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Chapter 1

SYMBOLIC DENSITY MODELS OF ONE-IN-A-BILLION
STATISTICAL TAILS VIA IMPORTANCE SAMPLING
AND GENETIC PROGRAMMING

Trent McConaghy1
1Solido Design Automation Inc., Canada

Abstract
This paper explores the application of symbolic regressionfor building mod-

els of probability destributions in which the accuracy at the distributions’tails
is critical. The problem is of importance to cutting-edge industrial integrated
circuit design, such as designing SRAM memory components (bitcells, sense
amps) where each component has extremely low probability offailure. A naive
approach is infeasible because it would require billions ofMonte Carlo circuit
simulations. This paper demonstrates a flow that efficientlygenerates samples at
the tails usingimportance sampling, then builds genetic programming symbolic
regression models in a space that captures the tails – the normal quantile space.
These symbolic density models allow the circuit designers to analyze the tradeoff
between high-sigma yields and circuit performance. The flowis validated on two
modern industrial problems: a bitcell circuit on a 45nm TSMCprocess, and a
sense amp circuit on a 28nm TSMC process.

Keywords: symbolic regression, densityestimation, importancesampling, MonteCarlo meth-
ods, memory, SRAM, integrated circuits, extreme-value statistics
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1. Introduction

In many types of industrial designs, random factors during the manufacturing
process affect the performance of the final product. This is certainly the case in
modern integrated circuits, where shrinking transistors have led to large process
variations and therefore large performance variations. This in turn hurts chip
yields, affecting time-to-market and profitability of semiconductor vendors.

Memory chips are among the circuits most affected in modern semiconductor
design; effective solutions are of critical importance to memory vendors. While
statistical effects can be simulated in a flow that incorporates a circuit simulator
(e.g. SPICE) with a Monte Carlo analysis, that’s not enough for memory design.
Memory building block like bitcells are replicated millions of times or more
on a chip; this means that for overall yields to be reasonable(e.g. >90%),
each bitcell must have yields with failure rates millions oftimes lower than the
overall chip. That is, they need yields up to 99.9999998% (6 sigma1).

For effective analysis, the memory circuit designer needs to analyze the
tradeoff between such high-sigma yields and circuit performance. Equivalently,
he or she needs accurate models of the extreme tails of the distribution.

Figure 1-1. Monte Carlo sampling. Process point samples are drawn from adistribution (left),
then simulated (middle), to get corresponding output values (right). A sample is “feasible” if all
outputs’ specifications are met. Here, a sample is feasible if vout ≤ voutthr, wherevoutthr is
represented by the vertical bar in the output space (right),which maps to the nonlinear “infeasible”
boundary in the process-variation space (left). Yield is the expected percentage of samples that
are feasible. The challenge is: when the yield is extremely high, a small number of Monte Carlo
samples will almost never have a failure, so yield cannot be accurately estimated.

This problem is challenging on several counts. Consider modeling a circuit
where one in a million samples fail. Figure 1-1 shows the caseif one draws a
small number of Monte Carlo samples in process-variation space, and simulates
them to get circuit performances (e.g. vout). No samples will even be close
to failure, so any subsequent modeling on top of it would be useless. To get

1Sigma is another unit for yield: yield is the area under a Gaussian curve in the range -sigma to +sigma.
Therefore 6 sigma is yield of 99.9999998%, or probability offailure 1.973e-9, which is about 2 in a billion.
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just one failure, one would expect to run 1 million simulations, and 10 failures
would take on average 10 million simulations. Figure 1-2 illustrates this case.
One million simulations, even on a fast-simulating circuitand with a compute
cluster, still typically takes a full day. So ten million is ten days, and 10 billion
is 3 years.

Figure 1-2. Monte Carlo sampling with many samples can capture the tails, but is computa-
tionally expensive.

A normal Monte Carlo run draws process points directly from the process
variation distribution. As seen, far too many samples are needed in order to
get (rare-event) failures in the design. A key insight is that we do not need to
draw samples directly from the distribution. Instead, we can create samples
that are infeasible more often, so that decent information is available at the
tails. Importance Sampling (IS)(Hesterberg, 1988) is a well-known approach
for rare event simulation, where the sampling distributionis shifted towards
rare infeasible samples, as Figure 1-3 illustrates. Each sample has a weight that
relates its density on the sampling pdf to the true pdf.

