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Abstract—We show the behavior of the generations of two
multi-objective evolutionary algorithms (MOEAs) for the optimal
sizing of two mixed-mode circuits. The non-sorting genetic
algorithm (NSGA-II), and the MOEA based on decomposition
(MOEA/D) are used to size a second generation current conveyor
(CCII+) and a current-feedback operational amplifier (CFOA).
Both MOEAs take into account design constraints, and link
HSPICE to evaluate the electrical characteristics of the CCII+
and CFOA. Differential evolution is used as genetic operator to
show the behavior of the generations of the two MOEAs.

I. INTRODUCTION

Analog signal processing applications require the use of
different kinds of active devices. Besides, the majority of the
active devices, already known or new ones, can be designed by
using four unity-gain cells (UGCs), namely: voltage follower,
voltage mirror, current follower, and current mirror [1], [2].
Furthermore, the combination or superimposing of UGCs leads
to the generation of mixed-mode circuits such as current con-
veyors (CCs) [3], and current-feedback operational amplifiers
(CFOAs) [2]. Some applications of CCs and CFOAs include
sinusoidal and chaotic oscillators [4], [5]. However, to improve
the performances of these applications, it is very much needed
to optimize the behavior of the mixed-mode circuits.

Although some optimization approaches have been already
presented for analog circuits [6]–[8], the sizing-optimization-
problem is an unsolved one yet. Besides, the actual tendency
is to apply evolutionary algorithms (EAs) [9]–[13], combined
with intelligent techniques [6]–[8]. However, there is not in-
formation on the behavior of the generations during the sizing
process. That information can help an analog integrated circuit
designer to select the appropriate tool for the sizing process.
In this manner, we show the behavior of the generations by
applying the nonsorting genetic algorithm (NSGA-II) [11], and
the multi-objective EA based on decomposition (MOEA/D)
[9], to size mixed-mode analog circuits such as CCs and
CFOAs. The algorithms include differential evolution (DE) as
the genetic operator and take into account design constraints,
while linking HSPICE to evaluate electrical characteristics.

II. ANALOG CIRCUIT SIZING

Analog integrated circuit design is a hard and tedious work
due to the large number of parameters, constraints and per-
formances that the designer has to handle [6]–[8], [10]–[13].
As highlighted in [6]–[8], since analog designs are becoming
more and more complex, there is a pressing need for analog
circuit design automation (ADA), to meet the time to market
constraints. In this manner, this work shows the behavior of
the generations of NSGA-II and MOEA/D to contribute to
solve the sizing problem of mixed-mode circuits. Basically,
both EAs search for the optimal width (W ) and length (L)
of the MOSFETs to accomplish target specifications of a
positive-type second generation CC (CCII+), shown in Fig.
1, and a CFOA, shown in Fig. 2. Both algorithms work on
a MATLAB code, they include differential evolution (DE) as
genetic operator, and the simulations are made with HSPICE.
The main goal is to show the behavior of the generations
during the sizing process.

The circuit optimization problem is established as follows:

minimize f : R
n → R

m

f(x) = [f1(x), f2(x), . . . , fm(x)]T

subject to hk(x) ≥ 0, k = 1, . . . , p,

(1)

where n is the size (or number of variables) of the input vector,
m is the number of objective functions, x = [x1, x2, . . . , xn]

T

is the input vector, f is the vector of the objective functions val-
ues, and hk(x), k = 1, . . . , p are constraints. The simulations
are performed by HSPICE LEVEL 49 for standard CMOS
technology of 0.18 μm. For the measurements there is a load
capacitor of 1 pF .

III. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

Evolutionary algorithms, even mixed with other artificial
intelligence techniques, are used in multiobjective optimization
tools for analog integrated circuits because it makes easy to
change the number of objectives or variables and with different
magnitudes [8], [12]–[14]. Additionally, they can take into
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account constraints under user defined limits between design
parameters and electrical characteristics [15].

The NSGA-II EA [11], is based on Pareto ranking. Fist,
it is necessary to built two populations, each one of size N
(with N individuals). NSGA-II in each generation rebuild the
current population from the two initial populations. After the
initialization, the next step is a nondominating sorting process
of all solutions in the rebuilt population, which is ranked and
classified, acoording to Pareto’s dominance, in a family of sub-
fronts. Next, it is necessary to choose from the sub-fronts a
new offspring of N individuals, in a form that such individuals
belong to the first sub-fronts and a distance measure is used
to preserve the diversity of the created offspring, by selecting
solutions that are far from the rest [11].

