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Chapter 1

SYMBOLICDENSITY MODEL SOFONE-IN-A-BILLION
STATISTICAL TAILSVIAIMPORTANCE SAMPLING
AND GENETIC PROGRAMMING

Trent McConaghy
Lsslido Desi gn Automation Inc., Canada

Abstract

This paper explores the application of symbolic regresgobuilding mod-
els of probability destributions in which the accuracy a thistributions’tails
is critical. The problem is of importance to cutting-edgeéustrial integrated
circuit design, such as designing SRAM memory componeritse{ls, sense
amps) where each component has extremely low probabilifgilofre. A naive
approach is infeasible because it would require billion#tohte Carlo circuit
simulations. This paper demonstrates a flow that efficiegglyerates samples at
the tails usingmportance sampling, then builds genetic programming symbolic
regression models in a space that captures the tails — theahquantile space.
These symbolic density models allow the circuit designeesialyze the tradeoff
between high-sigma yields and circuit performance. The fowalidated on two
modern industrial problems: a bitcell circuit on a 45nm TSId©Gcess, and a
sense amp circuit on a 28nm TSMC process.

Keywords:  symbolicregression, density estimation, importance $iagydVonte Carlo meth-
ods, memory, SRAM, integrated circuits, extreme-valuéstes
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1. Introduction

In many types of industrial designs, random factors dutireghanufacturing
process affect the performance of the final product. Thisitamly the case in
modern integrated circuits, where shrinking transistergetied to large process
variations and therefore large performance variationsis Thturn hurts chip
yields, affecting time-to-market and profitability of seronductor vendors.

Memory chips are among the circuits most affected in modemmcsonductor
design; effective solutions are of critical importance tmory vendors. While
statistical effects can be simulated in a flow that incorfesa circuit simulator
(e.g. SPICE)with a Monte Carlo analysis, that's not enoeghfemory design.
Memory building block like bitcells are replicated millierof times or more
on a chip; this means that for overall yields to be reasonéhlg. >90%),
each bitcell must have yields with failure rates milliondiofes lower than the
overall chip. That is, they need yields up to 99.9999998%da').

For effective analysis, the memory circuit designer needartalyze the
tradeoff between such high-sigma yields and circuit penfomce. Equivalently,
he or she needs accurate models of the extreme tails of tindatimn.

Teasio\®
Simulate

50 MC

samples: No infeasible

samples

density

vout

Note how most samples are <3 o

Figure1-1. Monte Carlo sampling. Process point samples are drawn frdistabution (left),
then simulated (middle), to get corresponding output \v&(ught). A sample is “feasible” if all
outputs’ specifications are met. Here, a sample is feadibleuit < voutin,, wherevoutin, is
represented by the vertical bar in the output space (rightich maps to the nonlinear “infeasible”
boundary in the process-variation space (left). Yield esselkpected percentage of samples that
are feasible. The challenge is: when the yield is extremiglly,ka small number of Monte Carlo
samples will almost never have a failure, so yield cannotdoaii@tely estimated.

This problem is challenging on several counts. Consideretiogl a circuit
where one in a million samples fail. Figure 1-1 shows the dagee draws a
small number of Monte Carlo samples in process-variati@cspand simulates
them to get circuit performances (e.g. vout). No sampletavién be close
to failure, so any subsequent modeling on top of it would belass. To get

1sigma is another unit for yield: yield is the area under a Geuscurve in the range -sigma to +sigma.
Therefore 6 sigma is yield of 99.9999998%, or probabilitfadure 1.973e-9, which is about 2 in a billion.
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just one failure, one would expect to run 1 million simulagpand 10 failures
would take on average 10 million simulations. Figure 1-@sttates this case.
One million simulations, even on a fast-simulating cirand with a compute
cluster, still typically takes a full day. So ten million isrt days, and 10 billion
is 3 years.

10M MC
samples:

10 infeasible
samples

density

Figure 1-2. Monte Carlo sampling with many samples can capture the tauisis computa-
tionally expensive.

A normal Monte Carlo run draws process points directly frdra process
variation distribution. As seen, far too many samples aeded in order to
get (rare-event) failures in the design. A key insight ig tha do not need to
draw samples directly from the distribution. Instead, wa ceeate samples
that are infeasible more often, so that decent informat®oavailable at the
tails. Importance Sampling (1S)(Hesterberg, 1988) is d-wabwn approach
for rare event simulation, where the sampling distributisrshifted towards
rare infeasible samples, as Figure 1-3 illustrates. Eatipkahas a weight that
relates its density on the sampling pdf to the true pdf.

density

vout

e
sample so that >>
1/1M infeasible!

