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Preface

The work described in this book was first presented at ther8leWorkshop
on Genetic Programming, Theory and Practice, organizetidoenter for the
Study of Complex Systems at the University of Michigan, Anrbéx, 14-16
May 2009. The goal of this workshop series is to promote trehamge of
research results and ideas between those who focus on Gemegramming
(GP) theory and those who focus on the application of GP tmwarreal-
world problems. In order to facilitate these interactiotige number of talks
and participants was small and the time for discussion wag la Further,
participants were asked to review each other’s chagiefsrethe workshop.
Those reviewer comments, as well as discussion at the waopksine reflected in
the chapters presented in this book. Additional informraéibout the workshop,
addendums to chapters, and a site for continuing discusbipparticipants and
by others can be found at http://cscs.umich.edu/gptp-grafs/gptp2009 .

We thank all the workshop participants for making the wodgshn exciting
and productive three days. In particular we thank the astheithout whose
hard work and creative talents, neither the workshop notbtbhak would be
possible. We also thank our keynote speaker Margaret J.t&pp#ssociate
Professor in Computer Science and Director of the Compleste®ys Center
at the University of Vermont. Maggie’s talk inspired a grdatl of discussion
among the participants throughout the workshop.

The workshop received support from these sources:

= The Center for the Study of Complex Systems (CSCS);

= Third Millennium Venture Capital Limited;

= Michael Korns, Investment Science Corporation;

m State Street Global Advisors, Boston, MA;

= Evolved Analytics;

s Computational Genetics Laboratory at Dartmouth College;

m Biocomputing and Developmental Systems Group, Comput&Enge
and Information Systems, University of Limerick; and

= William and Barbara Tozier of Vague Innovation LLC.

We thank all of our sponsors for their kind and generous stgpothe work-
shop and GP research in general.

A number of people made key contributions to running the wbdp and
assisting the attendees while they were in Ann Arbor. Fostramong them
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was Howard Oishi, who makes GPTP workshops run smoothlyhistdiligent

efforts before, during and after the workshop itself. Dgrthe workshop Bill
Worzel moderated some of the sessions. After the worksha@myrpeople
provided invaluable assistance in producing this book. ciape¢hanks go to
Sarah Cherng, Patrick Hooper and Laura Tomassi, who did aevén job

working with the authors, editors and publishers to get tiekzompleted very
quickly. Thanks to William Tozier for assisting in copy-gdg many of the
chapters. Jennifer Maurer and Melissa Fearon’s editdfimite were invaluable
from the initial plans for the book through its final publicat. Thanks also
to Deborah Doherty of Springer for helping with various teidal publishing

issues. Finally, we thank Carl Simon, Director of CSCS, ferdupport for this
endeavor from its very inception.

Rick RioLo, UNA-MAY O’REILLY AND TRENT MCCONAGHY



Foreword

Genetic programming (GP) has emerged as an important cemmal
methodology for solving complex problems in a diversity edaiplines. The
recent success of GP can be attributed to the highly innevatbmputer sci-
entists that have developed and extended the approachhevéast 20 years
and the numerous investigators and analysts that have Ipetbe €ront line of
applying these algorithms to difficult problems in their sifie domains. This
is all supported by a vibrant and highly collaborative resbaommunity that
includes numerous GP conferences and workshops, numemjmuiéals and
book series and a wealth of open-source software and ittbased resources.
The continued growth of this community speaks to the imp&a¢s® and its
important place in the future of computation and analysis.

An important challenge for any discipline is to foster closkationships and
collaborations between those that develop computatitweairy and those that
practice the art of computation. The annual Genetic Prograng Theory and
Practice (GPTP) Workshop organized by the Center for thelysaf Com-
plex Systems at the University of Michigan in Ann Arbor wasffiorganized
and held in 2003 to specifically bring theorists and pramitrs together to
communicate and collaborate in an effort to transform Gifem innovative
algorithm to a general computational strategy for solviognplex problems.
The positive impact of this workshop on those that attendoeas substantial.
There are several reasons for this. First and foremoste ikean openness and
general sense of collegiality that is lacking at many otk@rdific venues. The
attendees are genuinely interested in sharing their guitilye ideas for group
discussion. This selflessness combined with enthusiastitigsion and par-
ticipation creates an environment that significantly fostenovation. Second,
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there is an incredible sense of memory from past GPTP wopshattendees
take what they have learned from previous years and inegnat new ideas
into their work. This cascading of ideas from year to yeawftes a rare oppor-
tunity to synthesize innovation. Third, each of the attersdis truly interested
in solving complex problems in their respective domains.isTit important

because the investigators are open to any idea that helgs tha problem at
hand. The lack of dogmatism and openness to change is refgeahd has
made this workshop a huge success.

