, who did a wonderful job
working with the authors, editors and publishers to get the book completed very
quickly. Thanks to William Tozier for assisting in copy-editing many of the
chapters. Jennifer Maurer and Melissa Fearon’s editorial efforts were invaluable
from the initial plans for the book through its final publication. Thanks also
to Deborah Doherty of Springer for helping with various technical publishing
issues. Finally, we thank Carl Simon, Director of CSCS, for his support for this
endeavor from its very inception.

Rick Riolo, Una-May O’Reilly and Trent McConaghy



Foreword

Genetic programming (GP) has emerged as an important computational
methodology for solving complex problems in a diversity of disciplines. The
recent success of GP can be attributed to the highly innovative computer sci-
entists that have developed and extended the approach over the last 20 years
and the numerous investigators and analysts that have been on the front line of
applying these algorithms to difficult problems in their specific domains. This
is all supported by a vibrant and highly collaborative research community that
includes numerous GP conferences and workshops, numerous GP journals and
book series and a wealth of open-source software and internet-based resources.
The continued growth of this community speaks to the impact of GP and its
important place in the future of computation and analysis.

An important challenge for any discipline is to foster closerelationships and
collaborations between those that develop computational theory and those that
practice the art of computation. The annual Genetic Programming Theory and
Practice (GPTP) Workshop organized by the Center for the Study of Com-
plex Systems at the University of Michigan in Ann Arbor was first organized
and held in 2003 to specifically bring theorists and practitioners together to
communicate and collaborate in an effort to transform GP from an innovative
algorithm to a general computational strategy for solving complex problems.
The positive impact of this workshop on those that attend hasbeen substantial.
There are several reasons for this. First and foremost, there is an openness and
general sense of collegiality that is lacking at many other scientific venues. The
attendees are genuinely interested in sharing their cutting edge ideas for group
discussion. This selflessness combined with enthusiastic discussion and par-
ticipation creates an environment that significantly fosters innovation. Second,
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there is an incredible sense of memory from past GPTP workshops. Attendees
take what they have learned from previous years and integrate the new ideas
into their work. This cascading of ideas from year to year provides a rare oppor-
tunity to synthesize innovation. Third, each of the attendees is truly interested
in solving complex problems in their respective domains. This is important
because the investigators are open to any idea that helps solve the problem at
hand. The lack of dogmatism and openness to change is refreshing and has
made this workshop a huge success.

This was my fourth year at GPTP and each year has been a tremendous
learning experience. Perhaps the single most eye-opening GPTP event was
learning that Michael Korns of Korns Associates was successfully using GP
to make real life financial investment decisions. This to me is the ultimate
endorsement for the use of GP for solving problems such as security analysis and
stock ranking. There was a sense at GPTP this year that GP has turned the corner
from an innovative algorithm used only by computer scientists to a truly useful
discovery tool used by many. In fact, William Tozier made theprediction that
2010 marks the beginning of a GP bubble characterized by an exponential shift
from art to craft. That is, within the next few years we will increasingly see GP
being used by domain-specific experts such as bioinformaticists, economists,
engineers and meteorologists to solve hard problems. If this is true, the next 10
years of GPTP will be more important than ever.

I encourage you to read and digest each of the chapters in thisvolume and
those from all the previous volumes. I promise you will come away with a
notebook full of new ideas for using GP to solve your domain-specific problem.

Jason H. Moore, Ph.D.
Frank Lane Research Scholar in Computational Genetics
Professor of Genetics and Community and Family Medicine
Dartmouth Medical School, Lebanon, NH, USA
July, 2009



Chapter 1

GPTP 2009: AN EXAMPLE OF EVOLVABILITY

Una-May O’Reilly1, Trent McConaghy2 and Rick Riolo3
1Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technol-
ogy;2Solido Design Automation Inc., Canada;3Center for Study of Complex Systems, University
of Michigan.

Abstract
This introductory chapter gives a brief description of genetic programming

(GP); summarizes current GP algorithm aims, issues, and progress; and finally
reviews the contributions of this volume, which were presented at the GP Theory
and Practice (GPTP) 2009 workshop.