The basic idea of MOEA/D [12], is the decomposition of
a multiobjective problem in scalar optimization subproblems
by a weights vector [9]. This vector associates a weight (λ)
for each subproblem that is considered as a single solution
in the population and is going to try to improve by itself
and to its nearby (neighborhoods). In each generation there
is a population of N solutions x1,x2, . . . ,xN ∈ X where
xi = (xi

1, . . . , x
i
n) is the current solution to the ith subprob-

lem. After the initialization of the parameters the first step in
MOEA/D is related to define the N spread weights vector (to
each solution corresponds one λi). Therefore, it is possible to
define a number (T ) of neighborhoods for each λi.
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Fig. 1. Current Conveyor (CCII+)
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Fig. 2. Current-Feedback Operational Amplifier (CFOA)

In the procedure it is necessary to generate a new solution y
which will be compared with all its neighborhood by applying
a decomposition approach and each neighbor worse than this
new solution will be replaced by it in an external population
(EP) which is used to store non-dominated solutions [12].

IV. SIZING OPTIMIZATION BY NSGA-II AND MOEA/D

In this section are shown the optimization results for the
mixed-mode circuits depicted in Figs 1 and 2. Each one
was optimized with different number of variables, objectives,
population size and number of generations. Each EA includes
DE as the genetic operator.

A. Positive Second Generation Current Conveyor (CCII+)

The CCII+ depicted in Fig. 1 is encoded with nine design
variables: transistors lengths (L) and widths (Wi), where i
represents a specific transistor (or transistors which share the
same width) of the circuit, as shown in Table I.

TABLE I
CCII+ ENCODING

gene Design Variable Encoding Transistors
x1 L M1, . . .M15
x2 W1 M11 , M12 , M13 , M14
x3 W2 M8 , M9 , M10
x4 W3 M6
x5 W4 M7
x6 W5 M1 , M3
x7 W6 M2 , M4
x8 W7 M15
x9 W8 M5

For this optimization problem, we have 9 variables and 10
objective functions. The domain for the input variables is x1 ∈
{0.36 μm, 0.54 μm, 0.72 μm}, xi ∈ [0.36 μm, 80 μm], for
i ∈ [2, . . . , 9] and the ten objectives are:

• f1(x) = 1 − (voltage gain); from port Y to port X.
• f2(x) = (voltage offset); between port Y and port X.
• f3(x) = 1/(voltage band width); from port Y to port X.
• f4(x) = 1/(input resistance); in port Y.
• f5(x) = (output resistance); in port X.
• f6(x) = 1 − (current gain); from port X to port Z.
• f7(x) = (current offset); between port X and port Z.
• f8(x) = 1/(current band width); from port X to port Z.
• f9(x) = (input resistance); in port X.
• f10(x) = (output resistance); in port Z.

In our experiments we include the saturation condition in
all transistors as constraints. Then this circuit was optimized
along 111 generations over 10 runs, with a population size for
111 by using DE [12].

TABLE II
NSGA-II OPTIMIZATION RESULTS FOR THE CCII+

GainV ( V
V

) OffsetV (V) BWV (Hz) RoutV (Ω) RinV (Ω)

MAX 0.9885 4.836e-003 9.733e+008 3.1576 8.115e+004
MIN 0.9758 1.105e-004 5.268e+008 0.6239 7.393e+003
AVG 0.9858 2.159e-003 7.913e+008 1.1510 2.783e+004
STD 1.947e-003 7.562e-004 1.308e+008 0.4134 1.788e+004

GainI ( I
I

) OffsetI (A) BWI (Hz) RoutI (Ω) RinI (Ω)

MAX 0.9999 4.988e-005 9.425e+008 1.456e+005 13.8628
MIN 0.8513 1.972e-008 2.218e+008 7.758e+003 0.8994
AVG 0.9302 1.878e-005 4.917e+008 2.504e+004 2.5182
STD 4.140e-002 1.402e-005 1.130e+008 2.406e+004 2.4096

Figures 3 and 4 depict the behavior of the best values in
each generation of the CCII+ optimization for NSGA-II and
MOEA/D, respectively. Tables II and III show the maximum,
minimum, average and standard deviation values for NSGA-II
and MOEA/D in the optimal sizing of the CCII+.