Figure 1-3. Importance sampling takes more samples at the tails of stghdition. But how
do we build (symbolic) models from that data?

Given that we can efficiently take samples at the tails, hawea construct
symbolic density models? This paper explores a practical flsing genetic
programming (GP)(Koza, 1992). Specifically, GP symbolgression models
the distributions accurately even at the tails, by workirggrf the importance-
sampled data points, rescaled into the normal quantileesgaigure 1-4 right
illustrates.
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For reference, we show the naive Monte Carlo-based flow imr€id-4
left. As discussed, it is impractical because it requiresrt@any simulations.
Also, the high sample count is too computationally expendar classical
density estimation techniques such as kernel density astimor expectation-
maximization of gaussian mixture models (Hastie et al.,1200-inally, the

output model is not symbolic.
< 3
Circuit design,
process technology

Importance Sampling|| circuit
(10K samples) simulation

!

Compute numerical cdf

- — (use Imp. Samp. weights)
Monte Carlo sampling|| circuit i

(1M-1B samples) ||simulation

Circuit design,
process technology

Transform to numerical qq

1
Build pdf density model Build symbolic density
(on 1M-1B samples) model with GP SR
| Transform to cdf, qq | | Transform to cdf, pdf |

e ———-_
Pdf, cdf, qg density models

Pdf, cdf, gg density models

Figure 1-4. Left: Naive Monte Carlo based extraction of pdf, cdf, and rqsity models needs
too many samples for accuracy at the tails. Right: Proposed éturns symbolic density
models that are accurate even at the one-in-a-billion. tails

Working with importance-sampled data is not straightfaydecause not
every sample is equal; in fact some samples can have ordevagfitude more
weight than others. This constraint renders most tradifiolensity estimation
techniques useless. Fortunately, we have a starting poimimerical cdf (cu-
mulative density function) can be computed from the raw irtgoece-sampled
data, where the y-values are dependent on the relative tgeiflsamples.

One could consider a regression-style approach to builchaityerodel in
the cdf space, but that has problems. First, it underempésshe importance
of the tails. Second, the search imposes difficult condsaitine cdf function
must be monotonically increasing left-to-right, start a0y0 and end at y=1.0.
To handle such constraints, one might use guaranteed-owinatunctions
such as mixture-of-sigmoids (which is restrictive), or donwerical analysis of
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chosen functions (which is expensive and provides no gteeah One could
also consider transforming the data into pdf space (prdibaliensities, the

derivative of cdf); but this is even more difficult becausé pobdels must be

guaranteed to integrate to 1.0 across their whole inputeargis possible,

but unpalatable: one must do numerical integration (whsotomputationally

expensive), symbolic integration by linking to symbolictimsoftware (whichis

complex), or use easy-to-analyze functional forms suchigisine of gaussians
(which is restrictive). Further, doing regression on pdoainderemphasizes
the importance of the tails.

Rather than building models in cdf or pdf space, this papepgses to
build models in thenormal quantile (nq) space, wherein raw cdf values are
transformed based on the Gaussian function. A major besdfigi the closer
a distribution is to Gaussian, the more linear the ng moglhis is quite unlike
the highly nonlinear curves in cdf and pdf space. The onlystramt for nq
space is monotonicity, which is easy to meet by simply r@jgcatnodels that
fail; because models are near-linear, most easily pas<timstraint. Once
models are built in nq space, they can be subsequently transél to cdf and
pdf space. The final challenge is how to make the regressydm+sy models to
be human-interpretable equations. This is the role of syimbegression (SR)
— the automated extraction of static whitebox models that mput variables
to output variables. To ensure the models are human-imtple, we use SR
with canonical-form functions constrained by a grammaat th, CAFFEINE
(McConaghy and Gielen, 2006; McConaghy and Gielen, 2009yur€ 1-
4 shows these steps of building symbolic density models irspape, and
transformation to cdf and pdf.

The rest of this paper is organized as follows. Section 2emesirelated
work in GP. Section 3 describes the importance samplingcaabr, section
4 describes regression-style density modeling from ingya# samples, and
section 5 describes symbolic regression-style densityafiroggl Section 6 gives
the experimental setup, and section 7 presents experihrestdts. Section 8
concludes.