This year marks a transition wherein the aims of GP algorithms – reasonable
resourceusage, high qualityresults, andreliableconvergence – are being consis-
tently realized on an impressive variety of “real-world”applicationsby skilled
practitioners in the field. These aims have been realized dueto GP researchers’
growing collective understanding of the nature of GP problems which require
search across spaces which are massive, multi-modal, and with poor locality, and
how that relates to long-discussed GP issues such as bloat and premature con-
vergence. New ways to use and extend GP for improved computational resource
usage, quality of results, and reliability are appearing and gaining momentum.
These include: reduced resource usage via rationally designed search spaces and
fitness functions for specific applications such as induction of implicit functions
or modeling stochastic processes arising from bio-networks; improved quality
of results by explicitly targeting the interpretability ortrustworthiness of the fi-
nal results; and heightened reliability via consistently introducing new genetic
material in a structured manner or via coevolution and teaming. These new de-
velopments highlight that GP’s challenges have changed from simply “making
it work” on smaller problems, to consistently and rapidly getting high-quality
results on large real-world problems. GPTP 2009 was a forum to advance GP’s
state of the art and its contributions demonstrate how theseaims can be met on a
variety of difficult problems.
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1. The Workshop

In the beautiful, springtime charm of Ann Arbor, the seventhannual Genetic
Programming Theory and Practice (GPTP) workshop was held atthe University
of Michigan campus from May 14-16, 2009.

We are grateful to all sponsors and acknowledge the importance of their con-
tributions to such an intellectually productive and regular event. The workshop
is generously founded and sponsored by the University of Michigan Center
for the Study of Complex Systems (CSCS) and receives furtherfunding from
the following people and organizations: Michael Korns of Freeman Investment
Management, Ying Becker of State Street Global Advisors, John Koza of Third
Millenium, Bill and Barbara Tozier of Vague Innovation, Mark Kotanchek of
Evolved Analytics, Jason Moore of the Computational Genetics Laboratory of
Dartmouth College and Conor Ryan of the Biocomputing and Developmental
Systems Group of the University of Limerick.

To make the results of the workshop useful to even a relative novice in the
field of GP, we start the chapter with a brief overview of genetic programming
(GP). Sections 3 and 4 describe current GP challenges and progress in GP.
Sections 5 and 6 then organize and summarize the contributions of chapters
in this volume from two perspectives: according to how contributed empirical
research is informing GP practice, then according to the domains of application
in which success through best practices has been reported. We conclude with
a discussion of observations that emerged from the workshopand potential
avenues of future work.

2. A Brief Introduction to Genetic Programming

Genetic programming (GP) is a search and optimization technique for ex-
ecutable expressions that is modeled on natural evolution.Natural evolution
is a powerful process that can be described by a few central, general mecha-
nisms; for an introduction, see (Futuyma, 2009). A population is composed
of organisms which can be distinguished in terms of how fit they are with re-
spect to their environment. Over time, members of the population breed in
frequency proportional to their fitness. The new offspring inherit the combined
genetic material of their parents with some random variation, and may replace
existing members of the population. The entire process is iterative, adaptive
and open ended. GP and other evolutionary algorithms typically realize this
central description of evolution, albeit in somewhat abstract forms. GP is a set
of algorithms that mimic of survival of the fittest, genetic inheritance and vari-
ation, and that iterate over a “parent”population, selectively “breeding” them
and replacing them with offspring.