B. Current Feedback Operational Amplifier (CFOA)
The CFOA depicted in Fig. 2 is encoded with fifteen

design variables: transistors lengths (L) and widths (Wi),
where i represents a specific transistor (or transistors which
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TABLE III
MOEA/D OPTIMIZATION RESULTS FOR THE CCII+

GainV ( V
V

) OffsetV (V) BWV (Hz) RoutV (Ω) RinV (Ω)

MAX 0.9897 6.129e-003 9.734e+008 20.8758 1.011e+005
MIN 0.9592 7.773e-007 2.650e+008 0.5303 6.552e+003
AVG 0.9856 1.548e-003 7.268e+008 1.7078 5.037e+004
STD 5.076e-003 1.108e-003 1.551e+008 2.1357 2.873e+004

GainI ( I
I

) OffsetI (A) BWI (Hz) RoutI (Ω) RinI (Ω)

MAX 1.0000 4.994e-005 9.832e+008 5.142e+005 65.3312
MIN 0.8514 6.135e-010 1.175e+008 6.641e+003 0.6405
AVG 0.9605 1.421e-005 5.175e+008 3.251e+004 4.2372
STD 4.911e-002 1.392e-005 1.680e+008 5.645e+004 8.3924
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Fig. 3. Generation VS Objectives for NSGA-II for CCII+ Optimization
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Fig. 4. Generation VS Objectives for MOEA/D for CCII+ Optimization

share the same width) of the circuit, as shown in Table
IV. For the second problem, we have 15 variables and 12

TABLE IV
CFOA ENCODING

gene Design Variable Encoding Transistors
x1 L M1, . . .M25
x2 W1 M11 , M12 , M13 , M14
x3 W2 M8 , M9 , M10
x4 W3 M6
x5 W4 M7
x6 W5 M1 , M3
x7 W6 M2 , M4
x8 W7 M15
x9 W8 M5
x10 W9 M23 , M24
x11 W10 M16 ,M17
x12 W11 M22 ,M21
x13 W12 M19 ,M20
x14 W13 M18
x15 W14 M25

objective functions. The domain for the input variables is
x1 ∈ {0.36 μm, 0.54 μm, 0.72 μm}, xi ∈ [0.36 μm, 80 μm],
for i ∈ [2, . . . , 15] and the twelve objectives are:

• f1(x) = 1 − (voltage gain); from port Y to port X.
• f2(x) = (voltage offset); between port Y and port X.
• f3(x) = 1/(voltage band width); from port Y to port X.
• f4(x) = (output resistance); in port X.
• f5(x) = 1 − (current gain); from port X to port Z.

• f6(x) = (current offset); between port X and port Z.
• f7(x) = 1/(current band width); from port X to port Z.
• f8(x) = 1/(output resistance); in port Z.
• f9(x) = 1 − (voltage gain); from port Z to port W.
• f10(x) = (voltage offset); between port Z and port W.
• f11(x) = 1/(voltage band width); from port Z to port W.
• f12(x) = (output resistance); in port W.
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Fig. 5. Generation VS Objectives for NSGA-II for CFOA Optimization
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Fig. 6. Generation VS Objectives for MOEA/D for CFOA Optimization

TABLE V
NSGA-II OPTIMIZATION RESULTS FOR THE CFOA

GainV ( V
V

) OffsetV (V) BWV (Hz) RoutV (Ω)

MAX 0.9880 6.098e-003 6.303e+008 7.7824
MIN 0.9707 4.868e-004 3.190e+008 0.7915
AVG 0.9853 2.495e-003 4.871e+008 1.5373
STD 2.002e-003 8.009e-004 5.247e+007 0.7503

GainI ( I
I

) OffsetI (A) BWI (Hz) RoutI (Ω)

MAX 0.9986 4.976e-005 9.996e+008 8.646e+004
MIN 0.6017 2.111e-007 1.248e+008 2.760e+003
AVG 0.8513 1.851e-005 8.087e+008 1.581e+004
STD 0.1001 1.350e-005 1.522e+008 9.532e+003

GainW ( V
V

) OffsetW (V) BWW (Hz) RoutW (Ω)

MAX 0.9890 7.348e-003 9.893e+008 21.2337
MIN 0.9754 7.205e-006 3.219e+008 0.8430
AVG 0.9841 1.744e-003 7.084e+008 3.2157
STD 2.249e-003 1.312e-003 1.186e+008 2.5300

The CFOA was optimized along 168 generations over 10
runs, and the population size for 168 by using DE [12]. Figures
5 and 6 depict the behavior of the best values in each gener-
ation of the CFOA for NSGA-II and MOEA/D, respectively.
Tables V and VI show the maximum, minimum, average and
standard deviation values for NSGA-II and MOEA/D.