This was my fourth year at GPTP and each year has been a treosend
learning experience. Perhaps the single most eye-openiiPGvent was
learning that Michael Korns of Korns Associates was sudatgsising GP
to make real life financial investment decisions. This to si¢he ultimate
endorsement for the use of GP for solving problems such assiseanalysis and
stock ranking. There was asense at GPTP this year that GBrhad the corner
from an innovative algorithm used only by computer sciggtis a truly useful
discovery tool used by many. In fact, William Tozier made pinediction that
2010 marks the beginning of a GP bubble characterized byponextial shift
from art to craft. That is, within the next few years we wiltiheasingly see GP
being used by domain-specific experts such as bioinforistgjoeconomists,
engineers and meteorologists to solve hard problems.dighiue, the next 10
years of GPTP will be more important than ever.

| encourage you to read and digest each of the chapters inghime and
those from all the previous volumes. | promise you will comeag with a
notebook full of new ideas for using GP to solve your domaiaesfic problem.

Jason H. Moore, Ph.D.

Frank Lane Research Scholar in Computational Genetics
Professor of Genetics and Community and Family Medicine
Dartmouth Medical School, Lebanon, NH, USA

July, 2009



Chapter 1

GPTP 2009: AN EXAMPLE OF EVOLVABILITY

Una-May O’Reilly*, Trent McConagh¥and Rick Riold

1Computer Science and Artificial Intelligence Laboratoryaddachusetts Institute of Technol-
ogy;QSoIido Design Automation Inc., Canad%ﬁenterforStudy of Complex Systems, University
of Michigan.

Abstract

This introductory chapter gives a brief description of gémprogramming
(GP); summarizes current GP algorithm aims, issues, angtess; and finally
reviews the contributions of this volume, which were preéedrat the GP Theory
and Practice (GPTP) 2009 workshop.

This year marks a transition wherein the aims of GP algorthimeasonable
resourceusage, high qualityesults andreliable convergence — are being consis-
tently realized on an impressive variety of “real-worlaplicationsby skilled
practitioners in the field. These aims have been realizeda@ @ researchers’
growing collective understanding of the nature of GP protdevhich require
search across spaces which are massive, multi-modal, ang@ar locality, and
how that relates to long-discussed GP issues such as bldgiramature con-
vergence. New ways to use and extend GP for improved conpudhtesource
usage, quality of results, and reliability are appearind gaining momentum.
These include: reduced resource usage via rationally degigearch spaces and
fitness functions for specific applications such as indaatibimplicit functions
or modeling stochastic processes arising from bio-netsjoifproved quality
of results by explicitly targeting the interpretability ttustworthiness of the fi-
nal results; and heightened reliability via consistentifroducing new genetic
material in a structured manner or via coevolution and tegmihese new de-
velopments highlight that GP’s challenges have changed &ionply “making
it work” on smaller problems, to consistently and rapidlyttoey high-quality
results on large real-world problems. GPTP 2009 was a foruatdtance GP’s
state of the art and its contributions demonstrate how tagss can be met on a
variety of difficult problems.
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1. The Workshop

In the beautiful, springtime charm of Ann Arbor, the seveatinual Genetic
Programming Theory and Practice (GPTP) workshop was hée &iniversity
of Michigan campus from May 14-16, 2009.

We are grateful to all sponsors and acknowledge the impoetaftheir con-
tributions to such an intellectually productive and regelent. The workshop
is generously founded and sponsored by the University ofhidan Center
for the Study of Complex Systems (CSCS) and receives fuftheting from
the following people and organizations: Michael Korns adéinan Investment
Management, Ying Becker of State Street Global Advisor§nXwnza of Third
Millenium, Bill and Barbara Tozier of Vague Innovation, Mafotanchek of
Evolved Analytics, Jason Moore of the Computational Gesdtaboratory of
Dartmouth College and Conor Ryan of the Biocomputing andelgmental
Systems Group of the University of Limerick.