Figure 1-3. Importance sampling takes more samples at the tails of the distribution. But how
do we build (symbolic) models from that data?

Given that we can efficiently take samples at the tails, how can we construct
symbolic density models? This paper explores a practical flow using genetic
programming (GP)(Koza, 1992). Specifically, GP symbolic regression models
the distributions accurately even at the tails, by working from the importance-
sampled data points, rescaled into the normal quantile space. Figure 1-4 right
illustrates.
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For reference, we show the naive Monte Carlo-based flow in Figure 1-4
left. As discussed, it is impractical because it requires too many simulations.
Also, the high sample count is too computationally expensive for classical
density estimation techniques such as kernel density estimation or expectation-
maximization of gaussian mixture models (Hastie et al., 2001). Finally, the
output model is not symbolic.

Figure 1-4. Left: Naive Monte Carlo based extraction of pdf, cdf, and nq density models needs
too many samples for accuracy at the tails. Right: Proposed flow returns symbolic density
models that are accurate even at the one-in-a-billion tails.

Working with importance-sampled data is not straightforward, because not
every sample is equal; in fact some samples can have orders ofmagnitude more
weight than others. This constraint renders most traditional density estimation
techniques useless. Fortunately, we have a starting point:a numerical cdf (cu-
mulative density function) can be computed from the raw importance-sampled
data, where the y-values are dependent on the relative weights of samples.

One could consider a regression-style approach to build a density model in
the cdf space, but that has problems. First, it underemphasizes the importance
of the tails. Second, the search imposes difficult constraints: the cdf function
must be monotonically increasing left-to-right, start at y=0.0 and end at y=1.0.
To handle such constraints, one might use guaranteed-monotonic functions
such as mixture-of-sigmoids (which is restrictive), or do numerical analysis of
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chosen functions (which is expensive and provides no guarantees). One could
also consider transforming the data into pdf space (probability densities, the
derivative of cdf); but this is even more difficult because pdf models must be
guaranteed to integrate to 1.0 across their whole input range. It is possible,
but unpalatable: one must do numerical integration (which is computationally
expensive), symbolic integration by linking to symbolic math software (which is
complex), or use easy-to-analyze functional forms such as mixture of gaussians
(which is restrictive). Further, doing regression on pdfs also underemphasizes
the importance of the tails.

Rather than building models in cdf or pdf space, this paper proposes to
build models in thenormal quantile (nq) space, wherein raw cdf values are
transformed based on the Gaussian function. A major benefit is that the closer
a distribution is to Gaussian, the more linear the nq model is; this is quite unlike
the highly nonlinear curves in cdf and pdf space. The only constraint for nq
space is monotonicity, which is easy to meet by simply rejecting models that
fail; because models are near-linear, most easily pass thisconstraint. Once
models are built in nq space, they can be subsequently transformed to cdf and
pdf space. The final challenge is how to make the regression-style nq models to
be human-interpretable equations. This is the role of symbolic regression (SR)
– the automated extraction of static whitebox models that map input variables
to output variables. To ensure the models are human-interpretable, we use SR
with canonical-form functions constrained by a grammar; that is, CAFFEINE
(McConaghy and Gielen, 2006; McConaghy and Gielen, 2009). Figure 1-
4 shows these steps of building symbolic density models in nqspace, and
transformation to cdf and pdf.

The rest of this paper is organized as follows. Section 2 reviews related
work in GP. Section 3 describes the importance sampling approach, section
4 describes regression-style density modeling from importance samples, and
section 5 describes symbolic regression-style density modeling. Section 6 gives
the experimental setup, and section 7 presents experimental results. Section 8
concludes.

2. Related Work in GP

With a thorough search of the GP literature, we found just oneset of work
doing density estimation (Defoin Platel et al., 2007)1. However, that work
could not model the crucial data – the tails – because it worked directly from
Monte Carlo samples, and with just MC samples there are no samples at the
high-sigma tails. One cannot model a region if one has no datafor that region.
In contrast,our approach explicitly samples at the tails, and avoids artificially

1While (Whigham, 2000) had “density model” in its title, it did not actually model pdfs/cdfs.
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underemphasize the importance of the tails by modeling in normal quantile
space.