Though in general evolution does not have a problem solving goal, GP is
nonetheless used to solve problems arising in diverse domains ranging from en-
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gineering to art. This is accomplished by casting the organism in the population
as a candidate program-like solution to the chosen problem.The organism is
represented as a computationally executable expression (aka structure), which is
considered its genome. When the expression is executed on some supplied set of
inputs, it generates anoutput (and possibly some intermediate results). This exe-
cution behavior is akin to the natural phenotype. By comparing the expression’s
output to target outputs, a measure of the solution’s quality is obtained. This is
used as the “fitness” of an expression. The fact that the candidate solutions are
computationally executable structures (expressions), not binary or continuous
coded values which are elements of a solution, is what distinguishes GP from
other evolutionary algorithms (O’Reilly and Angeline, 1997). GP expressions
include LISP functions (Koza, 1992; Wu and Banzhaf, 1998), stack or register-
based programs (Kantschik and Banzhaf, 2002; Spector and Robinson, 2002),
graphs (Miller and Harding, 2008; Mattiussi and Floreano, 2007; Poli, 1997),
programs derived from grammars (Ryan et al., 2002; Whigham,1995; Gruau,
1993), and generative representations which evolve the grammar itself (Hem-
berg, 2001; Hornby and Pollack, 2002; O’Reilly and Hemberg,2007). Key
steps in applying GP to a specific problem collectively defineits search space:
the problem’s candidate solutions are designed by choosinga representation;
variation operators (mutation and crossover) are selected(or specialized); and a
fitness function (objectives and constraints) which expresses the relative merits
of partial and complete solutions is formulated.

3. Genetic Programming Challenges

Current challenges for GP include economizing on GPresourceusage, en-
suring better qualityresults, extracting morereliable convergence, or applying
GP to a challengingproblem domain.

Economic Resource Usageincludes shorter runtime, reduced usage of pro-
cessor(s), and reduced memory and disk usage. Achieving it has traditionally
been a major issue for GP. A key reason is that GP search spacesare astronom-
ically large, multi-modal, and have poor locality. Poor locality means that a
small change in the individual’s genotype often leads to large changes in the
fitness, introducing additional difficulty into the search effort. For example, the
GP “crossover” operation of swapping the subtrees of two parents might change
the comparison of two elements from a “less than” relationship to an “equal to”
relationship. This usually gives dramatically different behavior and fitness. To
handle such challenging search spaces, significant exploration is needed (e.g.
large population sizes). This entails intensive processing and memory needs.
Exacerbating the problem, fitness evaluations (objectivesand constraints) of
real-world problems tend to be expensive. Finally, becauseGP expressions
have variable length, there is a tendency for them to “bloat”— to grow rapidly
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without a corresponding increase in performance. Bloat canbe a significant
drain on available memory and CPU resources.

Ensuring Quality Results. The key question is: “can a GP resultbe used
in the target application?” Thisusability criteria may be more difficult to
attain than evident at first glance because the result may need to be human-
interpretable, trustworthy, or predictive on dramatically different inputs—and
attaining such qualities can be challenging. Ensuring quality results has always
been perceived as an issue, but the goal is becoming more prominent as GP is
being applied to more real world problems. Practitioners, not GP, are respon-
sible for deploying a GP result in their application domain.This means that
practitioners (and potentially their clients) must trust the results sufficiently to
be comfortable using them. Human-interpretability (readability) of the result
is a key factor in trust. This can be an issue when deployment of the result
is expensive or risky, such as analog circuit design (McConaghy and Gielen,
2005); when customers’ understanding of the solution is crucial such as port-
folio strategies (Becker et al., 2007); when the result mustbe inspected or
approved; or to gain acceptance of GP methodology, e.g. for use of symbolic
regression for modeling industrial processes (Kordon et al., 2005).

Reliable convergencemeans that the GP run can be trusted to return reason-
able results, without the practitioner having to worry about premature conver-
gence or whether algorithm parameters like population sizewere set correctly.
GP can fail to capably identify sub-solutions or partially correct solutions and
thus be unable to successfully promote, combine and reuse them to generate
good solutions with effective structure. The default approach has been to use the
largest population size possible, subject to time and resource constraints. How-
ever, this invariably implies high resource usage, and still gives no guarantee
of hitting useful results even if such results exist.