2. Related Work in GP

With a thorough search of the GP literature, we found just seteof work
doing density estimation (Defoin Platel et al., 2007)However, that work
could not model the crucial data — the tails — because it wbdieectly from
Monte Carlo samples, and with just MC samples there are n@legnat the
high-sigma tails. One cannot model a region if one has nofdathat region.
In contrast,our approach explicitly samples at the taitg] avoids artificially

IWhile (Whigham, 2000) had “density model” in its title, itctinot actually model pdfs/cdfs.
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underemphasize the importance of the tails by modeling imnab quantile
space.

3. Optimal Importance Sampling

Importance Sampling (IS) (Hesterberg, 1988) is a well-km@approach for
rare event simulation. In IS, samples are drawn from a samglistribution
g(r) that is different than the true distributigr{). The sampling distribution
has a greater bias towards the tails, e.g. towards the rfaasible samples. To
make statistical estimates (e.g. mean, yield) from impméasampled data, a
weightw is assigned to each samptew(r) = p(r)/g(r).

There are few theoretical constraints on the choice of sagplistribution,
except thayy(r) > 0 for all  thatp(r) > 0. In practice, choosing is more
of a challenge when the random variablelsave dimensionalty-10; we have
50-150 random variables. The challenge is to chooge: psuch that samples
are infeasible often, yet the samples are sufficiently foteban p(r) such that
the weightsw(r) are not negligible. A pragmatic technique is to compute
“centers”, which are subsequently used as the means of @awdistributions
for g(r). Rather than heuristically choose centers as in (Kanj g2@06), we
can cast the problem into an optimization problem:

*

r* = argmax{p(r)}
s.t.  feasible(r) = True (1.1)

wherer is a random point in process variation space, the optimalr,
is found by maximizing its density(r), subject to violating at least one per-
formance value specification during simulation. If the tpdf has normal,
independent and identically-distributed (NIID) randonniables with mean=0
and no correlations, then maximizing densily(s equivalent to minimizing
[Ir].-

Then, finding good centers amounts to solving the optinomaproblem,
using an appropriate solver. We solve the optimization lgmbvia (a) higher-
stddev random sampling and simulation until a minimum nunatbefeasible
samples are found, then (b) applying a small-populatiotugiemary program-
ming algorithm (Yao et al., 1999), with SPICE simulationhetoop, to locally
optimize the most-probable infeasible samples. Once theereare found,
g(r) is defined as a mixture of (a) 25% samples from a mean=0 pdfigtier
stddev, and (b) 75% samples are drawn from the centers witlegt1.0. The
sampling of Figure 1-3 follows this sampling. Importancenpéing proceeds
using this distribution until a stopping criteria is met; w®p when 10,000
samples have been taken. We dub this overall approach Qgtmpartance
Sampling.
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The key output of importance sampling is a tuple for each sampvhere
each tuple contains the process poinits weightw; = w(r;), and its SPICE-
simulated performance value; = simulate(r;)*.

4.  Density Modeling from I mportance Samples

This section describes how density models can be computedfnportance
sampling data.

A typical (non-1S) density modeling problem is: given a sieperformance
values{mi, ma, ..., my}, compute a distributiop(m) in terms of density,
cumulative density, or normal quantiles (nq). This is ugutitated as an
unsupervised learning problem, and solved with e.g. kataekity estimation
or Gaussian mixture models (Hastie et al., 2001).

Working with importance-sampled data is not straightfaydecause not
every sample is equal — they have weights. If we were to igttoeeveights
and compute the density, the density values in the tail regieould be far too
large. However, we can apply a regression-style approach gpace. Its steps
are:

1 : Sort performance values in ascending orgar <= mgy <= ... <
my, keeping corresponding weights aligned.

2 : Compute numerical cdfs adf; = 23-:1 w;. These make the y-values
in the numerical cdf, and the x-values are the correspondingalues.

3 : Compute numerical ng with the inverse-normal transfdaiomang; =
er f~H(2xcdf; —1)%v/2, whereer f (z) = 2/\/7 fox e~t*dt. These make
the y-values in the numerical nq, and the x-values are thesponding
m; values.

4 : Build a modelnq that mapsn — ng, i.e. a density model in nq space,
using the training datém;, ng; }Vi,i = 1..N. This is performed with a
1-D regression method that minimizes the sum-squared giredierror
across all possible input data, such as least-squareg liegeession,
guadratic regression, or more complex approaches.

5 : The modekdf is the normal transformation from nq to cdfdf = (1+

erf(ng/v/2))/2. This transformation can be performed symbolically or
numerically.

1For simplicity, we will focus on just one performance valueaaime. This is a reasonable simplification
for memory problems.
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6 : The modelﬁl? is the derivative of the cdf modelz/aél? = dc/ch/dm.
This transformation can be performed symbolically (e.ghwaiutomatic
differentiation) or numerically (e.g. with finite elementutels).