To make the results of the workshop useful to even a relaiyéce in the
field of GP, we start the chapter with a brief overview of gemptogramming
(GP). Sections 3 and 4 describe current GP challenges amplesin GP.
Sections 5 and 6 then organize and summarize the contnitsutd chapters
in this volume from two perspectives: according to how cted empirical
research is informing GP practice, then according to thealnsof application
in which success through best practices has been reportedoé¢lude with
a discussion of observations that emerged from the workstmap potential
avenues of future work.

2. A Brief Introduction to Genetic Programming

Genetic programming (GP) is a search and optimization igclenfor ex-
ecutable expressions that is modeled on natural evolutiatural evolution
is a powerful process that can be described by a few ceneakrgl mecha-
nisms; for an introduction, see (Futuyma, 2009). A popatais composed
of organisms which can be distinguished in terms of how fiy thee with re-
spect to their environment. Over time, members of the pajuebreed in
frequency proportional to their fitness. The new offsprinlgarit the combined
genetic material of their parents with some random vanmgtmnd may replace
existing members of the population. The entire processrative, adaptive
and open ended. GP and other evolutionary algorithms tipiczalize this
central description of evolution, albeit in somewhat adostforms. GP is a set
of algorithms that mimic of survival of the fittest, genetiheritance and vari-
ation, and that iterate over a “parent’population, seletyi “breeding” them
and replacing them with offspring.

Though in general evolution does not have a problem solvive), GP is
nonetheless used to solve problems arising in diverse d@nainging from en-
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gineering to art. This is accomplished by casting the osgarin the population
as a candidate program-like solution to the chosen problEne organism is
represented as a computationally executable expres$iasifacture), whichis
consideredits genome. When the expression is executedrensmplied set of
inputs, itgenerates an output (and possibly some intermtedisults). This exe-
cution behavior is akin to the natural phenotype. By commggiifie expression’s
output to target outputs, a measure of the solution’s quislibbtained. This is
used as the “fitness” of an expression. The fact that the datedsolutions are
computationally executable structures (expressiong)bimary or continuous
coded values which are elements of a solution, is what digisines GP from
other evolutionary algorithms (O’Reilly and Angeline, 799 GP expressions
include LISP functions (Koza, 1992; Wu and Banzhaf, 1998%klks or register-
based programs (Kantschik and Banzhaf, 2002; Spector abith$tm, 2002),
graphs (Miller and Harding, 2008; Mattiussi and Florean@)?2 Poli, 1997),
programs derived from grammars (Ryan et al., 2002; WhigH&85; Gruau,
1993), and generative representations which evolve themger itself (Hem-
berg, 2001; Hornby and Pollack, 2002; O’'Reilly and Hemb&@)7). Key
steps in applying GP to a specific problem collectively definsearch space:
the problem’s candidate solutions are designed by choasimgpresentation;
variation operators (mutation and crossover) are seldotespecialized); and a
fitness function (objectives and constraints) which exggeghe relative merits
of partial and complete solutions is formulated.

3.  Genetic Programming Challenges

Current challenges for GP include economizing onrésburceusage, en-
suring better qualityesults extracting moreeliable convergence, or applying
GP to a challengingroblem domain

Economic Resource Usagmcludes shorter runtime, reduced usage of pro-
cessor(s), and reduced memory and disk usage. Achievirasitrhditionally
been a major issue for GP. A key reason is that GP search spacastronom-
ically large, multi-modal, and have poor locality. Poordtity means that a
small change in the individual's genotype often leads tgdathanges in the
fitness, introducing additional difficulty into the seardfod. For example, the
GP “crossover” operation of swapping the subtrees of tweitamight change
the comparison of two elements from a “less than” relatigmstan “equal to”
relationship. This usually gives dramatically differemtavior and fithess. To
handle such challenging search spaces, significant exipliorig needed (e.g.
large population sizes). This entails intensive processimd memory needs.
Exacerbating the problem, fitness evaluations (objectares constraints) of
real-world problems tend to be expensive. Finally, becaBeexpressions
have variable length, there is a tendency for them to “bleatd grow rapidly
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without a corresponding increase in performance. Bloatlza®a significant
drain on available memory and CPU resources.