Problem domainspresent both opportunities and challenges for GP. Due
to its evolution of executable expressions, GP has a far broader set of prob-
lem domain opportunities than other EAs and optimization approaches. But
expression spaces are non-trivial to search across and selecting the expression
primitives is non-trivial. GP representation and variation operator designs must
generate syntactically valid expressions. But that’s the easy part! The design
must be done thoughtfully. Poor choices will lead to high resource usage and
poor quality results. Thoughtfully designed representations and operators can
lead to orders of magnitude difference in speed or quality; e.g. as shown in
(Poli and Page, 2000; McConaghy et al., 2007).



GPTP 2009: An Example of Evolvability 5

4. Progress in Genetic Programming

The field of GP is making progress in addressing the challenges described
in the last section. Resource usage has been decreased by improved algorithm
design, improved design of representation and operators inspecific domains.
Its impact has been lessened by Moore’s Law and increasing availability of par-
allel computational approaches, meaning that computational resources become
exponentially cheaper over time. Results quality has improved for the same
reasons, and due to a new emphasis by GP practioners on getting interpretable
or trustworthy results. Reliability has been improved via algorithm techniques
that support continuous evolutionary improvement in a systematic or struc-
tured fashion. For example, by using hierarchical fair competition (HFC) and
Age-Layered Population Structure (ALPS) (Hu et al., 2003; Hornby, 2006),
the practitioner no longer has to “hope” that the algorithm isn’t stuck. Finally,
practice in thoughtful design of expression representation and genetic opera-
tors, for general and specific problem domains, has led to GP systems achieving
human-competitive performance. In the 2008 ACM SIGEVO annual Genetic
and Evolutionary Computation Conference (GECCO) Humies competition GP
was used to generate a novel synthetic RTL benchmark circuit(Pecenka et al.,
2008) and to evolve terms with special properties for a largefinite algebra
(Spector et al., 2008). GP has been adopted for industrial scale modeling, data
analysis , design and discovery (Kotanchek et al., 2007; Terry et al., 2006). In
GPTP, we have seen applications ranging from finance to biology to antennae:
(Kim et al., 2008; Korns, 2007; Driscoll et al., 2003; Lohn etal., 2005).

Despite these achievements, GP’s computer-basedevolution does not demon-
strate the potential associated with natural evolution, nor does it always satis-
factorily solve important problems we might hope to use it on. Even when
using best-practice approaches to manage challenges in resources, results, and
reliability, the computational load may still be too excessive and the final re-
sults may be inadequate. To achieve success in a difficult problem domain takes
a great deal of human effort toward thoughtful design of representations and
operators.

In the two sections that follow we provide two perspectives on the GPTP
workshop’s intellectual contributions and on the trends weobserved with re-
spect to resource economization, results quality and reliable convergence. First,
we review how the empirical research contributions have informed GP prac-
tice . Second, we review how GP has achieved successful application by the
employment of “best practice” approaches.

5. Empirical Research Informing Practice

The intent of GPTP has been to bring together practitioners and theorists in
order tounify the challenges practitioners face with the questions theorists study.
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As well, GPTP provides a focused group setting where practitioners describe to
theorists their problems, their GP system, and the issues they have encountered.
This helps the theorists to better appreciate the nature of aproblem, examine the
practical outcome of an approach and, with immediacy, suggest how and why
something is happening and what could be done about it. With the theorists
present, there is an opportunity for practitioners to ask whether their theoretical
findings are illustrated in some aspect of their implementation, and whether a
theoretical result can shed light on a problem they face.

One of the trends our readers might notice this year is fewer “conventional”
theory submissions. Conventional GP theory is difficult by nature of GP’s
variable length genome representation, executable phenotype character, and
stochasticity. It does not proceed as quickly in terms of novelty and major
impact as practice.