3. Optimal Importance Sampling

Importance Sampling (IS) (Hesterberg, 1988) is a well-known approach for
rare event simulation. In IS, samples are drawn from a sampling distribution
g(r) that is different than the true distributionp(r). The sampling distribution
has a greater bias towards the tails, e.g. towards the rare infeasible samples. To
make statistical estimates (e.g. mean, yield) from importance sampled data, a
weightw is assigned to each sampler: w(r) = p(r)/g(r).

There are few theoretical constraints on the choice of sampling distribution,
except thatg(r) > 0 for all r thatp(r) > 0. In practice, choosingg is more
of a challenge when the random variablesr have dimensionalty>10; we have
50-150 random variables. The challenge is to choose ag(r) such that samples
are infeasible often, yet the samples are sufficiently probable in p(r) such that
the weightsw(r) are not negligible. A pragmatic technique is to compute
“centers”, which are subsequently used as the means of Gaussian distributions
for g(r). Rather than heuristically choose centers as in (Kanj et al., 2006), we
can cast the problem into an optimization problem:

r
∗ = argmax{p(r)}
s.t. feasible(r) = True

(1.1)

wherer is a random point in process variation space.r∗, the optimalr,
is found by maximizing its densityp(r), subject to violating at least one per-
formance value specification during simulation. If the truepdf has normal,
independent and identically-distributed (NIID) random variables with mean=0
and no correlations, then maximizing density(r) is equivalent to minimizing
||r||.

Then, finding good centers amounts to solving the optimization problem,
using an appropriate solver. We solve the optimization problem via (a) higher-
stddev random sampling and simulation until a minimum number of infeasible
samples are found, then (b) applying a small-population evolutionary program-
ming algorithm (Yao et al., 1999), with SPICE simulation in the loop, to locally
optimize the most-probable infeasible samples. Once the centers are found,
g(r) is defined as a mixture of (a) 25% samples from a mean=0 pdf withhigher
stddev, and (b) 75% samples are drawn from the centers with stddev=1.0. The
sampling of Figure 1-3 follows this sampling. Importance sampling proceeds
using this distribution until a stopping criteria is met; westop when 10,000
samples have been taken. We dub this overall approach Optimal Importance
Sampling.
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The key output of importance sampling is a tuple for each sample i, where
each tuple contains the process pointri, its weightwi = w(ri), and its SPICE-
simulated performance valuemi = simulate(ri)

1.

4. Density Modeling from Importance Samples

This section describes how density models can be computed from importance
sampling data.

A typical (non-IS) density modeling problem is: given a set of performance
values{m1, m2, . . . , mN}, compute a distributionp(m) in terms of density,
cumulative density, or normal quantiles (nq). This is usually treated as an
unsupervised learning problem, and solved with e.g. kerneldensity estimation
or Gaussian mixture models (Hastie et al., 2001).

Working with importance-sampled data is not straightforward, because not
every sample is equal – they have weights. If we were to ignorethe weights
and compute the density, the density values in the tail regions would be far too
large. However, we can apply a regression-style approach innq space. Its steps
are:

1 : Sort performance values in ascending orderm1 <= m2 <= . . . <
mN , keeping corresponding weights aligned.

2 : Compute numerical cdfs ascdfi =
∑i

j=1
wj . These make the y-values

in the numerical cdf, and the x-values are the correspondingmi values.

3 : Compute numerical nq with the inverse-normal transformation nqi =

erf−1(2∗cdfi−1)∗
√

2, whereerf(x) = 2/
√

π
∫ x

0
e−t2dt. These make

the y-values in the numerical nq, and the x-values are the corresponding
mi values.

4 : Build a model̂nq that mapsm → nq, i.e. a density model in nq space,
using the training data{mi, nqi}∀i, i = 1..N . This is performed with a
1-D regression method that minimizes the sum-squared prediction error
across all possible input data, such as least-squares linear regression,
quadratic regression, or more complex approaches.

5 : The modelĉdf is the normal transformation from nq to cdf:̂cdf = (1+
erf(n̂q/

√
2))/2. This transformation can be performed symbolically or

numerically.

1For simplicity, we will focus on just one performance value at a time. This is a reasonable simplification
for memory problems.
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6 : The model̂pdf is the derivative of the cdf model:̂pdf = dĉdf/dm.
This transformation can be performed symbolically (e.g. with automatic
differentiation) or numerically (e.g. with finite element models).