Ensuring Quality Results. The key question is: “can a GP resh# used
in the target application?” Thissability criteria may be more difficult to
attain than evident at first glance because the result may teebe human-
interpretable, trustworthy, or predictive on dramatigalifferent inputs—and
attaining such qualities can be challenging. Ensuringityuasults has always
been perceived as an issue, but the goal is becoming morérnaonas GP is
being applied to more real world problems. Practitioners, &P, are respon-
sible for deploying a GP result in their application domairhis means that
practitioners (and potentially their clients) must trust tesults sufficiently to
be comfortable using them. Human-interpretability (remlits) of the result
is a key factor in trust. This can be an issue when deploymetiteoresult
is expensive or risky, such as analog circuit design (McQbgeaand Gielen,
2005); when customers’ understanding of the solution isiafisuch as port-
folio strategies (Becker et al., 2007); when the result niesinspected or
approved; or to gain acceptance of GP methodology, e.g.sewfisymbolic
regression for modeling industrial processes (Kordon.e2805).

Reliable convergenceneans that the GP run can be trusted to return reason-
able results, without the practitioner having to worry abpremature conver-
gence or whether algorithm parameters like populationsizes set correctly.

GP can fail to capably identify sub-solutions or partialyrrect solutions and
thus be unable to successfully promote, combine and reese th generate
good solutions with effective structure. The default apjgiohas been to use the
largest population size possible, subject to time and resaronstraints. How-
ever, this invariably implies high resource usage, anél gities no guarantee
of hitting useful results even if such results exist.

Problem domains present both opportunities and challenges for GP. Due
to its evolution of executable expressions, GP has a farderoset of prob-
lem domain opportunities than other EAs and optimizatioprapches. But
expression spaces are non-trivial to search across antisgléhe expression
primitives is non-trivial. GP representation and variataperator designs must
generate syntactically valid expressions. But that's geyeart! The design
must be done thoughtfully. Poor choices will lead to higlotese usage and
poor quality results. Thoughtfully designed represeatetiand operators can
lead to orders of magnitude difference in speed or qualily; @s shown in
(Poli and Page, 2000; McConaghy et al., 2007).
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4.  Progress in Genetic Programming

The field of GP is making progress in addressing the chalkegscribed
in the last section. Resource usage has been decreasedroyéthalgorithm
design, improved design of representation and operatospégific domains.
Its impact has been lessened by Moore’s Law and increasaitahility of par-
allel computational approaches, meaning that computti@sources become
exponentially cheaper over time. Results quality has ivgulofor the same
reasons, and due to a new emphasis by GP practioners orggatgrpretable
or trustworthy results. Reliability has been improved igosithm techniques
that support continuous evolutionary improvement in aesysitic or struc-
tured fashion. For example, by using hierarchical fair cetitjpn (HFC) and
Age-Layered Population Structure (ALPS) (Hu et al., 2008y, 2006),
the practitioner no longer has to “hope” that the algorittemtistuck. Finally,
practice in thoughtful design of expression representasiod genetic opera-
tors, for general and specific problem domains, has led to/Sties1s achieving
human-competitive performance. In the 2008 ACM SIGEVO ahikenetic
and Evolutionary Computation Conference (GECCO) Humiespetition GP
was used to generate a novel synthetic RTL benchmark cifeaitenka et al.,
2008) and to evolve terms with special properties for a ldigige algebra
(Spector et al., 2008). GP has been adopted for industidé scodeling, data
analysis , design and discovery (Kotanchek et al., 200fy&tral., 2006). In
GPTP, we have seen applications ranging from finance todpdim antennae:
(Kim et al., 2008; Korns, 2007; Driscoll et al., 2003; Lohraét 2005).

Despite these achievements, GP’s computer-based evotlaés not demon-
strate the potential associated with natural evolutiom,duoes it always satis-
factorily solve important problems we might hope to use it dfven when
using best-practice approaches to manage challengesurces, results, and
reliability, the computational load may still be too exdessand the final re-
sults may be inadequate. To achieve success in a difficuitgmmrodomain takes
a great deal of human effort toward thoughtful design of espntations and
operators.

In the two sections that follow we provide two perspectivestlte GPTP
workshop’s intellectual contributions and on the trendsabeerved with re-
spect to resource economization, results quality andxelieonvergence. First,
we review how the empirical research contributions havermied GP prac-
tice . Second, we review how GP has achieved successfulcapph by the
employment of “best practice” approaches.