5. Symbolic Density Modeling with CAFFEINE

The last section described how to make regression-basesitylenodels
from importance-sampled data. To makebolic density models, the key is to
use symbolic regression (SR) in the last section’s modidlibg step (step 4).
We use CAFFEINE (McConaghy and Gielen, 2006; McConaghy aetefg
2009), but any almost GP-based SR system would do here $iagarablem
is a simple 1-D mapping. CAFFEINE’s advantage is that it ssgsammar
to constrain its search to the space of human-interpreipeessions, which
ensures human readability and implicitly prevents bloaé Wed CAFFEINE
off-the-shelf, without changing any parameters compaogditicConaghy and
Gielen, 2009). Population size was 100, running for 100 ggioms. This in-
cludes the CAFFEINE’s multi-objective search: minimizeogrand minimize
model complexity, to return a set of nondominated models.

To speed up runtirte prior to CAFFEINE, we pruned each training dataset
down to 50 points in a two-step flow. In the first step, the sasplere sorted
and everyn!® sample was taken, such that just 250 samples remained. In
the second step, we applied the SMITS balancing procedupdadislavleva,
2008) to prune down to 50 samples. In each iteration of theTS\dlgorithm,
the weights of all samples are computed and the lowest-wezigbample is
removed. The weights are based on “local deviation fromaliitg”: at each
point, its k = 8 closest neighbors in input space) are selected, a linear
model fromm to nq is constructed; then the weight is the absolute distance
from the pointto the linear model (plane in 2-d space). Thagting procedure
naturally focuses the samples towards those with highimnédion content, i.e.
at the nonlinear “bends” in the training data.

The multi-objective approach taken in CAFFEINE used nonidated-sorting
layers (NSGA-II) (Deb et al., 2002). An issue with NSGA-IItisat the fi-
nal nondominated set can be over-represented in some seg&m we apply
bottom-up clustering (hierarchical agglomerative cltatp to the 2-D Pareto
Front.

6. Experimental Setup

We use two test circuits, a bitcell and a sense amp, as showigire
1-5. These are the two major building blocks in designing msneircuits.

INote: the speedups are nweded, they just help to get results in real-time.



Symbolic Density Models of One-in-a-Billion Statistical Tails 9

The bitcell has 6 devices, and the sense amp 12. Each d@rddvice sizes
were set to have “reasonable” values by a memory circuigthesj leading to
“reasonable” performance values. For the bitcell, theutirperformance of
interest isv,,¢, fOocusing accuracy in the specification regiorvgf; > 17 mV.
For the sense amp, itis -22 MY v, ser < 22 MV.

Figure 1-5. Circuit schematics. Left: bitcell. Right: sense amp

The variations in the circuit performance due to manufacgiimprecision
can be modeled as a joint probability density function (jptife use the well-
known model (Drennan and McAndrew, 1999) where the randaimahies are
“process variables” which model quantities like “substrdbping concentra-
tion”. Variations in these quantities affect the electrizahavior of the circuit,
and therefore its performances. In this model, there areitab® normal in-
dependent identically-distributed (NIID) random variblper transistor. In
total, the bitcell had 55 process variables, and the sengel@® In a Monte
Carlo run, random points are drawn directly from the jpdfa#ésng the pro-
cess variations; and in importance sampling, random pairggirawn from a
sampling jpdf. Via simulation, the process-variation kigttion maps to the
performance distribution.

At each random point, we simulate the circuit at pre-speatiievironmental
conditions. The bitcell’'s environmental conditions weesmp=25%legC, power
supply voltagd/;;=1.0 V, andV,,,=0.0 V. The sense amp’s environmental con-
ditions were: load capacitan€¢g=1e-15 F, temp=2%gC, andV;;=1.0 V. The
simulator was was HSPICB!. The technology for the bitcell was TSMC
45nm CMOS, and for the sense amp 28nm CMOS.

7.  Experimental Results

This section describes the results to validate the impoeaampling plus
SR flow on the bitcell and the sense amp.