This year marks contributions that inform practice, yet arenot strictly pen-
and-paper theorems and calculations. With Chapter 6 as an example, test prob-
lems are chosen to appropriately challenge a proposed technique, and the anal-
ysis provides an understanding of how it works. GPTP workshop participants
have embraced this sort of study because it focuses on one issue while elegantly
eliminating unrelated complexity and confounding factors. The theory is in the
form of techniques that are measurably better, more transparently analyzed and
better explained and deduced. This kind of result promotes ageneral (appli-
cable across GP problem domains) best-practice approach and has occurred
in approaches to designing representations, operators or fitness functions, or
approaches to enhanced reliability, quality of results, and resource usage. De-
velopment of a best-practice approach is arguably “empirical research” theory.

The contributions of this volume can be organized accordingly:

One best-practice approach to enhanced reliability and results quality is
to reduce and modulate selection pressure on a specific cohort of the
population. Modulation could be applied to new genetic material, to ge-
netic material that is not the norm, or to expressions that trade off strict
functionality with solution complexity. One specific technique which
is gaining common use is Age-Layered Population Structure (ALPS)
(Hornby, 2006). It provides a structured way for new geneticmaterial
to continually enter the population, allowing new individuals time to im-
prove before they have to compete against older, more fit individuals.
Because this approach is capable and also makes a run’s success less sen-
sitive to population size, the number of research groups adopting ALPS
or similar mechanisms is growing (Hu et al., 2003; McConaghyet al.,
2007; Patel and Clack, 2007; Sun et al., 2007; Willis et al., 2008; Korns
and Nunez, 2008; Kotanchek et al., 2008; Slany, 2009). In Chapter 6,
Hornby presents the steady-state variant of the ALPS.
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With respect to best practices in design of GP fitness functions, there
are four papers which describe how fitness function design was the
key to make each respective problem tractable for GP. In Chapter 4,
Kotanchek et al. describe the “Data Balancing ” technique, which,
among other benefits, can reduce the cost of symbolic regression fitness
functions by reducing the training data to a smaller yet representative
set. In Chapter 10, Ross and Imada describe multi-objectivetechniques
that can exploit feature tests which provide different dynamical-system
descriptions of stochastic, noisy time series. In Chapter 5, Schmidt and
Lipson describe fitness functions that provide GP with sufficient selec-
tivity to evolve implicit functions. In Chapter 9, Citiet al. describe a
mapping from genotype to fitness function for Electroencephalography
(EEG) signal classification.

With respect to best practices in representation and operator design on
specific problems, there are four papers. In Chapter 3, Doucette et al.
describe how to decompose a high-dimensional classification problem
into subproblems that can be solved by ateamof GP individuals. In
Chapter 7, McConaghyet al. describe a technique to transform a high-
dimensional symbolic regression problem into a 1-dimensional problem.
This dramatically simplifies the problem that GP has to solve. In Chap-
ter 11, Shirakawa and Nagao describe a simple, easy-to-apply represen-
tation for evolving register-based software programs, a general-purpose
problem-solving method. In Chapter 13, Korns describes an operator to
create a conditional expression of two subtrees in a behavior preserv-
ing fashion which enhances locality, and he also describes operators to
locally explore symbolic regression functional spaces.

With respect to best practices ingeneraldesign of representations and
operators , there are three papers. In Chapter 2, Greeneet al. apply a
GP system with a hierarchical organization of search operator control:
evolving a single scalar for mutation probability at the toplevel, and at
successively lower levels, evolving more fine-grained control down to the
level where individuals themselves are manipulated. InChapter8, Wilson
and Banzhaf apply the “PAM DGP” approach which adapts the mapping
from genotype to phenotypeduring evolution. In Chapter 12, Bongard
describes a “functional crossover" operator which aims to enhance the
locality of search by restricting allowable subtree swaps to subtrees with
similar output ranges.

6. GPTP 2009: Application Successes Via Best Practices

As discussed earlier, progress in the field of GP can be characterized by
GP successes in attacking challenging, industrial-strength, human-competitive
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problem domains. In attacking such problems and sharing their experiences
at forums like GPTP, the best practices emerging from the successes are prop-
agated and improved, leading to further successes in a variety of domains.
This section organizes the papers in the volume according toproblem domain.
The problem domain groupings are: GP as a “discovery engine”, time-domain
modeling, high-dimensional symbolic regression and classification, financial
applications, and design of graph-based structures. In this book, each domain
is represented by multiple papers.