5.  Empirical Research Informing Practice

The intent of GPTP has been to bring together practitionedstiaeorists in
orderto unify the challenges practitioners face with thesjions theorists study.
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As well, GPTP provides a focused group setting where piatts describe to
theorists their problems, their GP system, and the iss@gidive encountered.
This helps the theorists to better appreciate the naturgmfidem, examine the
practical outcome of an approach and, with immediacy, ssiggewv and why
something is happening and what could be done about it. \Wéttlteorists
present, there is an opportunity for practitioners to asktivér their theoretical
findings are illustrated in some aspect of their implemémtatand whether a
theoretical result can shed light on a problem they face.

One of the trends our readers might notice this year is fewenventional’
theory submissions. Conventional GP theory is difficult @atune of GP’s
variable length genome representation, executable pyeaatharacter, and
stochasticity. It does not proceed as quickly in terms ofettgvand major
impact as practice.

This year marks contributions that inform practice, yet o€ strictly pen-
and-paper theorems and calculations. With Chapter 6 asaanp®, test prob-
lems are chosen to appropriately challenge a proposediteehrand the anal-
ysis provides an understanding of how it works. GPTP workgbarticipants
have embraced this sort of study because it focuses on arevigsle elegantly
eliminating unrelated complexity and confounding factdrie theory is in the
form of techniques that are measurably better, more traesfig analyzed and
better explained and deduced. This kind of result promotgsreeral (appli-
cable across GP problem domains) best-practice approatimasioccurred
in approaches to designing representations, operatorgnes$ functions, or
approaches to enhanced reliability, quality of resultsl msource usage. De-
velopment of a best-practice approach is arguably “emgdiresearch” theory.

The contributions of this volume can be organized accolging

= One best-practice approach to enhanced reliability andtseguality is
to reduce and modulate selection pressure on a specific tcohtre
population. Modulation could be applied to new genetic maleto ge-
netic material that is not the norm, or to expressions tleatetroff strict
functionality with solution complexity. One specific tedme which
is gaining common use is Age-Layered Population StructMePS)
(Hornby, 2006). It provides a structured way for new geneteterial
to continually enter the population, allowing new indivadsitime to im-
prove before they have to compete against older, more fivihatls.
Because this approach is capable and also makes a run'ssuesg sen-
sitive to population size, the number of research grouppt@up ALPS
or similar mechanisms is growing (Hu et al., 2003; McConaghsl.,
2007; Patel and Clack, 2007; Sun et al., 2007; Willis et &I08 Korns
and Nunez, 2008; Kotanchek et al., 2008; Slany, 2009). Im@Eha®,
Hornby presents the steady-state variant of the ALPS.
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6.

= With respect to best practices in design of GP fitness funstithere

are four papers which describe how fitness function desigs the
key to make each respective problem tractable for GP. In t&hap
Kotanchek et al. describe the “Data Balancing ” technique, which,
among other benefits, can reduce the cost of symbolic regresess
functions by reducing the training data to a smaller yet @spntative
set. In Chapter 10, Ross and Imada describe multi-objetdisleniques
that can exploit feature tests which provide different dyital-system
descriptions of stochastic, noisy time series. In Chapt&chmidt and
Lipson describe fitness functions that provide GP with sigfficselec-
tivity to evolve implicit functions. In Chapter 9, Citt al. describe a
mapping from genotype to fitness function for Electroenedpdraphy
(EEG) signal classification.

With respect to best practices in representation and apedasign on
specific problems, there are four papers. In Chapter 3, Dieeal.
describe how to decompose a high-dimensional classifitgtioblem
into subproblems that can be solved byeamof GP individuals. In
Chapter 7, McConaghgt al. describe a technique to transform a high-
dimensional symbolic regression problem into a 1-dimemediproblem.
This dramatically simplifies the problem that GP has to solmeChap-
ter 11, Shirakawa and Nagao describe a simple, easy-tg-agmplesen-
tation for evolving register-based software programs, reega-purpose
problem-solving method. In Chapter 13, Korns describespamaior to
create a conditional expression of two subtrees in a behgvaserv-
ing fashion which enhances locality, and he also descripegators to
locally explore symbolic regression functional spaces.

With respect to best practices generaldesign of representations and
operators , there are three papers. In Chapter 2, Greeak apply a
GP system with a hierarchical organization of search opei@ntrol:
evolving a single scalar for mutation probability at the tepel, and at
successively lower levels, evolving more fine-grained admiown to the
levelwhere individuals themselves are manipulated. Imp@ra, Wilson
and Banzhaf apply the “PAM DGP” approach which adapts thepimgp
from genotype to phenotypduring evolution. In Chapter 12, Bongard
describes a “functional crossover" operator which aimsrtoamce the
locality of search by restricting allowable subtree swapsubtrees with
similar output ranges.