First, we aimed to ensure that importance sampling couttiftdly sample
a broad range of the distribution. For “golden” results @tessthat we can use
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as a reference for comparison), we ran 1M Monte Carlo sanfipidle bitcell
and 100K for the sense amp. For IS results, we ran 10K impogtaamples.
Then, we constructed a numerical nq plot for each set of tgusing steps 2
and 3 in section 4 (in MC, all the weights are equal). The tesare plotted in
Figure 1-6. Note how the normal quantile values for the 1&diae up nicely
with the MC data, even in the tails (e.g. where normal quartid3 and>3).
The discrete steps for the IS data are due to some samplegliarger weights,
which in turn influences the cdf and nq values more.

quantile

10K importance samples
100K MC samples

10K impertance samples

b
b
4
b
2 1M MC samples
|
0
1
2
3

nurwal

o por‘ma‘llquantlle
L2l el e e e

04 -0.02 0.00 0.02 0.04 0.06
offset

0.000.050.100.150.200.25 0,30 0.35 0.40 0.45
vout

Figure1-6. Importance Sampling results verified against “golden” Mo@tarlo samples. Left:
bitcell. Right: sense amp

These curves on their own have value to provide insight todésggner —
information about the tails that we would not normally gethvé limited sample
MC run. In the sense amp, the linearity of the curves inditia# the sense
amp’s offset is Gaussian-distributed even into the tais| that the mapping
from process variables to offset is linear. In contrast,litteell's vout curve
bends towards the bottom left, indicating a strong nonliityeaSuch informa-
tion is valuable to gain insight into the nature of the taildhe distribution,
and to understand the tradeoff between specifications adl yFrom here on,
we will focus on the bitcell results because, being nonlingeey are the most
interesting. (CAFFEINE solved the linear sense amp proltanally.)

The next step was to build symbolic density models from thed 8ata, and
to examine the results in nqg, cdf, and pdf space. Given{thg.q} training
data, the models were built according to section 5. Bothsstéjpruning took
about 3 s total; CAFFEINE took about 30 s to run, and returRéseto-optimal
models. The models were pruned from 31 to 6 models. The RPamimal
models’ output is plotted against the nq training data iruFegl-7 top. The
simplest CAFFEINE model was linear (note how its straighelmisses the
nonlinearity in the bottom left).

The other models had similar performance, and successtalijyured the
nonlinearity. The cdf and pdf curves for the lowest-errord@lovere computed
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Figure 1-7. CAFFEINE results and training data in ng space (top), cdésgmiddle), and pdf
space (bottom). In the nq space, all nondominated modelkshasgn. In the other spaces, just
the lowest-error model is shown.
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numerically according to the flow in section 4; they are shawfigure 1-7
middle and bottom.

Notice how the cdf curve naturally starts at a value of eya@, and mono-
tonically increases to finish at exactly 1.0. This would hbaeen difficult or
expensive to do if doing symbolic regression in cdf spacéwas natural and
simple by transforming from nq to cdf space. Also, with anébgll” check
we can see that the pdf curve roughly integrates to 1.0. Ogaim athis would
have been difficult or expensive if doing symbolic regressiothe pdf space,
but was natural and simple by transforming from cdf to pdfcgpa

The results in the three spaces are complementary: theumiilates the
tails the most, the cdf allows one to quickly assess the tfhdetween yield
(equivalent to the cdf value or 1-cdf value, depending orsfiex), and the pdf
gives intuition about where the samples tend to focus.

The output symbolic models have high value to the desigsdreaan man-
ually manipulate the equation. For high-sigma memory deslie nq space is
actually the most natural, so the CAFFEINE models can be disectly. Table
1-1 shows some of CAFFEINE-output models. Note how readilgrpretable
they are, while accurately capturing the mapping frayy to normal quantile

ng.

Table 1-1. CAFFEINE-generated models mapping.: to normal quantileng, in order of
decreasing error and increasing complexity.
| Trainerror (%) | ng Expression

26.3 —3.903 + 28.90 * vout
11.42 —7.358 — 3.736 * Voyt + 23.89 * \/Vout
11.01 368.1 — 46.482 * vy + 170.999 * \/Uout

+41.0435 * log10(1.07285¢ — 7 * \/Uout)
—0.002472//maz(0, 1.562¢ — 10/+/vou)

8. Conclusion

This paper described a new challenge for GP-based symlegiession:
building density models that are accurate at the extrertseafthe distribution.
This challenge matters for the real-world problem of vaoiataware memory
circuit design. This paper discussed how a naive approaclg p&in Monte
Carlo would fail in handling such rare-event tails. Thens thaper described
a flow to extract extreme-value symbolic density modelsinogtimportance
sampling, symbolic regression in the normal quantile spaice transformation
to cdf and pdf space. The flow was validated on two industniablems: a
bitcell circuit on a 45nm TSMC process, and a sense amp tiocua 28nm
TSMC process.
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