5. Symbolic Density Modeling with CAFFEINE

The last section described how to make regression-based density models
from importance-sampled data. To makesymbolic density models, the key is to
use symbolic regression (SR) in the last section’s model-building step (step 4).
We use CAFFEINE (McConaghy and Gielen, 2006; McConaghy and Gielen,
2009), but any almost GP-based SR system would do here since the problem
is a simple 1-D mapping. CAFFEINE’s advantage is that it usesa grammar
to constrain its search to the space of human-interpretableexpressions, which
ensures human readability and implicitly prevents bloat. We used CAFFEINE
off-the-shelf, without changing any parameters compared to (McConaghy and
Gielen, 2009). Population size was 100, running for 100 generations. This in-
cludes the CAFFEINE’s multi-objective search: minimize error, and minimize
model complexity, to return a set of nondominated models.

To speed up runtime1, prior to CAFFEINE, we pruned each training dataset
down to 50 points in a two-step flow. In the first step, the samples were sorted
and everynth sample was taken, such that just 250 samples remained. In
the second step, we applied the SMITS balancing procedure of(Vladislavleva,
2008) to prune down to 50 samples. In each iteration of the SMITS algorithm,
the weights of all samples are computed and the lowest-weighted sample is
removed. The weights are based on “local deviation from linearity”: at each
point, its k = 8 closest neighbors in input space (m) are selected, a linear
model fromm to nq is constructed; then the weight is the absolute distance
from the point to the linear model (plane in 2-dspace). This weightingprocedure
naturally focuses the samples towards those with high information content, i.e.
at the nonlinear “bends” in the training data.

The multi-objective approach taken in CAFFEINE usednondominated-sorting
layers (NSGA-II) (Deb et al., 2002). An issue with NSGA-II isthat the fi-
nal nondominated set can be over-represented in some regions. So, we apply
bottom-up clustering (hierarchical agglomerative clustering) to the 2-D Pareto
Front.

6. Experimental Setup

We use two test circuits, a bitcell and a sense amp, as shown inFigure
1-5. These are the two major building blocks in designing memory circuits.

1Note: the speedups are notneeded, they just help to get results in real-time.
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The bitcell has 6 devices, and the sense amp 12. Each circuit’s device sizes
were set to have “reasonable” values by a memory circuit designer, leading to
“reasonable” performance values. For the bitcell, the circuit performance of
interest isvout, focusing accuracy in the specification region ofvout > 17 mV.
For the sense amp, it is -22 mV≤ voffset ≤ 22 mV.

Figure 1-5. Circuit schematics. Left: bitcell. Right: sense amp

The variations in the circuit performance due to manufacturing imprecision
can be modeled as a joint probability density function (jpdf). We use the well-
known model (Drennan and McAndrew, 1999) where the random variables are
“process variables” which model quantities like “substrate doping concentra-
tion”. Variations in these quantities affect the electrical behavior of the circuit,
and therefore its performances. In this model, there are about 10 normal in-
dependent identically-distributed (NIID) random variables per transistor. In
total, the bitcell had 55 process variables, and the sense amp 125. In a Monte
Carlo run, random points are drawn directly from the jpdf describing the pro-
cess variations; and in importance sampling, random pointsare drawn from a
sampling jpdf. Via simulation, the process-variation distribution maps to the
performance distribution.

At each random point, we simulate the circuit at pre-specified environmental
conditions. The bitcell’s environmental conditions were temp=25degC, power
supply voltageVdd=1.0 V, andVcn=0.0 V. The sense amp’s environmental con-
ditions were: load capacitanceCl=1e-15 F, temp=25degC, andVdd=1.0 V. The
simulator was was HSPICETM . The technology for the bitcell was TSMC
45nm CMOS, and for the sense amp 28nm CMOS.

7. Experimental Results

This section describes the results to validate the importance sampling plus
SR flow on the bitcell and the sense amp.