GPTP 2009: Application Successes Via Best Practices

As discussed earlier, progress in the field of GP can be ctesized by

GP successes in attacking challenging, industrial-strerigiman-competitive
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problem domains. In attacking such problems and sharinig ¢ixperiences
at forums like GPTP, the best practices emerging from theesses are prop-
agated and improved, leading to further successes in atyasfedomains.
This section organizes the papers in the volume accordipgololem domain.
The problem domain groupings are: GP as a “discovery engiime&-domain
modeling, high-dimensional symbolic regression and diaasion, financial
applications, and design of graph-based structures. $rbthok, each domain
is represented by multiple papers.

GP as a Discovery Engine

The fact that GP can return amterpretableexpression has been recognized
as important for a long time (Koza, 1992), due to its implmag for scientific
discovery and engineering analysis (Keijzer, 2002). Tlokime marks two
important steps towards broad use of GP: (1) capturing a bevad class of
functional forms which underpin many types of scientificdhies, and (2) an
easy-to-use GP system with novel data analysis capagiltiglt directly into
a world-standard mathematical package.

In Chapter 5, Schmidt and Lipson describe how many types iehsfic
problems have amplicit functional form: the functions are not merely a map-
ping from input variables to output variables, but insteaystem of equations
describes relationships among variables. For examgle, y? = z? describes
the equation for a circle; there is no single output variabkhe challenge
in discovering such functional forms is that a traditionahdt-squares com-
parison between target values and actual values is not ngfahi because
the true problem involves capturing a surface (manifoldpedded within a
multi-dimensional space. Simplistic fithess functions @b provide enough
differentiation among candidate functions, making it hfandGP to find good
initial designs and even harder to refine designs. To solgeptbblem, the
authors propose the use of local finite-element analysisdasore gradients
in the manifold, and then apply a least-squares error medsutifferences in
gradients. The authors demonstrate how the approach ceessiially capture
the dynamics in classical pendulum physics models, as wathpturing dy-
namics of more complex pendulum models for which closedifequations
describing dynamics are unknown.

In Chapter 4, Kotancheét al. describe the use of a highly visual, easy-to-
use GP symbolic regression system that is embedded in Matleam The
visual, exploratory nature of the system leads to a trulsattee, interactive
means to use GP to explore data in real time. The paper desd¢abhniques to
detect outliers in either a data-based or model-baseddiashieasure relative
importance among variables, detect regions in an inpytdiuhapping space
which are over- or under-represented by the training dakeatl and rank the
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importance of each datapoint. They also describe a “Datari8alg” technique
which is a key tool for many of these techniques.

Time-Domain Modeling

This year GPTP had three papers addressing three veryatiffproblems re-
lated to time-series signals: EEG time series classifioatioodeling stochastic
reaction processes, and time series with many state vasiabl

In Chapter 9, Citet al. classify time domain Electroencephalography (EEG)
signals with the aim of improving brain-computer interfad®Cls). The ap-
proach focuses on Event-Related Potentials (ERPs) whiehwail-defined
events within EEG signals. EEG signals during an ERP haveact&istic
waveforms that provide the possibility of accurate clasatfon. While ERPs
have been explored extensively, an issue is the large nuafithemman-in-the-
loop training trials. In past work Citet al. have partly alleviated this using a
simple binning technique but this moved the issue to seledi the bin proper-
ties themselves. In this volume they use GP to evolve pridbabimembership
functions for the bins which yields promising improvememperformance.

GP is well suited to learning models that synthesize reagiiocesses be-
cause a language from the domain and domain dependentiopsran the
data can be transfered quite directly to the GP function amdinal set. This
is the case with pi-calculus and process algebra structhatsnodel reactions
of bio-networks. However when the reaction process is ststit) rather than
deterministic, a challenge arises in specifying fithessaijes. Just using the
error between model prediction and real data fails to acctamthe statisti-
cal features in the time series that arise from stochastimg and variance.
In Chapter 10, Ross and Imada discuss and evaluate howediffstatistical
feature tests can be used simultaneously via multi-obg&P.