GP as a Discovery Engine

The fact that GP can return aninterpretableexpression has been recognized
as important for a long time (Koza, 1992), due to its implications for scientific
discovery and engineering analysis (Keijzer, 2002). This volume marks two
important steps towards broad use of GP: (1) capturing a new,broad class of
functional forms which underpin many types of scientific theories, and (2) an
easy-to-use GP system with novel data analysis capabilities, built directly into
a world-standard mathematical package.

In Chapter 5, Schmidt and Lipson describe how many types of scientific
problems have animplicit functional form: the functions are not merely a map-
ping from input variables to output variables, but instead asystem of equations
describes relationships among variables. For example,x

2
+ y

2
= z

2 describes
the equation for a circle; there is no single output variable. The challenge
in discovering such functional forms is that a traditional least-squares com-
parison between target values and actual values is not meaningful, because
the true problem involves capturing a surface (manifold) embedded within a
multi-dimensional space. Simplistic fitness functions do not provide enough
differentiation among candidate functions, making it hardfor GP to find good
initial designs and even harder to refine designs. To solve the problem, the
authors propose the use of local finite-element analysis to measure gradients
in the manifold, and then apply a least-squares error measure to differences in
gradients. The authors demonstrate how the approach can successfully capture
the dynamics in classical pendulum physics models, as well as capturing dy-
namics of more complex pendulum models for which closed-form equations
describing dynamics are unknown.

In Chapter 4, Kotancheket al. describe the use of a highly visual, easy-to-
use GP symbolic regression system that is embedded in Mathematica. The
visual, exploratory nature of the system leads to a truly iterative, interactive
means to use GP to explore data in real time. The paper describes techniques to
detect outliers in either a data-based or model-based fashion, measure relative
importance among variables, detect regions in an input-output mapping space
which are over- or under-represented by the training data athand and rank the
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importance of each datapoint. They also describe a “Data Balancing” technique
which is a key tool for many of these techniques.

Time-Domain Modeling

This year GPTP had three papers addressing three very different problems re-
lated to time-series signals: EEG time series classification, modeling stochastic
reaction processes, and time series with many state variables.

In Chapter 9, Citiet al. classify time domain Electroencephalography (EEG)
signals with the aim of improving brain-computer interfaces (BCIs). The ap-
proach focuses on Event-Related Potentials (ERPs) which are well-defined
events within EEG signals. EEG signals during an ERP have characteristic
waveforms that provide the possibility of accurate classification. While ERPs
have been explored extensively, an issue is the large numberof human-in-the-
loop training trials. In past work Citiet al. have partly alleviated this using a
simple binning technique but this moved the issue to selection of the bin proper-
ties themselves. In this volume they use GP to evolve probabilistic membership
functions for the bins which yields promising improvement in performance.

GP is well suited to learning models that synthesize reaction processes be-
cause a language from the domain and domain dependent operations on the
data can be transfered quite directly to the GP function and terminal set. This
is the case with pi-calculus and process algebra structuresthat model reactions
of bio-networks. However when the reaction process is stochastic, rather than
deterministic, a challenge arises in specifying fitness objectives. Just using the
error between model prediction and real data fails to account for the statisti-
cal features in the time series that arise from stochastic timing and variance.
In Chapter 10, Ross and Imada discuss and evaluate how different statistical
feature tests can be used simultaneously via multi-objective GP.

InChapter12, buildingonpast work, Bongardapplies GP to reverse engineer-
ing a broad set of dynamical systems. Because the systems aredeterministic,
and known in advance, Bongard’s measure of success is whether GP can suc-
cessfully recapture the original differential equations.While the focus of the
paper is a novel crossover operator, the paper reconfirms that GP is consistently
effective at capturing the system dynamics for a variety of problems.