First, we aimed to ensure that importance sampling could faithfully sample
a broad range of the distribution. For “golden” results (results that we can use
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as a reference for comparison), we ran 1M Monte Carlo samplesfor the bitcell
and 100K for the sense amp. For IS results, we ran 10K importance samples.
Then, we constructed a numerical nq plot for each set of results, using steps 2
and 3 in section 4 (in MC, all the weights are equal). The results are plotted in
Figure 1-6. Note how the normal quantile values for the IS data line up nicely
with the MC data, even in the tails (e.g. where normal quantile <-3 and>3).
The discrete steps for the IS data are due to some samples having larger weights,
which in turn influences the cdf and nq values more.

Figure 1-6. Importance Sampling results verified against “golden” Monte Carlo samples. Left:
bitcell. Right: sense amp

These curves on their own have value to provide insight to thedesigner –
information about the tails that we would not normally get with a limited sample
MC run. In the sense amp, the linearity of the curves indicatethat the sense
amp’s offset is Gaussian-distributed even into the tails, and that the mapping
from process variables to offset is linear. In contrast, thebitcell’s vout curve
bends towards the bottom left, indicating a strong nonlinearity. Such informa-
tion is valuable to gain insight into the nature of the tails of the distribution,
and to understand the tradeoff between specifications and yield. From here on,
we will focus on the bitcell results because, being nonlinear, they are the most
interesting. (CAFFEINE solved the linear sense amp problemtrivially.)

The next step was to build symbolic density models from the ISnq data, and
to examine the results in nq, cdf, and pdf space. Given the{m,nq} training
data, the models were built according to section 5. Both steps of pruning took
about 3 s total; CAFFEINE took about 30 s to run, and return itsPareto-optimal
models. The models were pruned from 31 to 6 models. The Pareto-optimal
models’ output is plotted against the nq training data in Figure 1-7 top. The
simplest CAFFEINE model was linear (note how its straight line misses the
nonlinearity in the bottom left).

The other models had similar performance, and successfullycaptured the
nonlinearity. The cdf and pdf curves for the lowest-error model were computed
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Figure 1-7. CAFFEINE results and training data in nq space (top), cdf space (middle), and pdf
space (bottom). In the nq space, all nondominated models areshown. In the other spaces, just
the lowest-error model is shown.
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numerically according to the flow in section 4; they are shownin Figure 1-7
middle and bottom.

Notice how the cdf curve naturally starts at a value of exactly 0.0, and mono-
tonically increases to finish at exactly 1.0. This would havebeen difficult or
expensive to do if doing symbolic regression in cdf space, but was natural and
simple by transforming from nq to cdf space. Also, with an “eyeball” check
we can see that the pdf curve roughly integrates to 1.0. Once again, this would
have been difficult or expensive if doing symbolic regression in the pdf space,
but was natural and simple by transforming from cdf to pdf space.

The results in the three spaces are complementary: the nq illuminates the
tails the most, the cdf allows one to quickly assess the tradeoff between yield
(equivalent to the cdf value or 1-cdf value, depending on thespec), and the pdf
gives intuition about where the samples tend to focus.

The output symbolic models have high value to the designer, as he can man-
ually manipulate the equation. For high-sigma memory design, the nq space is
actually the most natural, so the CAFFEINE models can be useddirectly. Table
1-1 shows some of CAFFEINE-output models. Note how readily-interpretable
they are, while accurately capturing the mapping fromvout to normal quantile
nq.

Table 1-1. CAFFEINE-generated models mappingvout to normal quantilenq, in order of
decreasing error and increasing complexity.

Train error (%) nq Expression
26.3 −3.903 + 28.90 ∗ vout

11.42 −7.358 − 3.736 ∗ vout + 23.89 ∗ √vout

11.01 368.1 − 46.482 ∗ vout + 170.959 ∗ √vout

+41.0435 ∗ log10(1.07285e − 7 ∗ √vout)

−0.002472/
√

max(0, 1.562e − 10/
√

vout)

8. Conclusion

This paper described a new challenge for GP-based symbolic regression:
building density models that are accurate at the extreme tails of the distribution.
This challenge matters for the real-world problem of variation-aware memory
circuit design. This paper discussed how a naive approach using plain Monte
Carlo would fail in handling such rare-event tails. Then, this paper described
a flow to extract extreme-value symbolic density models: optimal importance
sampling, symbolic regression in the normal quantile space, and transformation
to cdf and pdf space. The flow was validated on two industrial problems: a
bitcell circuit on a 45nm TSMC process, and a sense amp circuit on a 28nm
TSMC process.
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