In Chapter 12, building on pastwork, Bongard applies GPtense engineer-
ing a broad set of dynamical systems. Because the systerdstareninistic,
and known in advance, Bongard’s measure of success is whethean suc-
cessfully recapture the original differential equationghile the focus of the
paper is a novel crossover operator, the paper reconfirmi&#gs consistently
effective at capturing the system dynamics for a varietyrobfems.

High-Dimensional Symbolic Regression and Classification

GP modeling approaches have typically attacked problentiseimange of
1 to roughly 20 dimensions. But it is well known that the natof a prob-
lem dramatically shifts past 20 dimensions, because evainyirig data point
is effectively “very far away” from every other datapointdktie et al., 2001).
Problems with 100, 1000, or 10,000 input dimensions havwe difierent prop-
erties. In this book, we have three diverse problems witlin4tignensional



10 GENETIC PROGRAMMING THEORY AND PRACTICE VI

inputs: high-dimensional classifier design, high-dimenal regressor design
and identification of key input variable interactions (i&pistasis).

In Chapter 2, Greenet al. tackle what they deem a “needle in a haystack
problem: 10,000+ input variables but only a few have an &ffatd the variable
interactions have more effect than single-variable effe¢he combination of
high dimensionality and epistasis means one tough probleme. application
is for DNA analysis, to identify which sequence variatiomedict disease risk
in human populations. The authors approach the problem@ia system with
hierarchical operator control, and demonstrate that GiRtdiead able to extract
expressions of great use to geneticists.

In supervised problems, where a model has to be learned frolasa of
exemplars with a domain of attributes, GP has been sucdtigssfed to find
a single binary classifier that automatically identifies thlevant subset of at-
tributes. However, for domains of large numbers of attdsyit is more natural
to consider grouping the exemplars and learning a set ofaratipe classi-
fiers that function in a non-overlapping way over the subgsowDifferent (and
overlapping) sets of attributes are appropriate to eaddsitiar. In Chapter 3,
Doucetteet al. show how to extend GP so it can accomplish this kind of clas-
sification without requiring any preliminargd hocintervention to group the
exemplars or attributes. Furthermore, the resulting ffiasset is a product of
asingle GP run. This is more efficient than using multiplesrtaincrementally
learn binary classifiers for multiple classes.

InChapter 7, McConaghst al. describe a class of regression problems where
the input variables cannot be heavily pruned to a few keyadeis, because most
variables have some effect. This class of problems inclotedeling the effect
of manufacturing variation in analog electronic circuite paper shows that
traditional GP approaches fail badly on such a problem,gaeith many other
well-known regression and data-mining techniques. It {raposes a “latent
variable” solution, inwhich the input vector is transfordte a scalar via a linear
transformation, then the scalar is passed through a namliG® expression to
get the output. The process is repeated on the residuals. cfidiknge is
in determining the linear transformation vectors, and thalfexpression; the
result is demonstrated to have effective prediction on emseputs.

Financial Applications

GPTP hasregularly reported contributions from the domé&iimance (Zhou,
2003; Yu et al., 2004; Caplan and Becker, 2004; Becker e2@0D6; Korns,
2006; Becker et al., 2007; Korns, 2007; Chen et al., 2008n&Kand Nunez,
2008; Kim et al., 2008). This year marks two new papers aduagribe state
of the art of GP application in the area of finance.
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Over a number of years, a large-scale, industrial-strengtymbolic
regression-classification GP system used for trading nsatieteloped by In-
vestment Science Corporation has been revised, extendkdrgmoved. It
combines standard genetic programming with abstract egme grammars,
particle swarm optimization, differential evolution, ¢ert aware crossover and
age-layered populations. Chief designer, Michael Korosy af Freeman In-
vestment Management, has stated that its design and anhasbeen guided
by insights gained from theoretical findings presented afl&Ple also credits
observations and analyses arising during cross-conmedigtussions by par-
ticipants. Korn’s contribution this year, in Chapter 13gkts techniques for
improving symbolic regression in cases where the targetesgon contains
conditionals. The system is enhanced with pessimal vésiicang, splicing
of uncorrelated champions via abstract conditional exgioes, and abstract
mutation and crossover.