High-Dimensional Symbolic Regression and Classification

GP modeling approaches have typically attacked problems inthe range of
1 to roughly 20 dimensions. But it is well known that the nature of a prob-
lem dramatically shifts past 20 dimensions, because every training data point
is effectively “very far away” from every other datapoint (Hastie et al., 2001).
Problems with 100, 1000, or 10,000 input dimensions have very different prop-
erties. In this book, we have three diverse problems with high-dimensional
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inputs: high-dimensional classifier design, high-dimensional regressor design
and identification of key input variable interactions (i.e., epistasis).

In Chapter 2, Greeneet al. tackle what they deem a “needle in a haystack”
problem: 10,000+ input variables but only a few have an effect, and the variable
interactions have more effect than single-variable effects. The combination of
high dimensionality and epistasis means one tough problem.The application
is for DNA analysis, to identify which sequence variations predict disease risk
in human populations. The authors approach the problem via aGP system with
hierarchical operator control, and demonstrate that GP is indeed able to extract
expressions of great use to geneticists.

In supervised problems, where a model has to be learned from aclass of
exemplars with a domain of attributes, GP has been successfully used to find
a single binary classifier that automatically identifies therelevant subset of at-
tributes. However, for domains of large numbers of attributes, it is more natural
to consider grouping the exemplars and learning a set of cooperative classi-
fiers that function in a non-overlapping way over the subgroups. Different (and
overlapping) sets of attributes are appropriate to each classifier. In Chapter 3,
Doucetteet al. show how to extend GP so it can accomplish this kind of clas-
sification without requiring any preliminaryad hocintervention to group the
exemplars or attributes. Furthermore, the resulting classifier set is a product of
a single GP run. This is more efficient than using multiple runs to incrementally
learn binary classifiers for multiple classes.

InChapter7, McConaghyet al. describe a class of regressionproblems where
the input variables cannot be heavily pruned to a few key variables, because most
variables have some effect. This class of problems includesmodeling the effect
of manufacturing variation in analog electronic circuits.The paper shows that
traditional GP approaches fail badly on such a problem, along with many other
well-known regression and data-mining techniques. It thenproposes a “latent
variable” solution, in which the input vector is transformed to a scalar via a linear
transformation, then the scalar is passed through a nonlinear GP expression to
get the output. The process is repeated on the residuals. Thechallenge is
in determining the linear transformation vectors, and the final expression; the
result is demonstrated to have effective prediction on unseen inputs.

Financial Applications

GPTP has regularly reported contributions from the domain of finance (Zhou,
2003; Yu et al., 2004; Caplan and Becker, 2004; Becker et al.,2006; Korns,
2006; Becker et al., 2007; Korns, 2007; Chen et al., 2008; Korns and Nunez,
2008; Kim et al., 2008). This year marks two new papers advancing the state
of the art of GP application in the area of finance.
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Over a number of years, a large-scale, industrial-strength, symbolic
regression-classification GP system used for trading models developed by In-
vestment Science Corporation has been revised, extended and improved. It
combines standard genetic programming with abstract expression grammars,
particle swarm optimization, differential evolution, context aware crossover and
age-layered populations. Chief designer, Michael Korns, now of Freeman In-
vestment Management, has stated that its design and analysis has been guided
by insights gained from theoretical findings presented at GPTP. He also credits
observations and analyses arising during cross-connecting discussions by par-
ticipants. Korn’s contribution this year, in Chapter 13, targets techniques for
improving symbolic regression in cases where the target expression contains
conditionals. The system is enhanced with pessimal vertical slicing, splicing
of uncorrelated champions via abstract conditional expressions, and abstract
mutation and crossover.

GPTP also welcomes a new team working on financial modeling. In Chap-
ter 8, co-authors Wilson and Banzhaf consider day trading where a hold, buy or
sell decision is made for each security on a daily basis. Predictions of returns
are based on the recent past. The system addressing the problem is a devel-
opmental co-evolutionary genetic programming approach called PAM DGP.
It was demonstrably better than with standard linear genetic programming in
terms of profitable buys, but not necessarily protective sells, in particular stock
price trend scenarios.