C. Discussion of Results

For the CCII+, MOEA/D exhibits the best results for the
offset in voltage and current mode, and for the input resistance
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TABLE VI
MOEA/D OPTIMIZATION RESULTS FOR THE CFOA

GainV ( V
V

) OffsetV (V) BWV (Hz) RoutV (Ω)

MAX 0.9893 6.984e-003 6.641e+008 50.2381
MIN 0.9344 1.211e-005 2.268e+008 0.6119
AVG 0.9851 2.236e-003 4.595e+008 1.8835
STD 5.695e-003 1.167e-003 6.571e+007 2.9437

GainI ( I
I

) OffsetI (A) BWI (Hz) RoutI (Ω)

MAX 1.0000 4.920e-005 9.999e+008 2.809e+005
MIN 0.6022 2.168e-009 1.011e+008 5.708e+003
AVG 0.8997 1.135e-005 7.743e+008 2.535e+004
STD 0.1044 1.061e-005 2.242e+008 2.892e+004

GainW ( V
V

) OffsetW (V) BWW (Hz) RoutW (Ω)

MAX 0.9899 7.899e-003 9.994e+008 65.7684
MIN 0.9275 7.635e-007 2.730e+008 0.4185
AVG 0.9851 1.573e-003 6.507e+008 3.4540
STD 7.186e-003 1.181e-003 1.659e+008 6.6713

in voltage mode. The improvement is most remarkable (Tables
II and III). The average is closer for both methods although
the standard deviation is better in NSGA-II than MOEA/D.

For the CFOA, the behavior is similar as for the CCII+,
MOEA/D has the best performance (in optimal and average
objective values) but only for offset in voltage and current,
there is a large improvement. Regarding to the standard devi-
ation, MOEA/D improves its values but for output resistances
presents an asymmetric behavior. This time the variables
values for both algorithms, changed to handle the large number
of objectives and variables.

It can be seen that MOEA/D shows better performance
because, besides to find best objectives values than NSGA-
II, its diversity feature, tries to explore the whole search
space, finding wider range of values in the objectives values
compared with NSGA-II. If we compare de MOEA/D average
objective values with their standard deviations, it is possible to
see how the largest number of solutions are concentred around
the average and a little ones are exploring promising areas.

On the one hand, by comparing Fig. 3 with Fig. 4, it is
possible to notice that MOEA/D reaches the final value, in less
generations than NSGA-II. In the same way, Fig. 5 and Fig.
6 exhibit a similar behavior. On the other hand, by comparing
Table II with Table III and Table V with Table VI, NSGA-II
has more symmetry in the solutions set and avoids to explore
areas which are so far from the objective increasing the ensure
to find a solution without the need to make a lot of runs.

V. CONCLUSION

We have shown the behavior of the generations by applying
NSGA-II and MOEA/D to size a CCII+ and a CFOA. Both
mixed-mode circuits were codified with 9 and 15 variables,
respectively, and with 10 and 12 objectives.

In the sizing of the CCII+, the solutions of both MOEAs
in the objective space were very close. Although MOEA/D
improves its average performance over NSGA-II, this last one
exhibited more symmetry denoted by its standard deviation.

In the sizing of the CFOA, MOEA/D had the best perfor-
mance but only for the offset in voltage and current.

Finally, the behavior of both MOEAs along the generations,
showed that MOEA/D has the possibility to reach admissible
values in less generations, and NSGA-II has the possibility to

improve the results through a higher number of generations.
In general, for both mixed-mode circuits, both MOEAs found
closer optimized results, in most cases MOEA/D exhibited
the best optimal values while NSGA-II exhibited the best
symmetry.
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[14] E. Tlelo-Cuautle, I. Guerra-Gómez, M. A. Duarte-Villaseñor, L. G. de la
Fraga, G. Flores-Becerra, G. Reyes-Salgado, C. A. Reyes-Garcı́a, and
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