GPTP also welcomes a new team working on financial modelimghap-
ter 8, co-authors Wilson and Banzhaf consider day tradingreva hold, buy or
sell decision is made for each security on a daily basis. i€reds of returns
are based on the recent past. The system addressing therprabh devel-
opmental co-evolutionary genetic programming approadled¢d&AM DGP.
It was demonstrably better than with standard linear gen@thgramming in
terms of profitable buys, but not necessarily protectivis sl particular stock
price trend scenarios.

Design of Graph-Based Structures

In Chapter 11, Shirakawa and Nagao propose a method calkggh@truc-
tured Program Evolution (GRAPE). GRAPE expressions arplgraapable of
expressing conditional branches and loops, which can beuee@in a register-
based computational machine. Graphs are complementecavdttia set for
each of the multiple data types GRAPE supports. The gends/pelinear
string of integers. GRAPE is evaluated on problems emblenadtiterative
and conditional requirements: factorial, exponentigteomd list sorting. While
it can solve these instances, challenges remain with thdauof evaluations
required and the complexity of the solutions.

In Chapter 6, Hornby describes the application of ALPS to prablems:
evolving a NASA X-Band antenna, and evolving the structura table. The
generative representation used for tables and antennabRGEis general
enough to handle graph-based structures. While the foctiseopaper was
ALPS itself, the improved quality of the results themseligesotable.

7.  Themes, Summary and Looking Forward
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The consensus among the participants this year was thatig@negram-
ming has reached a watershed in terms of practicality forledeéned range of
applications. With appropriate determination of algaritiechniques, repre-
sentation, operators, and fitness function, GP has appitgdb such challeng-
ing problems as scientific discovery and data modeling,-immain modeling,
high-dimensional symbolic regression and classificafioancial applications,
and design of graph-based structures. In this book, eackitasrepresented
by two to three papers.

The participants expressed confidence, based on experigatdhere are
successful technical approaches that alleviate commardyrdng problems
such as premature evolutionary convergence, bloat, andbslig. Employ-
ing these approaches has become “standard practice” arhergatticipants,
though they admittedly are experts. This convergence oroappes has arisen
over the course of multiple annual GPTP meetings. Partitipfrst proposed
diverse solutions, some of which were stimulated by GP the®hen, when
brought into the GPTP forum, the solutions were collecyivaialyzed for key
similarities, differences and capabilities. This enaltlexbe present to arrive at
an understanding of central principles and to unify thedeislinto recognizable
broader technical approaches with theoretical and engpiftzindations. It is
this process that has bolstered the participants’ confelémaew techniques
and from which best-practice approaches have emerged.

There will always be tradeoffs among results, resourcdigbitity and hu-
man up-front setup effort in designing representation,rajoes, and fithess
functions. The workshop seems to herald a transition away these largely-
explored issues toward those that arise from using GP farqtarposes. The
new directions for GP that are exciting and present theiqumichallenges are,
for example:

= What fundamental contributions will allow GP to be adopt&d broader
use beyond that of expert practitioners? For example, howGH be
scoped so that it becomes another standard, off-the-shegtfod in the
“toolboxes” of scientists and engineers around the worldd GP follow
in the same vein of linear programming? Can it follow the egbaof
support vector machines and convex optimization methods@ ¢bal-
lenge is in formulating GP so that it provides more ease imaput a
problem. Another is determining how, by default—withoutgraeter
tuning—GP can efficiently exploit specified resources tometesults
reliably.

= Success with GP often requires extensive human effort itudag and
embedding the domain knowledge. How can this up-front huedffomt
be reduced while still achieving excellent results? Areadhedditional
automatic ways to capture domain knowledge for input to Cieesys?



GPTP 2009: An Example of Evolvability 13

How can a system of evolutionary modules interact to exmloinhain
knowledge?

= Scalability is always relative. GP has attacked fairly éapgoblems, but
how can GP be improved to solve problems that are 10x, 1008008
or 1,000,000x harder?

= How can the inherent distributed nature of GP be better ane @asily
exploited, especially in the current era of multicore CPG®Us, and
cloud computing? What are the implications of distributiorierms of
algorithm dynamics and capabilities?

= How can GP be extended with more sophisticated evolutiomagha-
nisms such as co-evolution or speciation to improve itstgld generate
solutions that exhibit complex properties such as moduta&bion, mod-
ule reuse and self-organization into hierarchies and hegéllsystems?

= What other “uncrackable” problems await a creative GP agqin@

These questions and their answers will provide the foddefutore GPTP
workshops. We wish you many hours of stimulating readinghedf volume’s
contributions.
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