Design of Graph-Based Structures

In Chapter 11, Shirakawa and Nagao propose a method called Graph Struc-
tured Program Evolution (GRAPE). GRAPE expressions are graphs capable of
expressing conditional branches and loops, which can be executed in a register-
based computational machine. Graphs are complemented witha data set for
each of the multiple data types GRAPE supports. The genotypeis a linear
string of integers. GRAPE is evaluated on problems emblematic of iterative
and conditional requirements: factorial, exponentiation, and list sorting. While
it can solve these instances, challenges remain with the number of evaluations
required and the complexity of the solutions.

In Chapter 6, Hornby describes the application of ALPS to twoproblems:
evolving a NASA X-Band antenna, and evolving the structure of a table. The
generative representation used for tables and antennae (GENRE) is general
enough to handle graph-based structures. While the focus ofthe paper was
ALPS itself, the improved quality of the results themselvesis notable.

7. Themes, Summary and Looking Forward
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The consensus among the participants this year was that genetic program-
ming has reached a watershed in terms of practicality for a well defined range of
applications. With appropriate determination of algorithm techniques, repre-
sentation, operators, and fitness function, GP has applicability to such challeng-
ing problems as scientific discovery and data modeling, time-domain modeling,
high-dimensional symbolic regression and classification,financial applications,
and design of graph-based structures. In this book, each domain is represented
by two to three papers.

The participants expressed confidence, based on experience, that there are
successful technical approaches that alleviate commonly occurring problems
such as premature evolutionary convergence, bloat, and scalability. Employ-
ing these approaches has become “standard practice” among the participants,
though they admittedly are experts. This convergence on approaches has arisen
over the course of multiple annual GPTP meetings. Participants first proposed
diverse solutions, some of which were stimulated by GP theory. Then, when
brought into the GPTP forum, the solutions were collectively analyzed for key
similarities, differences and capabilities. This enabledthose present to arrive at
an understanding of central principles and to unify their ideas into recognizable
broader technical approaches with theoretical and empirical foundations. It is
this process that has bolstered the participants’ confidence in new techniques
and from which best-practice approaches have emerged.

There will always be tradeoffs among results, resources, reliability and hu-
man up-front setup effort in designing representation, operators, and fitness
functions. The workshop seems to herald a transition away from these largely-
explored issues toward those that arise from using GP for other purposes. The
new directions for GP that are exciting and present their unique challenges are,
for example:

What fundamental contributions will allow GP to be adopted into broader
use beyond that of expert practitioners? For example, how can GP be
scoped so that it becomes another standard, off-the-shelf method in the
“toolboxes” of scientists and engineers around the world? Can GP follow
in the same vein of linear programming? Can it follow the example of
support vector machines and convex optimization methods? One chal-
lenge is in formulating GP so that it provides more ease in laying out a
problem. Another is determining how, by default—without parameter
tuning—GP can efficiently exploit specified resources to return results
reliably.

Success with GP often requires extensive human effort in capturing and
embedding the domain knowledge. How can this up-front humaneffort
be reduced while still achieving excellent results? Are there additional
automatic ways to capture domain knowledge for input to GP systems?
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How can a system of evolutionary modules interact to exploitdomain
knowledge?

Scalability is always relative. GP has attacked fairly large problems, but
how can GP be improved to solve problems that are 10x, 100x, 10,000x
or 1,000,000x harder?

How can the inherent distributed nature of GP be better and more easily
exploited, especially in the current era of multicore CPUs,GPUs, and
cloud computing? What are the implications of distributionin terms of
algorithm dynamics and capabilities?

How can GP be extended with more sophisticated evolutionarymecha-
nisms such as co-evolution or speciation to improve its ability to generate
solutions that exhibit complex properties such as module formation, mod-
ule reuse and self-organization into hierarchies and high level systems?

What other “uncrackable” problems await a creative GP approach?

These questions and their answers will provide the fodder for future GPTP
workshops. We wish you many hours of stimulating reading of this volume’s
contributions.
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